1
|
Becerra R, Maekawa D, García M. Protection Efficacy of Recombinant HVT-ND-LT and the Live Attenuated Tissue Culture Origin Vaccines Against Infectious Laryngotracheitis Virus When Administered Individually or in Combination. Avian Dis 2023; 67:145-152. [PMID: 37556293 DOI: 10.1637/aviandiseases-d-23-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 08/11/2023]
Abstract
Infectious laryngotracheitis (ILT) is a respiratory disease that causes significant economic losses to the poultry industry. Control of the disease is achieved by vaccination and implementation of biosecurity measures. The use of bivalent and trivalent recombinant herpesvirus of turkey (rHVT) vaccines expressing infectious laryngotracheitis virus (ILTV) genes has increased worldwide. In the United States, vaccination programs of long-lived birds (broiler breeders and commercial layers) against ILT include immunizations with either HVT recombinant vector vaccines, in ovo or at hatch, or live attenuated vaccines administered via drinking water (chicken embryo origin [CEO]) or eye drop (tissue culture origin [TCO]). The efficacy of bivalent rHVT-LT at hatch followed by drinking water or eye-drop CEO vaccination has been shown to provide more robust protection than rHVT-LT alone. The objective of this study was to evaluate the protection efficacy of a commercial trivalent rHVT-ND-LT when administered at 1 day of age followed by TCO vaccination via eye drop at 10 wk of age. Groups vaccinated with only rHVT-ND-LT or TCO, the combination of rHVT-ND-LT + TCO, and one nonvaccinated group of chickens were challenged with a virulent ILTV strain at 15 wk of age. After challenge, mortalities were prevented only in the group of chickens vaccinated with the rHVT-ND-LT + TCO. Clinical signs of the disease and challenge virus replication in the trachea were significantly reduced for both the rHVT-ND-LT + TCO- and TCO-vaccinated groups of chickens. To assess challenge virus transmission, contact-naive chickens were introduced to all vaccinated groups immediately after challenge. At 8 days postintroduction, infection of contact-naive chickens was evidenced in those introduced to the rHVT-ND-LT and TCO group but prevented in the rHVT-ND-LT + TCO group. Overall, these results indicated that compared to rHVT-ND-LT or TCO when administered alone, the rHVT-ND-LT + TCO vaccination strategy improved protection against disease and reduced shedding of the challenge virus.
Collapse
Affiliation(s)
- Roel Becerra
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Daniel Maekawa
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Merck Animal Health, De Soto, KS 66018
| | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| |
Collapse
|
2
|
Spatz S, García M, Fuchs W, Loncoman C, Volkening J, Ross T, Riblet S, Kim T, Likens N, Mettenleiter T. Reconstitution and Mutagenesis of Avian Infectious Laryngotracheitis Virus from Cosmid and Yeast Centromeric Plasmid Clones. J Virol 2023; 97:e0140622. [PMID: 37022163 PMCID: PMC10134816 DOI: 10.1128/jvi.01406-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
The genomes of numerous herpesviruses have been cloned as infectious bacterial artificial chromosomes. However, attempts to clone the complete genome of infectious laryngotracheitis virus (ILTV), formally known as Gallid alphaherpesvirus-1, have been met with limited success. In this study, we report the development of a cosmid/yeast centromeric plasmid (YCp) genetic system to reconstitute ILTV. Overlapping cosmid clones were generated that encompassed 90% of the 151-Kb ILTV genome. Viable virus was produced by cotransfecting leghorn male hepatoma (LMH) cells with these cosmids and a YCp recombinant containing the missing genomic sequences - spanning the TRS/UL junction. An expression cassette for green fluorescent protein (GFP) was inserted within the redundant inverted packaging site (ipac2), and the cosmid/YCp-based system was used to generate recombinant replication-competent ILTV. Viable virus was also reconstituted with a YCp clone containing a BamHI linker within the deleted ipac2 site, further demonstrating the nonessential nature of this site. Recombinants deleted in the ipac2 site formed plaques undistinguished from those viruses containing intact ipac2. The 3 reconstituted viruses replicated in chicken kidney cells with growth kinetics and titers similar to the USDA ILTV reference strain. Specific pathogen-free chickens inoculated with the reconstituted ILTV recombinants succumbed to levels of clinical disease similar to that observed in birds inoculated with wildtype viruses, demonstrating the reconstituted viruses were virulent. IMPORTANCE Infectious laryngotracheitis virus (ILTV) is an important pathogen of chicken with morbidity of 100% and mortality rates as high as 70%. Factoring in decreased production, mortality, vaccination, and medication, a single outbreak can cost producers over a million dollars. Current attenuated and vectored vaccines lack safety and efficacy, leaving a need for better vaccines. In addition, the lack of an infectious clone has also impeded understanding viral gene function. Since infectious bacterial artificial chromosome (BAC) clones of ILTV with intact replication origins are not feasible, we reconstituted ILTV from a collection of yeast centromeric plasmids and bacterial cosmids, and identified a nonessential insertion site within a redundant packaging site. These constructs and the methodology necessary to manipulate them will facilitate the development of improved live virus vaccines by modifying genes encoding virulence factors and establishing ILTV-based viral vectors for expressing immunogens of other avian pathogens.
