1
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Bortolami A, Guinat C, Harder T, Stegeman A, Terregino C, Lanfranchi B, Preite L, Aznar I, Broglia A, Baldinelli F, Gonzales Rojas JL. Vaccination of poultry against highly pathogenic avian influenza - Part 2. Surveillance and mitigation measures. EFSA J 2024; 22:e8755. [PMID: 38638555 PMCID: PMC11024799 DOI: 10.2903/j.efsa.2024.8755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Selecting appropriate diagnostic methods that take account of the type of vaccine used is important when implementing a vaccination programme against highly pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load is expected in the samples used for diagnosis, making molecular methods with high sensitivity the best choice. Although serological methods can be reasonably sensitive, they may produce results that are difficult to interpret. In addition to routine molecular monitoring, it is recommended to conduct viral isolation, genetic sequencing and phenotypic characterisation of any HPAI virus detected in vaccinated flocks to detect escape mutants early. Following emergency vaccination, various surveillance options based on virological testing of dead birds ('bucket sampling') at defined intervals were assessed to be effective for early detection of HPAIV and prove disease freedom in vaccinated populations. For ducks, virological or serological testing of live birds was assessed as an effective strategy. This surveillance could be also applied in the peri-vaccination zone on vaccinated establishments, while maintaining passive surveillance in unvaccinated chicken layers and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate disease freedom with > 99% confidence and to detect HPAI virus sufficiently early following preventive vaccination, monthly virological testing of all dead birds up to 15 per flock, coupled with passive surveillance in both vaccinated and unvaccinated flocks, is recommended. Reducing the sampling intervals increases the sensitivity of early detection up to 100%. To enable the safe movement of vaccinated poultry during emergency vaccination, laboratory examinations in the 72 h prior to the movement can be considered as a risk mitigation measure, in addition to clinical inspection; sampling results from existing surveillance activities carried out in these 72 h could be used. In this Opinion, several schemes are recommended to enable the safe movement of vaccinated poultry following preventive vaccination.
Collapse
|
2
|
Kenmoe S, Takuissu GR, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ondigui Ndzie JL, Kenfack-Momo R, Tchatchouang S, Lontuo Fogang R, Zeuko'o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Puzelli S, Lucentini L, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Del Giudice C, Brandtner D, Suffredini E, La Rosa G. A systematic review of influenza virus in water environments across human, poultry, and wild bird habitats. WATER RESEARCH X 2024; 22:100210. [PMID: 38298332 PMCID: PMC10825513 DOI: 10.1016/j.wroa.2023.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
Influenza, a highly contagious acute respiratory disease, remains a major global health concern. This study aimed to comprehensively assess the prevalence of influenza virus in different aquatic environments. Using 43 articles from four databases, we thoroughly examined water matrices from wastewater treatment plants (WTPs) and other human environments, as well as poultry habitats and areas frequented by migratory wild birds. In WTP influents (10 studies), positivity rates for influenza A ranged from 0.0 % to 97.6 %. For influenza B (8 studies), most studies reported no positivity, except for three studies reporting detection in 0.8 %, 5.6 %, and 46.9 % of samples. Within poultry habitats (13 studies), the prevalence of influenza A ranged from 4.3 % to 76.4 %, while in environments frequented by migratory wild birds (11 studies), it ranged from 0.4 % to 69.8 %. Geographically, the studies were distributed as follows: 39.5 % from the Americas, 18.6 % from Europe, 2.3 % from South-East Asia and 39.5 % from the Western Pacific. Several influenza A subtypes were found in water matrices, including avian influenza (H3N6, H3N8, H4N1, H4N2, H4N6, H4N8, H5N1, H5N8, H6N2, H6N6, H7N9, H0N8, and H11N9) and seasonal human influenza (H1N1 and H3N2). The existing literature indicates a crucial requirement for more extensive future research on this topic. Specifically, it emphasizes the need for method harmonization and delves into areas deserving of in-depth research, such as water matrices pertaining to pig farming and prevalence studies in low-income countries.
