1
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
2
|
Li SJ, Zhang G, Xue B, Ding Q, Han L, Huang JC, Wu F, Li C, Yang C. Toxicity and detoxification of T-2 toxin in poultry. Food Chem Toxicol 2022; 169:113392. [PMID: 36044934 DOI: 10.1016/j.fct.2022.113392] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022]
Abstract
This review summarizes the updated knowledge on the toxicity of T-2 on poultry, followed by potential strategies for detoxification of T-2 in poultry diet. The toxic effects of T-2 on poultry include cytotoxicity, genotoxicity, metabolism modulation, immunotoxicity, hepatotoxicity, gastrointestinal toxicity, skeletal toxicity, nephrotoxicity, reproductive toxicity, neurotoxicity, etc. Cytotoxicity is the primary toxicity of T-2, characterized by inhibiting protein and nucleic acid synthesis, altering the cell cycle, inducing oxidative stress, apoptosis and necrosis, which lead to damages of immune organs, liver, digestive tract, bone, kidney, etc., resulting in pathological changes and impaired physiological functions of these organs. Glutathione redox system, superoxide dismutase, catalase and autophagy are protective mechanisms against oxidative stress and apoptosis, and can compensate the pathological changes and physiological functions impaired by T-2 to some degree. T-2 detoxifying agents for poultry feeds include adsorbing agents (e.g., aluminosilicate-based clays and microbial cell wall), biotransforming agents (e.g., Eubacterium sp. BBSH 797 strain), and indirect detoxifying agents (e.g., plant-derived antioxidants). These T-2 detoxifying agents could alleviate different pathological changes to different degrees, and multi-component T-2 detoxifying agents can likely provide more comprehensive protection against the toxicity of T-2.
Collapse
Affiliation(s)
- Shao-Ji Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China.
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Qiaoling Ding
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Lu Han
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Jian-Chu Huang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Fuhai Wu
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Chonggao Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China
| | - Chunmin Yang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, 510850, China.
| |
Collapse
|
3
|
Zhang J, Liu X, Su Y, Li T. An update on T2-toxins: metabolism, immunotoxicity mechanism and human assessment exposure of intestinal microbiota. Heliyon 2022; 8:e10012. [PMID: 35928103 PMCID: PMC9344027 DOI: 10.1016/j.heliyon.2022.e10012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Mycotoxins are naturally produced secondary metabolites or low molecular organic compounds produced by fungus with high diversification, which cause mycotoxicosis (food contamination) in humans and animals. T-2 toxin is simply one of the metabolites belonging to fungi trichothecene mycotoxin. Specifically, Trichothecenes-2 (T-2) mycotoxin of genus fusarium is considered one of the most hotspot agricultural commodities and carcinogenic compounds worldwide. There are well-known examples of salmonellosis in mice and pigs, necrotic enteritis in chickens, catfish enteric septicemia and colibacillosis in pigs as T-2 toxic agent. On the other hand, it has shown a significant reduction in the Salmonella population's aptitude in the pig intestinal tract. Although the impact of the excess Fusarium contaminants on humans in creating infectious illness is less well-known, some toxins are harmful; for example, salmonellosis and colibacillosis have been frequently observed in humans. More than 20 different metabolites are synthesized and excreted after ingestion, but the T-2 toxin is one of the most protuberant metabolites. Less absorption of mycotoxins in intestinal tract results in biotransformation of toxic metabolites into less toxic variants. In addition to these, effects of microbiota on harmful mycotoxins are not limited to intestinal tract, it may harm the other human vital organs. However, detoxification of microbiota is considered as an alternative way to decontaminate the feed for both animals and humans. These transformations of toxic metabolites depend upon the formation of metabolites. This study is complete in all perspectives regarding interactions between microbiota and mycotoxins, their mechanism and practical applications based on experimental studies.