Collapse
Affiliation(s)
- Stephen Spatz
- US National Poultry Research Center, Athens, Georgia, USA
| | - Maricarmen García
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Carlos Loncoman
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Teresa Ross
- US National Poultry Research Center, Athens, Georgia, USA
| | - Sylva Riblet
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Taejoong Kim
- US National Poultry Research Center, Athens, Georgia, USA
| | - Nathan Likens
- US National Poultry Research Center, Athens, Georgia, USA
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Ravikumar R, Chan J, Prabakaran M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022; 14:v14061195. [PMID: 35746665 PMCID: PMC9230070 DOI: 10.3390/v14061195] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022] Open
Abstract
The poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain. Mass vaccination is one of the main strategies for controlling and preventing viral infection in poultry. The development of broadly protective vaccines against avian viral diseases will alleviate selection pressure on field virus strains and simplify vaccination regimens for commercial farms with overall savings in husbandry costs. With the increasing number of emerging and re-emerging viral infectious diseases in the poultry industry, there is an urgent need to understand the strategies for broadening the protective efficacy of the vaccines against distinct viral strains. The current review provides an overview of viral vaccines and vaccination regimens available for common avian viral infections, and strategies for developing safer and more efficacious viral vaccines for poultry.
Collapse
|
4
|
Barboza-Solis C, Najimudeen SM, Perez-Contreras A, Ali A, Joseph T, King R, Ravi M, Peters D, Fonseca K, Gagnon CA, van der Meer F, Abdul-Careem MF. Evaluation of Recombinant Herpesvirus of Turkey Laryngotracheitis (rHVT-LT) Vaccine against Genotype VI Canadian Wild-Type Infectious Laryngotracheitis Virus (ILTV) Infection. Vaccines (Basel) 2021; 9:1425. [PMID: 34960175 PMCID: PMC8707389 DOI: 10.3390/vaccines9121425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
In Alberta, infectious laryngotracheitis virus (ILTV) infection is endemic in backyard poultry flocks; however, outbreaks are only sporadically observed in commercial flocks. In addition to ILTV vaccine revertant strains, wild-type strains are among the most common causes of infectious laryngotracheitis (ILT). Given the surge in live attenuated vaccine-related outbreaks, the goal of this study was to assess the efficacy of a recombinant herpesvirus of turkey (rHVT-LT) vaccine against a genotype VI Canadian wild-type ILTV infection. One-day-old specific pathogen-free (SPF) White Leghorn chickens were vaccinated with the rHVT-LT vaccine or mock vaccinated. At three weeks of age, half of the vaccinated and the mock-vaccinated animals were challenged. Throughout the experiment, weights were recorded, and feather tips, cloacal and oropharyngeal swabs were collected for ILTV genome quantification. Blood was collected to isolate peripheral blood mononuclear cells (PBMC) and quantify CD4+ and CD8+ T cells. At 14 dpi, the chickens were euthanized, and respiratory tissues were collected to quantify genome loads and histological examination. Results showed that the vaccine failed to decrease the clinical signs at 6 days post-infection. However, it was able to significantly reduce ILTV shedding through the oropharyngeal route. Overall, rHVT-LT produced a partial protection against genotype VI ILTV infection.
Collapse
Affiliation(s)
- Catalina Barboza-Solis
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (C.B.-S.); (S.M.N.); (A.P.-C.); (A.A.); (F.v.d.M.)
| | - Shahnas M. Najimudeen
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (C.B.-S.); (S.M.N.); (A.P.-C.); (A.A.); (F.v.d.M.)
| | - Ana Perez-Contreras
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (C.B.-S.); (S.M.N.); (A.P.-C.); (A.A.); (F.v.d.M.)
| | - Ahmed Ali
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (C.B.-S.); (S.M.N.); (A.P.-C.); (A.A.); (F.v.d.M.)