Collapse
Affiliation(s)
- S Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - GR Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - JT Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - C Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | - DS Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - JL Ondigui Ndzie
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - R Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | - S Tchatchouang
- Scientific Direction, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - R Lontuo Fogang
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | - E Zeuko'o Menkem
- Department of Biomedical Sciences, University of Buea, Buea, Cameroon
| | - GI Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - JN Magoudjou-Pekam
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | - S Puzelli
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| | - G Bonanno Ferraro
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| | - C Del Giudice
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| | - D Brandtner
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary public health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Azeem S, Guo B, Sato Y, Gauger PC, Wolc A, Yoon KJ. Utility of Feathers for Avian Influenza Virus Detection in Commercial Poultry. Pathogens 2023; 12:1425. [PMID: 38133308 PMCID: PMC10748246 DOI: 10.3390/pathogens12121425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The present study evaluated the potential utility of feather samples for the convenient and accurate detection of avian influenza virus (AIV) in commercial poultry. Feather samples were obtained from AIV-negative commercial layer facilities in Iowa, USA. The feathers were spiked with various concentrations (106 to 100) of a low pathogenic strain of H5N2 AIV using a nebulizing device and were evaluated for the detection of viral RNA using a real-time RT-PCR assay immediately or after incubation at -20, 4, 22, or 37 °C for 24, 48, or 72 h. Likewise, cell culture medium samples with and without the virus were prepared and used for comparison. In the spiked feathers, the PCR reliably (i.e., 100% probability of detection) detected AIV RNA in eluates from samples sprayed with 103 EID50/mL or more of the virus. Based on half-life estimates, the feathers performed better than the corresponding media samples (p < 0.05), particularly when the samples were stored at 22 or 37 °C. In conclusion, feather samples can be routinely collected from a poultry barn as a non-invasive alternative to blood or oropharyngeal-cloacal swab samples for monitoring AIV.
Collapse
Affiliation(s)
- Shahan Azeem
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Baoqing Guo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (B.G.); (Y.S.); (P.C.G.)
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (B.G.); (Y.S.); (P.C.G.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (B.G.); (Y.S.); (P.C.G.)
| | - Anna Wolc
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA;
- Hy-Line International, Dallas Center, IA 50063, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (B.G.); (Y.S.); (P.C.G.)
| |
Collapse
|
4
|
Harder T, de Wit S, Gonzales JL, Ho JHP, Mulatti P, Prajitno TY, Stegeman A. Epidemiology-driven approaches to surveillance in HPAI-vaccinated poultry flocks aiming to demonstrate freedom from circulating HPAIV. Biologicals 2023; 83:101694. [PMID: 37494751 DOI: 10.1016/j.biologicals.2023.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Incursion pressure of high pathogenicity avian influenza viruses (HPAIV) by secondary spread among poultry holdings and/or from infected migratory wild bird populations increases worldwide. Vaccination as an additional layer of protection of poultry holdings using appropriately matched vaccines aims at reducing clinical sequelae of HPAIV infection, disrupting HPAIV transmission, curtailing economic losses and animal welfare problems and cutting exposure risks of zoonotic HPAIV at the avian-human interface. Products derived from HPAIV-vaccinated poultry should not impose any risk of virus spread or exposure. Vaccination can be carried out with zero-tolerance for infection in vaccinated herds and must then be flanked by appropriate surveillance which requires tailoring at several levels: (i) Controlling appropriate vaccination coverage and adequate population immunity in individual flocks and across vaccinated populations; (ii) assessing HPAI-infection trends in unvaccinated and vaccinated parts of the poultry population to provide early detection of new/re-emerged HPAIV outbreaks; and (iii) proving absence of HPAIV circulation in vaccinated flocks ideally by real time-monitoring. Surveillance strategies, i.e. selecting targets, tools and random sample sizes, must be accommodated to the specific epidemiologic and socio-economic background. Methodological approaches and practical examples from three countries or territories applying AI vaccination under different circumstances are reviewed here.