Collapse
|
4
|
Wojtacha P, Trybowski W, Podlasz P, Żmigrodzka M, Tyburski J, Polak-Śliwińska M, Jakimiuk E, Bakuła T, Baranowski M, Żuk-Gołaszewska K, Zielonka Ł, Obremski K. Effects of a Low Dose of T-2 Toxin on the Percentage of T and B Lymphocytes and Cytokine Secretion in the Porcine Ileal Wall. Toxins (Basel) 2021; 13:toxins13040277. [PMID: 33924586 PMCID: PMC8070124 DOI: 10.3390/toxins13040277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
Plant materials used in the production of pig feed are frequently contaminated with mycotoxins. T-2 toxin is a secondary metabolite of selected Fusarium species, and it can exert a harmful influence on living organisms. Most mycotoxins enter the body via the gastrointestinal tract, and they can modulate the gut-associated lymphoid tissue (GALT) function. However, little is known about the influence of low T-2 toxin doses on GALT. Therefore, the aim of this study was to evaluate the effect of T-2 toxin administered at 50% of the lowest-observed-adverse-effect level (LOAEL) on the percentage of CD2+ T cells, CD4+ T helper cells, CD8+ cytotoxic T cells, CD4+CD8+ double-positive T cells, TCRγδ+ cells, CD5+CD8- B1 cells, and CD21+ B2 cells, and the secretion of proinflammatory (IFN-γ, IL-1β, IL-2, IL-12/23p40, IL-17A), anti-inflammatory, and regulatory (IL-4, IL-10, TGF-β) cytokines in the porcine ileal wall. The results of the study revealed that T-2 toxin disrupts the development of tolerance to food antigens by enhancing the secretion of proinflammatory and regulatory cytokines and decreasing the production of anti-inflammatory TGF-β. T-2 toxin triggered the cellular response, which was manifested by an increase in the percentage of CD8+ T cells and a decrease in the percentage of B2 and Tγδ lymphocytes.
Collapse
Affiliation(s)
- Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | | | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
- Correspondence: (P.P.); (K.O.)
| | - Magdalena Żmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland;
| | - Józef Tyburski
- Department of Agroecosystems and Horticulture, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Magdalena Polak-Śliwińska
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Ewa Jakimiuk
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Mirosław Baranowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusines, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
- Correspondence: (P.P.); (K.O.)
| |
Collapse
|
5
|
Fernye C, Ancsin Z, Bócsai A, Balogh K, Mézes M, Erdélyi M. Role of Glutathione Redox System on the T-2 Toxin Tolerance of Pheasant ( Phasianus colchicus). Toxicol Res 2018; 34:249-257. [PMID: 30057699 PMCID: PMC6057296 DOI: 10.5487/tr.2018.34.3.249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 11/20/2022] Open
Abstract
The purpose of the present study was to evaluate the effects of different dietary concentrations of T-2 toxin on blood plasma protein content, lipid peroxidation and glutathione redox system of pheasant (Phasianus colchicus). A total of 320 one-day-old female pheasants were randomly assigned to four treatment groups fed with a diet contaminated with different concentrations of T-2 toxin (control, 4 mg/kg, 8 mg/kg and 16 mg/kg). Birds were sacrificed at early (12, 24 and 72 hr) and late (1, 2 and 3 weeks) stages of the experiment to demonstrate the effect of T-2 toxin on lipid peroxidation and glutathione redox status in different tissues. Feed refusal and impaired growth were observed with dose dependent manner. Lipid-peroxidation was not induced in the liver, while the glutathione redox system was activated partly in the liver, but primarily in the blood plasma. Glutathione peroxidase activity has changed parallel with reduced glutathione concentration in all tissues. Based on our results, pheasants seem to have higher tolerance to T-2 toxin than other avian species, and glutathione redox system might contribute in some extent to this higher tolerance, in particular against free-radical mediated oxidative damage of tissues, such as liver.