- Department of Pathology, Beni-Suef University, Beni Suef 62511, Egypt
| | - Tomy Joseph
- Animal Health Centre, Ministry of Agriculture, Food and Fisheries, Abbotsford, BC V3G 2M3, Canada;
| | - Robin King
- Agri Food Laboratories, Alberta Agriculture and Forestry, Edmonton, AB T6H 4P2, Canada;
| | - Madhu Ravi
- Animal Health and Assurance, Alberta Agriculture and Forestry, Edmonton, AB T6H 4P2, Canada; (M.R.); (D.P.)
| | - Delores Peters
- Animal Health and Assurance, Alberta Agriculture and Forestry, Edmonton, AB T6H 4P2, Canada; (M.R.); (D.P.)
| | - Kevin Fonseca
- Provincial Laboratory for Public Health, Calgary, AB T2N 4W4, Canada;
| | - Carl A. Gagnon
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Frank van der Meer
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (C.B.-S.); (S.M.N.); (A.P.-C.); (A.A.); (F.v.d.M.)
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (C.B.-S.); (S.M.N.); (A.P.-C.); (A.A.); (F.v.d.M.)
| |
Collapse
|
5
|
Maekawa D, Riblet SM, Whang P, Alvarado I, García M. A Cell Line Adapted Infectious Laryngotracheitis Virus Strain (BΔORFC) for in ovo and Hatchery Spray Vaccination Alone or in Combination with a Recombinant HVT-LT Vaccine. Avian Dis 2021; 65:500-507. [PMID: 34699149 DOI: 10.1637/aviandiseases-d-20-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 11/05/2022]
Abstract
To produce more-stable, live attenuated vaccines for infectious laryngotracheitis virus (ILTV), deletion of genes related to virulence has been extensively pursued. Although its function remains unknown, the open reading frame C (ORF C) is among the genes potentially associated with viral virulence that is nonessential for replication in vitro. Earlier results indicated that the ILT virus with deletion of the ORF C gene (BΔORFC) was suitable and safe for eye drop administration but was not sufficiently attenuated for in ovo administration. The objective of this study was to evaluate the safety and protection efficacy of a cell line-adapted, gene-deleted strain (BΔORFC) of ILTV when administered in ovo and/or spray (SP) by itself, or in combination with the recombinant HVT-LT (rHVT-LT) vaccine. Results indicated that vaccination with the BΔORFC strain, either by itself or in combination with an rHVT-LT vaccine, did not affect hatchability, and only marginal signs of respiratory distress were recorded for groups of chickens that received the BΔORFC strain via SP. The replication and seroconversion induced by the BΔORFC strain after in ovo and SP administration was very limited, whereas the replication of the rHVT-LT vaccine was delayed when combined with the BΔORFC strain in ovo. Compared to rHVT-LT or BΔORFC when administered alone, dual vaccination with rHVT-LT + BΔORFC was more effective in mitigating clinical signs of the disease and reducing challenge virus load in the trachea. To our knowledge, this study provides the first proof of concept that ILTV strains can be sufficiently attenuated for early vaccination in ovo or at hatch; also, this study documented the benefits of using a dual (recombinant and live attenuated) hatchery vaccination strategy for ILTV.
Collapse
Affiliation(s)
- Daniel Maekawa
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Sylva M Riblet
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Patrick Whang
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| |
Collapse
|
6
|
Hein R, Koopman R, García M, Armour N, Dunn JR, Barbosa T, Martinez A. Review of Poultry Recombinant Vector Vaccines. Avian Dis 2021; 65:438-452. [PMID: 34699141 DOI: 10.1637/0005-2086-65.3.438] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
The control of poultry diseases has relied heavily on the use of many live and inactivated vaccines. However, over the last 30 yr, recombinant DNA technology has been used to generate many novel poultry vaccines. Fowlpox virus and turkey herpesvirus are the two main vectors currently used to construct recombinant vaccines for poultry. With the use of these two vectors, more than 15 recombinant viral vector vaccines against Newcastle disease, infectious laryngotracheitis, infectious bursal disease, avian influenza, and Mycoplasma gallisepticum have been developed and are commercially available. This review focuses on current knowledge about the safety and efficacy of recombinant viral vectored vaccines and the mechanisms by which they facilitate the control of multiple diseases. Additionally, the development of new recombinant vaccines with novel vectors will be briefly discussed.