Collapse
Affiliation(s)
- Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler Institute, Greifswald-Insel Riems, Germany.
| | - Sjaak de Wit
- Royal GD, Deventer, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jose L Gonzales
- Epidemiology, Bio-informatics & Animal Models, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Jeremy H P Ho
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Teguh Y Prajitno
- Japfa Comfeed Indonesia, Vaksindo Satwa Nusantara, Animal Health & Laboratory Services, Jakarta, Indonesia
| | - Arjan Stegeman
- Department Population Health Sciences, Farm Animal Health, Veterinary Epidemiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Nezworski J, St Charles KM, Malladi S, Ssematimba A, Bonney PJ, Cardona CJ, Halvorson DA, Culhane MR. A Retrospective Study of Early vs. Late Virus Detection and Depopulation on Egg Laying Chicken Farms Infected with Highly Pathogenic Avian Influenza Virus During the 2015 H5N2 Outbreak in the United States. Avian Dis 2021; 65:474-482. [PMID: 34699146 DOI: 10.1637/aviandiseases-d-21-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022]
Abstract
The 2015 highly pathogenic avian influenza (HPAI) H5N2 outbreak affected more than 200 Midwestern U.S. poultry premises. Although each affected poultry operation incurred substantial losses, some operations of the same production type and of similar scale had differences between one another in their ability to recognize evidence of the disease before formal diagnoses and in their ability to make proactive, farm-level disease containment decisions. In this case comparison study, we examine the effect of HPAI infection on two large egg production facilities and the epidemiologic and financial implications resulting from differences in detection and decision-making processes. Each egg laying facility had more than 1 million caged birds distributed among 18 barns on one premises (Farm A) and 17 barns on the other premises (Farm B). We examine how farm workers' awareness of disease signs, as well as how management's immediate or delayed decisions to engage in depopulation procedures, affected flock mortality, levels of environmental contamination, time intervals for re population, and farm profits on each farm. By predictive mathematical modeling, we estimated the time of virus introduction to examine how quickly infection was identified on the farms and then estimated associated contact rates within barns. We found that the farm that implemented depopulation immediately after detection of abnormal mortality (Farm A) was able to begin repopulation of barns 37 days sooner than the farm that began depopulation well after the detection of abnormally elevated mortality (Farm B). From average industry economic data, we determined that the loss associated with delayed detection using lost profit per day in relation to down time was an additional $3.3 million for Farm B when compared with Farm A.
Collapse
Affiliation(s)
| | - Kaitlyn M St Charles
- Secure Food Systems Team, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108,
| | - Sasidhar Malladi
- Secure Food Systems Team, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Amos Ssematimba
- Secure Food Systems Team, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108.,Department of Mathematics, Faculty of Science, Gulu University, Gulu, Uganda
| | - Peter J Bonney
- Secure Food Systems Team, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Carol J Cardona
- Secure Food Systems Team, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - David A Halvorson
- Secure Food Systems Team, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Marie R Culhane
- Secure Food Systems Team, Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
6
|