Collapse
Affiliation(s)
- Csaba Fernye
- Department of Nutrition, Faculty of Agricultural Environmental Sciences, Szent István University, Gödöllő,
Hungary
| | - Zsolt Ancsin
- Department of Nutrition, Faculty of Agricultural Environmental Sciences, Szent István University, Gödöllő,
Hungary
| | - Andrea Bócsai
- Department of Nutrition, Faculty of Agricultural Environmental Sciences, Szent István University, Gödöllő,
Hungary
| | - Krisztián Balogh
- Department of Nutrition, Faculty of Agricultural Environmental Sciences, Szent István University, Gödöllő,
Hungary
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár,
Hungary
| | - Miklós Mézes
- Department of Nutrition, Faculty of Agricultural Environmental Sciences, Szent István University, Gödöllő,
Hungary
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár,
Hungary
| | - Márta Erdélyi
- Department of Nutrition, Faculty of Agricultural Environmental Sciences, Szent István University, Gödöllő,
Hungary
| |
Collapse
|
6
|
Bertero A, Moretti A, Spicer LJ, Caloni F. Fusarium Molds and Mycotoxins: Potential Species-Specific Effects. Toxins (Basel) 2018; 10:E244. [PMID: 29914090 PMCID: PMC6024576 DOI: 10.3390/toxins10060244] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the information on biochemical and biological activity of the main Fusarium mycotoxins, focusing on toxicological aspects in terms of species-specific effects. Both in vitro and in vivo studies have centered on the peculiarity of the responses to mycotoxins, demonstrating that toxicokinetics, bioavailability and the mechanisms of action of these substances vary depending on the species involved, but additional studies are needed to better understand the specific responses. The aim of this review is to summarize the toxicological responses of the main species affected by Fusarium mycotoxins.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/O, 70126 Bari, Italy.
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
7
|
Fatima Z, Guo P, Huang D, Lu Q, Wu Q, Dai M, Cheng G, Peng D, Tao Y, Ayub M, Ul Qamar MT, Ali MW, Wang X, Yuan Z. The critical role of p16/Rb pathway in the inhibition of GH3 cell cycle induced by T-2 toxin. Toxicology 2018; 400-401:28-39. [PMID: 29567467 DOI: 10.1016/j.tox.2018.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 12/21/2022]
Abstract
T-2 toxin is a worldwide trichothecenetoxin and can cause various toxicities.T-2 toxin is involved in G1 phase arrest in several cell lines but molecular mechanism is still not clear. In present study, we used rat pituitary GH3 cells to investigate the mechanism involved in cell cycle arrest against T-2 toxin (40 nM) for 12, 24, 36 and 48 h as compared to control cells. GH3 cells showed a considerable increase in reactive oxygen species (ROS) as well as loss in mitochondrial membrane potential (△Ym) upon exposure to the T-2 toxin. Flow cytometry showed a significant time-dependent increase in percentage of apoptotic cells and gel electrophoresis showed the hallmark of apoptosis oligonucleosomal DNA fragmentation. Additionally, T-2 toxin-induced oxidative stress and DNA damage with a time-dependent significant increased expression of p53 favors the apoptotic process by the activation of caspase-3 in T-2 toxin treated cells. Cell cycle analysis by flow cytometry revealed a time-dependent increase ofG1 cell population along with the significant time-dependent up-regulation of mRNA and protein expression of p16 and p21 and significant down-regulation of cyclin D1, CDK4, and p-RB levels further verify the G1 phase arrest in GH3 cells. Morphology of GH3 cells by TEM clearly showed the damage and dysfunction to mitochondria and the cell nucleus. These findings for the first time demonstrate that T-2 toxin induces G1 phase cell cycle arrest by the involvement of p16/Rb pathway, along with ROS mediated oxidative stress and DNA damage with p53 and caspase cascade interaction, resulting in apoptosis in GH3 cells.
Collapse
Affiliation(s)
- Zainab Fatima
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Pu Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Deyu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qirong Lu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | | | | | - Muhammad Waqar Ali
- College of Plant Sciences, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China.
| |
Collapse
|
8
|
Wen J, Mu P, Deng Y. Mycotoxins: cytotoxicity and biotransformation in animal cells. Toxicol Res (Camb) 2016; 5:377-387. [PMID: 30090353 PMCID: PMC6062401 DOI: 10.1039/c5tx00293a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by many microfungi. Hitherto, over 300 mycotoxins with diverse structures have been identified. They contaminate most cereals and feedstuffs, which threaten human and animal health by exerting acute, sub-acute and chronic toxicological effects, with some considered as carcinogens. Many mycotoxins at low concentrations are able to induce the expression of cytochrome P450 and other enzymes implicated in the biotransformation and metabolization of mycotoxins in vivo and in vitro. Mycotoxins and their metabolites elicit different cellular disorders and adverse effects such as oxidative stress, inhibition of translation, DNA damage and apoptosis in host cells, thus causing various kinds of cytotoxicities. In this review, we summarize the biotransformation of mycotoxins in animal cells by CYP450 isoforms and other enzymes, their altered expression under mycotoxin exposure, and recent progress in mycotoxin cytotoxicity in different cell lines. Furthermore, we try to generalize the molecular mechanisms of mycotoxin effects in human and animal cells.