Collapse
Affiliation(s)
- Ruud Hein
- Consultant Poultry Diseases Molecular Vaccine Technology Georgetown DE 19947,
| | - Rik Koopman
- MSD Animal Health/Intervet International BV, Boxmeer, 5831 AN Netherlands
| | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Natalie Armour
- Poultry Research and Diagnostic Laboratory, Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39208
| | - John R Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30602
| | | | - Algis Martinez
- Cobb-Vantress Global Veterinary Services, Siloam Springs, AR 72761
| |
Collapse
|
7
|
Maekawa D, Riblet SM, Whang P, Hurley DJ, Garcia M. Activation of Cytotoxic Lymphocytes and Presence of Regulatory T Cells in the Trachea of Non-Vaccinated and Vaccinated Chickens as a Recall to an Infectious Laryngotracheitis Virus (ILTV) Challenge. Vaccines (Basel) 2021; 9:865. [PMID: 34451989 PMCID: PMC8402403 DOI: 10.3390/vaccines9080865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
While the protective efficacy of the infectious laryngotracheitis virus (ILTV) vaccines is well established, little is known about which components of the immune response are associated with effective resistance and vaccine protection. Early studies have pointed to the importance of the T cell-mediated immune responses. This study aimed to evaluate the activation of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells and to quantify the presence of regulatory T cells (Tregs) in the larynx-trachea of chickens vaccinated with chicken embryo origin (CEO), tissue culture origin (TCO) and recombinant Herpesvirus of Turkey-laryngotracheitis (rHVT-LT) vaccines after challenge. Our results indicated that CEO vaccine protection was characterized by early CTLs and activated CTLs enhanced responses. TCO and rHVT-LT protection were associated with a moderate increase in resting and activated CTLs followed by an enhanced NK cell response. Tregs increase was only detected in the non-vaccinated challenged group, probably to support healing of the severe trachea epithelial damage. Taken together, our results revealed main differences in the cellular immune responses elicited by CEO, TCO, and rHVT-LT vaccination in the upper respiratory tract after challenge, and that activated CTLs rather than NK cells play a main role in vaccine protection.
Collapse
Affiliation(s)
- Daniel Maekawa
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (D.M.); (S.M.R.); (P.W.)
| | - Sylva M. Riblet
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (D.M.); (S.M.R.); (P.W.)
| | - Patrick Whang
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (D.M.); (S.M.R.); (P.W.)
| | - David J. Hurley
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Maricarmen Garcia
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (D.M.); (S.M.R.); (P.W.)
| |
Collapse
|
8
|
Gowthaman V, Kumar S, Koul M, Dave U, Murthy TRGK, Munuswamy P, Tiwari R, Karthik K, Dhama K, Michalak I, Joshi SK. Infectious laryngotracheitis: Etiology, epidemiology, pathobiology, and advances in diagnosis and control - a comprehensive review. Vet Q 2021; 40:140-161. [PMID: 32315579 PMCID: PMC7241549 DOI: 10.1080/01652176.2020.1759845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infectious laryngotracheitis (ILT) is a highly contagious upper respiratory tract disease of chicken caused by a Gallid herpesvirus 1 (GaHV-1) belonging to the genus Iltovirus, and subfamily Alphaherpesvirinae within Herpesviridae family. The disease is characterized by conjunctivitis, sinusitis, oculo-nasal discharge, respiratory distress, bloody mucus, swollen orbital sinuses, high morbidity, considerable mortality and decreased egg production. It is well established in highly dense poultry producing areas of the world due to characteristic latency and carrier status of the virus. Co-infections with other respiratory pathogens and environmental factors adversely affect the respiratory system and prolong the course of the disease. Latently infected chickens are the primary source of ILT virus (ILTV) outbreaks irrespective of vaccination. Apart from conventional diagnostic methods including isolation and identification of ILTV, serological detection, advanced biotechnological tools such as PCR, quantitative real-time PCR, next generation sequencing, and others are being used in accurate diagnosis and epidemiological studies of ILTV. Vaccination is followed with the use of conventional vaccines including modified live attenuated ILTV vaccines, and advanced recombinant vector vaccines expressing different ILTV glycoproteins, but still these candidates frequently fail to reduce challenge virus shedding. Some herbal components have proved to be beneficial in reducing the severity of the clinical disease. The present review discusses ILT with respect to its current status, virus characteristics, epidemiology, transmission, pathobiology, and advances in diagnosis, vaccination and control strategies to counter this important disease of poultry.