Abolnik C, Ostmann E, Woods M, Wandrag DBR, Grewar J, Roberts L, Olivier AJ. Experimental infection of ostriches with H7N1 low pathogenic and H5N8 clade 2.3.4.4B highly pathogenic influenza A viruses. Vet Microbiol 2021; 263:109251. [PMID: 34656859 DOI: 10.1016/j.vetmic.2021.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Infection dynamics data for influenza A virus in a species is important for understanding host-pathogen interactions and developing effective control strategies. Seven-week-old ostriches challenged with H7N1 low pathogenic viruses (LPAIV) or clade 2.3.4.4B H5N8 high pathogenic viruses (HPAIV) were co- housed with non-challenged contacts. Clinical signs, virus shed in the trachea, cloaca, and feather pulp, and antibody responses were quantified over 14 days. H7N1 LPAIV-infected ostriches remained generally healthy with some showing signs of mild conjunctivitis and rhinitis attributed to Mycoplasma co-infection. Mean tracheal virus shedding titres in contact birds peaked 3 days (106.2 EID50 equivalents / ml) and 9 days (105.28 EID50 equivalents / ml) after introduction, lasting for at least 13 days post infection. Cloacal shedding was substantially lower and ceased within 10 days of onset, and low virus levels were detected in wing feather pulp up until day 14. H5N8 HPAIV -infected ostriches showed various degrees of morbidity, with 2/3 mortalities in the in-contact group. Mean tracheal shedding in contact birds peaked 8 days after introduction (106.32 EID50 equivalents/ ml) and lasted beyond 14 days in survivors. Cloacal shedding and virus in feather pulp was generally higher and more consistently positive compared to H7N1 LPAIV, and was also detectable at least until 14 days post infection in survivors. Antibodies against H5N8 HPAIV and H7N1 LPAIV only appeared after day 7 post exposure, with higher titres induced by the HPAIV compared to the LPAIV, and neuraminidase treatment was essential to remove non-specific inhibitors from the H5N8-positive antisera.
Collapse
Affiliation(s)
- Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Erich Ostmann
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Matthew Woods
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Daniel B R Wandrag
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Private Bag X04, Onderstepoort, 0110, South Africa
| | - John Grewar
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Laura Roberts
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Private Bag X04, Onderstepoort, 0110, South Africa; Western Cape Department of Agriculture, Veterinary Services, Muldersvlei Road, Provate Bag X1, Elsenburg, 7607, South Africa
| | - Adriaan J Olivier
- South African Ostrich Business Chamber, Rademeyer Road, Oudtshoorn, 6220, South Africa
| |
Collapse
|
7
|
Azeem S, Gauger P, Sato Y, Baoqing G, Wolc A, Carlson J, Harmon K, Zhang J, Hoang H, Yuan J, Bhandari M, Kim H, Gibson K, Matias-Ferreyra F, Yoon KJ. Environmental Sampling for Avian Influenza Virus Detection in Commercial Layer Facilities. Avian Dis 2021; 65:391-400. [PMID: 34427413 DOI: 10.1637/0005-2086-65.3.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
The present study was designed to evaluate the utility of environmental samples for convenient but accurate detection of avian influenza virus (AIV) in commercial poultry houses. First, environmental samples from AIV-negative commercial layer facilities were spiked with an H5N2 low pathogenic AIV and were evaluated for their effect on the detection of viral RNA immediately or after incubation at -20 C, 4 C, 22 C, or 37 C for 24, 48, or 72 hr. Second, Swiffer pads, drag swabs, and boot cover swabs were evaluated for their efficiency in collecting feces and water spiked with the H5N2 LPAIV under a condition simulated for a poultry facility floor. Third, environmental samples collected from commercial layer facilities that experienced an H5N2 highly pathogenic AIV outbreak in 2014-15 were evaluated for the effect of sampling locations on AIV detection. The half-life of AIV was comparable across all environmental samples but decreased with increasing temperatures. Additionally, sampling devices did not differ significantly in their ability to collect AIV-spiked environmental samples from a concrete floor for viral RNA detection. Some locations within a poultry house, such as cages, egg belts, house floor, manure belts, and manure pits, were better choices for sampling than other locations (feed trough, ventilation fan, and water trays) to detect AIV RNA after cleaning and disinfection. Samples representing cages, floor, and manure belts yielded significantly more PCR positives than the other environmental samples. In conclusion, environmental samples can be routinely collected from a poultry barn as noninvasive samples for monitoring AIV.