Collapse
Affiliation(s)
- Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms , College of Life Sciences , South China Agricultural University , Tianhe District , Guangzhou , Guangdong 510642 , P. R. China . ; ; Tel: +86 20 38604967
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms , College of Life Sciences , South China Agricultural University , Tianhe District , Guangzhou , Guangdong 510642 , P. R. China . ; ; Tel: +86 20 38604967
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms , College of Life Sciences , South China Agricultural University , Tianhe District , Guangzhou , Guangdong 510642 , P. R. China . ; ; Tel: +86 20 38604967
| |
Collapse
|
9
|
Chattopadhyay P, Islam J, Goyary D, Agnihotri A, Karmakar S, Banerjee S, Singh L, Veer V. Subchronic dermal exposure to T-2 toxin produces cardiac toxicity in experimental Wistar rats. Toxicol Ind Health 2013; 32:485-92. [DOI: 10.1177/0748233713503373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our study aimed to determine the cardiac toxicities of T-2 toxin, a representative mycotoxin that frequently contaminates maize, cereals, and other agricultural products, harvested and stored under damp and cold conditions. Dermal exposure to T-2 toxin caused severe cardiotoxicity in experimental Wistar rats. Electrocardiography studies showed the conduction abnormalities including prolongation of the QT and corrected QT interval, shortening of the PR interval, and tachycardia. Biochemical studies also reported the toxicity of T-2 toxin. T-2 toxin induced acute cardiotoxicity in rats and characterized by significant ( p < 0.05) elevation of serum troponin I, creatine kinase (CK) isoenzyme MB, CK isoenzyme NAC, and lactate dehydrogenase as compared to control rats. It is concluded that cardiotoxicity effects of T-2 toxin are thought to be due to direct action on electrocardiac potentials and biochemical changes.
Collapse
Affiliation(s)
| | - Johirul Islam
- Pharmaceutical Technology Division, Defence Research Laboratory, Tezpur, India
| | - Danswrang Goyary
- Pharmaceutical Technology Division, Defence Research Laboratory, Tezpur, India
| | - Amit Agnihotri
- Pharmaceutical Technology Division, Defence Research Laboratory, Tezpur, India
| | - Sanjev Karmakar
- Pharmaceutical Technology Division, Defence Research Laboratory, Tezpur, India
| | - Subham Banerjee
- Pharmaceutical Technology Division, Defence Research Laboratory, Tezpur, India
| | - Lokendra Singh
- Directorate of Life Sciences, Defence Research and Development Organization, New Delhi, India
| | - Vijay Veer
- Pharmaceutical Technology Division, Defence Research Laboratory, Tezpur, India
| |
Collapse
|
10
|
Mu P, Xu M, Zhang L, Wu K, Wu J, Jiang J, Chen Q, Wang L, Tang X, Deng Y. Proteomic changes in chicken primary hepatocytes exposed to T-2 toxin are associated with oxidative stress and mitochondrial enhancement. Proteomics 2013; 13:3175-88. [PMID: 24030954 DOI: 10.1002/pmic.201300015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 11/08/2022]
Abstract
T-2 toxin is a mycotoxin that is toxic to plants, animals, and humans. However, its molecular mechanism remains unclear, especially in chickens. In this study, using 2D electrophoresis with MALDI-TOF/TOF-MS, 53 proteins were identified as up- or downregulated by T-2 toxin in chicken primary hepatocytes. Functional network analysis by ingenuity pathway analysis showed that the top network altered by T-2 toxin is associated with neurological disease, cancer, organismal injury, and abnormalities. Most of the identified proteins were associated with one of eight functional classes, including cell redox homeostasis, transcriptional or translational regulation, cell cycle or cell proliferation, stress response, lipid metabolism, transport, carbohydrate metabolism, and protein degradation. Subcellular location categorization showed that the identified proteins were predominantly located in the mitochondrion (34%) and interestingly, the expression of all the identified mitochondrial proteins was increased. Further cellular analysis showed that T-2 toxin was able to induce the ROS accumulation and could lead to an increase in mitochondrial mass and adenosine 5'-triphosphate content, which indicated that oxidative stress and mitochondrial enhancement occurred in T-2 toxin-treated cells. Overall, these results characterize the global proteomic response of chicken primary hepatocytes to T-2 toxin, which may lead to a better understanding of the molecular mechanisms underlying its toxicity.