Collapse
Affiliation(s)
- Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Monika Koul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Urmil Dave
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - T R Gopala Krishna Murthy
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Sunil K Joshi
- Department of Microbiology & Immunology, Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Analysis of Whole-Genome Sequences of Infectious laryngotracheitis Virus Isolates from Poultry Flocks in Canada: Evidence of Recombination. Viruses 2020; 12:v12111302. [PMID: 33198373 PMCID: PMC7696358 DOI: 10.3390/v12111302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing.
Collapse
|
10
|
García M, Zavala G. Commercial Vaccines and Vaccination Strategies Against Infectious Laryngotracheitis: What We Have Learned and Knowledge Gaps That Remain. Avian Dis 2020; 63:325-334. [PMID: 31251534 DOI: 10.1637/11967-090218-review.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/24/2019] [Indexed: 11/05/2022]
Abstract
Infectious laryngotracheitis (ILT) is an upper respiratory disease of chickens, pheasants, and peafowl caused by the alphaherpesvirus Gallid alpha herpesvirus 1 (GaHV-1), commonly known as infectious laryngotracheitis virus. ILT is an acute respiratory disease characterized by clinical signs of conjunctivitis, nasal discharge, dyspnea, and lethargy. In severe forms of the disease, hemorrhagic tracheitis together with gasping, coughing, and expectoration of bloody mucus are common. The morbidity and mortality rates of the disease vary depending on the virulence of the strain circulating, the level of virus circulating in the field, and the presence of other respiratory infections. Since the identification of the disease in the 1920s, ILT continues to affect the poultry industry negatively across the globe. The disease is primarily controlled by a combination of biosecurity and vaccination. The first commercial vaccines, introduced in the late 1950s and early 1960s, were the chicken embryo origin live attenuated vaccines. The tissue culture origin vaccine was introduced in late 1970s. Recombinant viral vector ILT vaccines were first introduced in the United States in the 2000s, and now they are being used worldwide, alone or in combination with live attenuated vaccines. This review article provides a synopsis of what we have learned about vaccines and vaccination strategies used around the world and addresses knowledge gaps about the virus and host interactions that remain unknown.
Collapse
Affiliation(s)
- Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| | - Guillermo Zavala
- Avian Health International LLC, Suite M 135, Flowery Branch, GA 30452
| |
Collapse
|
11
|
Maekawa D, Riblet SM, Newman L, Koopman R, Barbosa T, García M. Evaluation of vaccination against infectious laryngotracheitis (ILT) with recombinant herpesvirus of turkey (rHVT-LT) and chicken embryo origin (CEO) vaccines applied alone or in combination. Avian Pathol 2019; 48:573-581. [PMID: 31304770 DOI: 10.1080/03079457.2019.1644449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The chicken embryo origin (CEO) infectious laryngotracheitis (ILT) live attenuated vaccines, although capable of protecting against disease and reducing challenge virus replication, can regain virulence. Recombinant ILT vaccines do not regain virulence but are partially successful at blocking challenge virus replication. The objective of this study was to evaluate the effect of rHVT-LT vaccination on CEO replication and how this vaccination strategy enhances protection and limits challenge virus transmission to naïve contact chickens. The rHVT-LT vaccine was administered at 1 day of age subcutaneously and the CEO vaccine was administered at 6 weeks of age via eye-drop or drinking water. CEO vaccine replication post vaccination, challenge virus replication and transmission post challenge were evaluated. After vaccination, only the group that received the CEO via eye-drop developed transient conjunctivitis. A significant decrease in CEO replication was detected for the rHVT-LT + CEO groups as compared to groups that received CEO alone. After challenge, reduction in clinical signs and challenge virus replication were observed in all vaccinated groups. However, among the vaccinated groups, the rHVT-LT group presented higher clinical signs and challenge virus replication. Transmission of the challenge virus to naïve contact chickens was only observed in the rHVT-LT vaccinated group of chickens. Overall, this study found that priming with rHVT-LT reduced CEO virus replication and the addition of a CEO vaccination provided a more robust protection than rHVT alone. Therefore, rHVT-LT + CEO vaccination strategy constitutes an alternative approach to gain better control of the disease.
Collapse
Affiliation(s)
- Daniel Maekawa
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Sylva M Riblet
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | | | | | | | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| |
Collapse
|