Collapse
Affiliation(s)
- Shahan Azeem
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Guo Baoqing
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Anna Wolc
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011.,Hy-Line International, Dallas Center, IA 50063
| | - James Carlson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Karen Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Hai Hoang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Jian Yuan
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Mahesh Bhandari
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Hanjun Kim
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Kathleen Gibson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Franco Matias-Ferreyra
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011,
| |
Collapse
|
8
|
Cardona C, Wileman B, Malladi S, Ceballos R, Culhane M, Munoz-Aguayo J, Flores-Figueroa C, Halvorson D, Walz E, Charles KS, Bonney P, Ssematimba A, Goldsmith T. The Risk of Highly Pathogenic Influenza A Virus Transmission to Turkey Hen Flocks Through Artificial Insemination. Avian Dis 2021; 65:303-309. [PMID: 34412462 DOI: 10.1637/aviandiseases-d-20-00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/16/2021] [Indexed: 11/05/2022]
Abstract
Artificial insemination is a routine practice for turkeys that can introduce pathogens into breeder flocks in a variety of ways. In this manuscript, a risk analysis on the potential transmission of highly pathogenic avian influenza (HPAI) to naïve hens through artificial insemination is presented. A case of HPAI on a stud farm where the potential transmission of the virus to susceptible hens in the 2015 H5N2 HPAI outbreak in Minnesota is described along with documentation of known and potential transmission pathways from the case. The pathways by which artificial insemination might result in the spread of HPAI to susceptible hens were determined by considering which could result in the 1) entry of HPAI virus onto a premises through semen movement; and 2) exposure of susceptible hens to HPAI as a result of this movement. In the reported case, HPAI virus was detected in semen from infected toms, however, transmission of HPAI to naïve hens through semen is unclear since the in utero infectious dose is not known. This means that the early detection of infection might limit but not eliminate the risk of hen exposure. Because of the numerous potential pathways of spread and the close contact with the birds, it is highly likely that if semen from an HPAI-infected tom flock is used, there will be spread of the virus to naïve hens through insemination. If insemination occurs with semen from stud farms in an HPAI control area, receiving hen farms should have restricted movements to prevent outbreak spread in the event that they become infected.
Collapse
Affiliation(s)
- Carol Cardona
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108,
| | | | - Sasidhar Malladi
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| | - Rachael Ceballos
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| | - Marie Culhane
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| | | | | | - David Halvorson
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| | - Emily Walz
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| | - Kaitlyn St Charles
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| | - Peter Bonney
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| | - Amos Ssematimba
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| | - Timothy Goldsmith
- College of Veterinary Medicine University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
9
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
10
|
Nolting JM, Lauterbach SE, Bowman AS. Using Environmental Sampling Techniques to Conduct Influenza A Virus Surveillance in Poultry and Waterfowl at Ohio Agricultural Exhibitions. Avian Dis 2020; 64:96-98. [PMID: 32267131 DOI: 10.1637/0005-2086-64.1.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/04/2019] [Indexed: 11/05/2022]
Abstract
The outbreak of highly pathogenic H5Nx influenza A viruses (IAVs) in the United States during 2014-2015 caused devastating economic losses; therefore, several measures were established to control and eliminate highly pathogenic H5Nx from U.S. poultry flocks. One such measure was a temporary ban on poultry exhibitions during 2015, and this decision dramatically affected youth raising poultry as part of agricultural education programs. During the summer of 2016, surveillance of the environment was conducted at 20 Ohio agricultural fairs to estimate the prevalence of IAV in exhibition poultry to determine the baseline during nonoutbreak exhibition seasons. Of the 400 total samples collected, two were positive by real-time reverse transcription-PCR; however, virus isolation attempts with both embryonating chicken eggs and cell culture were unsuccessful. The detection of nucleic acid highlights the risk exhibition poultry could play in the transmission and spread of IAVs between humans, swine, wild birds, and domestic poultry during low or highly pathogenic IAV outbreaks. Additional surveillance at agricultural fairs and biosecurity education for youth exhibitors in this setting are warranted to reduce risk.
Collapse
Affiliation(s)
- Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Sarah E Lauterbach
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210,
| |
Collapse
|