Collapse
Affiliation(s)
- Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The effect of T-2 toxin on percentages of CD4+, CD8+, CD4+CD8+ and CD21+ lymphocytes, and mRNA expression levels of selected cytokines in porcine ileal Peyer’s patches. Pol J Vet Sci 2013; 16:341-9. [DOI: 10.2478/pjvs-2013-0046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe immune system is one of the main toxicity targets of the T-2 toxin. In view of scant research data demonstrating the effect of T-2 on cellular and humoral responses in gut-associated lymphoid tissue (GALT), this study set out to investigate the effects of chronic exposure to low doses of the T-2 toxin (200 μg T-2 toxin kg-1 feed) on percentages of CD4+ and CD8+ T lymphocytes, CD4+/CD8+double-positive T lymphocytes, CD21+B cells, and IL-2, IFN-γ, IL-4 and IL-10 mRNA expression levels in porcine ileal Peyer’s patches. The investigated material comprised ileum sections sampled from piglets (aged 8-10 weeks, body weight of 15-18 kg) on days 14, 28 and 42 of the experiment.After 42 days of exposure to T-2, a significant drop in the quantity of the IL-10 product was observed (R=0.94; S.E. 0.49-0.79; p<0.001). A gradual decrease in the amount of IL-4 and IFN-γ cytokine transcripts was found throughout the experiment, but the reported trend was not significant. On experimental days 14 and 42, a significant increase in the percentage of CD8+ T lymphocytes was observed in comparison with the control (p=0.04 and p=0.05, respectively), whereas on day 28, a significant decrease in the percentage of the above subpopulation was noted (p=0.00). The percentage of CD21+B cells in the experimental group decreased steadily in comparison with the control, and the observed drop was significant on days 28 and 42 (p=0.06 and p=0.00, respectively). On days 14 and 28, the percentages of CD4+and CD8+T lymphocytes were lower in the experimental animals than in the control group, and the drop reported on day 28 was statistically significant (p=0.03).
Collapse
|
12
|
Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2481] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
13
|
Chaudhari M, Jayaraj R, Bhaskar ASB, Lakshmana Rao PV. Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells. Toxicology 2009; 262:153-61. [PMID: 19524637 DOI: 10.1016/j.tox.2009.06.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/31/2009] [Accepted: 06/02/2009] [Indexed: 11/17/2022]
Abstract
T-2 toxin is the most toxic trichothecene and both humans and animals suffer from several pathological conditions after consumption of foodstuffs contaminated with trichothecenes. We investigated the molecular mechanism of T-2 toxin induced cytotoxicity and cell death in HeLa cells. T-2 toxin at LC50 of 10 ng/ml caused time dependent increase in cytotoxicity as assessed by dye uptake, lactatedehydrogenase leakage and MTT assay. The toxin caused generation of reactive oxygen species as early as 30 min followed by significant depletion of glutathione levels and increased lipid peroxidation. The results indicate oxidative stress as underlying mechanism of cytotoxicity. Single stranded DNA damage after T-2 treatment was observed as early as 2 and 4h by DNA diffusion assay. The cells exhibited apoptotic morphology like condensed chromatin and nuclear fragmentation after 4h of treatment. Downstream of T-2 induced oxidative stress and DNA damage a time dependent increase in expression level of p53 protein was observed. The increase in Bax/Bcl2 ratio indicated shift in response, in favour of apoptotic process in T-2 toxin treated cells. Western blot analysis showed increase in levels of mitochondrial apoptogenic factors Bax, Bcl-2, cytochrome-c followed by activation of caspases-9, -3 and -7 leading to DNA fragmentation and apoptosis. In addition to caspase-dependent pathway, our results showed involvement of caspase-independent AIF pathway in T-2 induced apoptosis. Broad spectrum caspase inhibitor z-VAD-fmk could partially protect the cells from DNA damage but could not inhibit AIF induced oligonucleosomal DNA fragmentation beyond 4 h. Results of the study clearly show that oxidative stress is the underlying mechanism by which T-2 toxin causes DNA damage and apoptosis.
Collapse
Affiliation(s)
- Manjari Chaudhari
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | | | | | | |
Collapse
|
14
|
Examination of the efficacy of various feed additives on the pathomorphological changes in broilers treated with T-2 toxin. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2009. [DOI: 10.2298/zmspn0916049n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A 21-day-long experiment was performed on 160 one-day-old 'Ross' broiler chicks. This research was done with the aim of investigating pathomorphological changes in broilers exposed to a relatively small amount of T-2 toxin (2 ppm) and the possibility of prevention and/or alleviating adverse effects of T-2 toxin using various feed additives. Pathohistological examination showed negative consequences of T-2 toxin in all examined organs as degenerative changes developed in small intestine mucosa, enterocites and hepatocites necroses, as well as lymphocites depletion in bursa of Fabricius. Disparately from inorganic (Minazel-plus, Mz) and organic (Mycosorb, Ms) adsorbents, which did not provoke protective effects, in liver, small intestine and bursa of Fabricius of broilers who were given feed with T-2 toxin and mixed adsorbent (Mycofix-plus, Mf), mostly preserved structure of these organs could be noted.
Collapse
|
15
|
Girish C, Smith T. Impact of feed-borne mycotoxins on avian cell-mediated and humoral immune responses. WORLD MYCOTOXIN J 2008. [DOI: 10.3920/wmj2008.1015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins of economic importance in poultry production are mainly produced by Aspergillus, Penicillium and Fusarium fungi. The important mycotoxins in poultry production are aflatoxins, ochratoxins, trichothecenes, zearalenone and fumonisins. Mycotoxins exert their immunotoxic effects through various mechanisms which are manifested as reduced response of the immune system. Mycotoxin-induced immunosuppression in poultry may be manifested as decreased antibody production to antigens (e.g. sheep red blood cells) and impaired delayed hypersensitivity response (e.g. dinitrochlorobenzene), reduction in systemic bacterial clearance (e.g. Salmonella, Brucella, Listeria and Escherichia), lymphocyte proliferation (response to mitogens), macrophage phagocytotic ability, and alterations in CD4+/CD8+ ratio, immune organ weights (spleen, thymus and bursa of Fabricius), and histological changes (lymphocyte depletion, degeneration and necrosis). Mycotoxins, especially fumonisin B1 have been shown to down regulate proinflammatory cytokine levels including those of interferon (IFN)-γ, IFN-α, interleukin (IL)-1β, and IL-2 in broiler chickens. Fusarium mycotoxins exert part of their toxic effects by altering cytokine production in poultry. Mycotoxins adversely affect intestinal barrier functions by reducing the intestinal epithelial integrity and removing tight junction proteins. Apoptosis, increased colonisation of pathogenic microorganisms, cytotoxicity and oxidative stress, inhibition of protein synthesis and lipid peroxidation are characteristic of the toxic effects of mycotoxins on intestinal epithelium. These directly or indirectly affect host immune responses. Such immunotoxic effects of mycotoxins render poultry susceptible to many infectious diseases. The avian immune system is sensitive to most mycotoxins. Both cell-mediated and humoral immunity may be adversely affected after feeding mycotoxins to poultry. The avian immune system may be more sensitive to naturally contaminated feedstuffs because of the presence of multiple mycotoxins and the complex interactions between them which can cause severe adverse effects. Adverse effects of mycotoxins on the immune system reduce production and performance resulting in economic losses to poultry industries. Caution must be exercised while feeding grains contaminated with mycotoxins.
Collapse
Affiliation(s)
- C. Girish
- Department of Animal and Poultry Science, University of Guelph, Guelph N1G 2W1, Canada
| | - T. Smith
- Department of Animal and Poultry Science, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
16
|
Meissonnier G, Laffitte J, Raymond I, Benoit E, Cossalter AM, Pinton P, Bertin G, Oswald I, Galtier P. Subclinical doses of T-2 toxin impair acquired immune response and liver cytochrome P450 in pigs. Toxicology 2008; 247:46-54. [DOI: 10.1016/j.tox.2008.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
17
|
Fox GA, Jeffrey DA, Williams KS, Kennedy SW, Grasman KA. Health of herring gulls (Larus argentatus) in relation to breeding location in the early 1990s. I. Biochemical measures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1443-70. [PMID: 17687730 DOI: 10.1080/15287390701382969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tissues of 156 adult herring gulls (Larus argentatus) were sampled in the early 1990s from 11 colonies throughout the Laurentian Great Lakes and 2 reference colonies in Lake Winnipeg and the Bay of Fundy. Gulls from 1 or more Great Lakes differed from Lake Winnipeg or the Bay of Fundy for 17 of 19 clinical biochemical measures, whereas the freshwater and marine reference sites differed in only 3. Three differed with sex. There was little evidence to suggest that these differences reflect genotypic differences. Plasma thyroxine, albumin, calcium, magnesium, inorganic phosphorus, triglyceride, bile acids, total protein, uric acid, and urea nitrogen concentrations and aspartate aminotransferase (AST) activity were lower in gulls from one or more Great Lakes than for gulls from one or both reference sites, while those for globulins and glucose were higher. Highly carboxylated porphyrins accumulated in the livers of Great Lakes gulls and ethoxyresorufin O-deethylase (EROD) activity was induced. There was resistance to PCB/TCDD-induced EROD induction in the Lake Erie colonies. Gulls from five colonies were unable to obtain adequate food to maintain average body condition. Body condition was associated with seven biochemical measures. Colonies in designated Areas of Concern as well as those with high liver polychlorinated biphenyl (PCB) concentrations both differed for 50% of the biochemical measures. Associations between biochemical measures and delta15N-derived trophic position and/or contaminant levels in tissues suggest the effects may be toxicopathic responses. Associations were most frequently with PCBs and dioxin-like contaminants. The health of adult herring gulls varied with breeding location and "lifestyle" in the early 1990s, and Great Lakes gulls suffered from chemical and nutritional stressors that modulated physiological processes and endocrine function.
Collapse
Affiliation(s)
- Glen A Fox
- Canadian Wildlife Service, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
18
|
Rezar V, Frankic T, Narat M, Levart A, Salobir J. Dose-dependent effects of T-2 toxin on performance, lipid peroxidation, and genotoxicity in broiler chickens. Poult Sci 2007; 86:1155-60. [PMID: 17495086 DOI: 10.1093/ps/86.6.1155] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of the present study was to evaluate the effects of different concentrations of T-2 toxin in feed on performance, lipid peroxidation, and genotoxicity in vivo. For a 17-d period, T-2 toxin was added to the diet of the chickens. Fifty 22-d-old male broiler chickens were divided into 5 groups that were supplemented with different concentrations of T-2 toxin: control (0.0 mg/kg of feed), T 0.5 (0.5 mg/kg of feed), T 1.5 (1.5 mg/kg of feed), T 4.5 (4.5 mg/kg of feed), and T 13.5 (13.5 mg/kg of feed). Deoxyribonucleic acid fragmentation in spleen leukocytes, malondialdehyde in plasma and liver, total plasma antioxidative status, glutathione peroxidase activity, and total serum Ig (IgA and IgG) were measured. Feed consumption and BW gain decreased when the concentration of T-2 toxin was 4.5 and 13.5 mg/kg of feed. Compared with the control group, the rate of DNA damage increased significantly in the group fed 13.5 mg of T-2 toxin/kg of feed. In contrast to DNA fragmentation, indicators of oxidative stress did not show differences between groups fed T-2 toxin and the control. More serum IgA was detected in the group T 13.5 compared with the control, whereas there were no differences in serum IgG levels. The results of the present study indicate that impaired performance, DNA fragmentation in spleen leukocytes, and elevated serum IgA levels induced by T-2 toxin are dose-dependent. Based on our results, we could not confirm the hypothesis that oxidative stress is among the mechanisms by which T-2 toxin induces DNA fragmentation.
Collapse
Affiliation(s)
- V Rezar
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, 1230 DomZale, Slovenia
| | | | | | | | | |
Collapse
|
19
|
Huang P, Akagawa K, Yokoyama Y, Nohara K, Kano K, Morimoto K. T-2 toxin initially activates caspase-2 and induces apoptosis in U937 cells. Toxicol Lett 2007; 170:1-10. [PMID: 17391872 DOI: 10.1016/j.toxlet.2006.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/22/2006] [Accepted: 05/22/2006] [Indexed: 11/22/2022]
Abstract
T-2 toxin, which belongs to a group of mycotoxins synthesized by Fusarium fungi that are widely encountered as natural contaminants, induced apoptosis with distinct morphological and biological features in U937 cells. The concentration of more than 10nM T-2 toxin affected cell viability, induced nuclear and DNA fragmentation and caspase-3 activation. Caspase-2, -3, -8, and -9 were activated during T-2 toxin-induced apoptosis. T-2 toxin neither inhibited mitochondrial respiratory chain complexes I-IV in isolated mitochondria nor decreased ATP levels in U937 cells. Both enzyme activity assay and Western blot analysis revealed that T-2 toxin activated caspase-2 earlier than caspase-3, -8, and -9. Caspase-2 inhibitor (VDVAD-CHO/fmk) and caspase-8 inhibitor (IETD-CHO/fmk) completely blocked the T-2 toxin-induced process of procaspase-3, while caspase-9 inhibitor (LEHD-CHO/fmk) did so less effectively. Caspase-2 inhibitor entirely blocked T-2 toxin-induced caspase-8, and -9 activation. These results clearly indicate that activation of caspase-2 is essential to T-2 toxin-induced apoptosis and that apoptotic signals are mainly transmitted via caspase-8 and caspase-3 rather than mitochondrial pathway.
Collapse
Affiliation(s)
- Peixin Huang
- Department of Social and Environmental Medicine, Osaka University Graduate School of Medicine, Yamada-Oka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Basic mechanisms of the cellular alterations in T-2 toxin poisoning: Influence on the choice and result of the therapy. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2007. [DOI: 10.2298/zmspn0713045j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
T-2 mycotoxin, secondary metabolite of Fusarium fungi, is one of the most potent cytotoxic representatives of trichothecene mycotoxin type A. After ingestion, T-2 toxin affects actively dividing cells and irreversible post-mitotic cells. In our experiments, the best protective effects were produced by dexametasone (PI = 3.37) and different methylprednisolone formulations (PI = 2.43-2.64). Significant protective efficacy was shown by nimesulide (PI = 1.44) and N-acethyilcistein (PI = 1.29), but their values were higher in a combination with methylprednisolone (PI = 2.16-2.34). Radioprotector amifostine (WR-2721) expressed good protective effects (PI = 1.26) or/and different absorbent formulations, such as: activated charcoal (PI = 1.13) and various Min-a-zel? powder compounds, which are a well known zeolite clinoptilolite absorbents. Among the five zeolite regimens investigated, only Min-a-zel Plus? showed a significant protective effect (PI = 1.77). In summary, the steroidal anti-inflammatory drugs could be recommended as a regimen of choice for treatment of acute T-2 toxicosis while nonsteroidal anti-inflammatory compounds, different absorbent formulations and their combinations with antioxidants or radioprotectors could be important for the treatment of subacute and chronic T-2 toxin poisonings.
Collapse
|
21
|
Vesna J, Lidija Z, I. M, Katarina J, Radmila R, D. B, M. S. Influence of different glucocorticosteroid treatment regimens on pathohistological changes in hearts of rats poisoned with T-2 toxin. ACTA VET-BEOGRAD 2006. [DOI: 10.2298/avb0603243j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|