1
|
Nazir S, Charlesworth RPG, Moens P, Gerber PF. Evaluation of autofluorescence quenching techniques on formalin- fixed chicken tissues. J Immunol Methods 2021; 496:113097. [PMID: 34217694 DOI: 10.1016/j.jim.2021.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Autofluorescence (AF) in formalin-fixed and paraffin-embedded tissues limit their use in immunofluorescence staining techniques. Various methods have been used to reduce AF in human and animal tissues but no protocol has been optimized for avian tissues. The present study was undertaken to evaluate different treatment methods including ammonium chloride, glycine, Trypan blue, sodium borohydride, Sudan Black B, potassium permanganate, LED light, cupric sulphate combined with glycine, ammonium chloride and cupric sulphate in reducing AF in FFPE chicken tissues for the detection of FITC labelled antibodies against immune cell markers. Chicken tissues including conjunctiva, trachea and Harderian gland presented intense non-homogenous AF in cells resembling erythrocytes, connective cells and melanocytes. Only Sudan Black B effectively reduced AF in FFPE tissues; however, no specific fluorescent signal was observed for six FITC labelled antibodies against immune cell markers. Specific fluorescent signal from the FITC-labelled antibodies was observed in frozen chicken tissue sections with minimal AF, suggesting that the AF in FFPE tissues is related to the use of formaldehyde fixatives. In conclusion, this study demonstrates for the first time that AF quenching methods commonly used for other animal species are not appropriate for use in avian tissues and that frozen tissue sections are recommended for immunofluorescence staining techniques in poultry.
Collapse
Affiliation(s)
- Shahid Nazir
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia.
| | | | - Pierre Moens
- School of Science and Technology, University of New England, Armidale, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia.
| |
Collapse
|
2
|
Ahaduzzaman M, Milan L, Morton CL, Gerber PF, Walkden-Brown SW. Characterization of poultry house dust using chemometrics and scanning electron microscopy imaging. Poult Sci 2021; 100:101188. [PMID: 34089932 PMCID: PMC8182433 DOI: 10.1016/j.psj.2021.101188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
Poultry house dust is composed of fine particles which likely originate from a diverse range of materials such as feed, litter, excreta, and feathers. Little is known about the contribution of these sources to broiler house airborne dust so the present study was designed to identify the relative contributions of these sources. Samples of feed, excreta, feather, and bedding, known mixtures of these and settled dust from 28 broiler chicken flocks were tested for the concentration of 18 chemical elements. A chemometrics approach (the application of multivariate statistical techniques to chemical analysis data) was used to identify the primary source material in broiler chicken house dust samples. Scanning electron microscopy (SEM) was also used to analyze dust sample particulates based on examination of source materials. Excreta was found to be the main component of broiler chicken house dust, both by SEM and chemometric analysis. SEM of experimental flock dust between 7 and 35 days of age (d) revealed that the contribution of excreta to dust increased with age from 60% at 7 d to 95% at 28 d (P < 0.001). The proportion of bedding and feed in dust declined with age while the contribution of feather material remained low throughout. This study demonstrates that excreta provides the bulk of the material in poultry dust samples with bedding material, feed and feather material providing lower proportions. The relative contributions of these materials to dust varies with age of birds at dust collection. Additional research is required to determine the health and diagnostic implications of this variation.
Collapse
Affiliation(s)
- Md Ahaduzzaman
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh.
| | - Luke Milan
- Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Christine L Morton
- Statistics, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
3
|
Yegoraw AA, Assen AM, Gerber PF, Walkden-Brown SW. Transmission of infectious laryngotracheitis virus vaccine and field strains: the role of degree of contact and transmission by whole blood, plasma and poultry dust. Vet Res 2021; 52:91. [PMID: 34158102 PMCID: PMC8220770 DOI: 10.1186/s13567-021-00959-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the mechanisms of transmission of infectious laryngotracheitis virus (ILTV) is critical to proper control as both vaccine and wild-type strains circulate within chicken flocks with potential adverse consequences. The relative efficiency of transmission by direct contact between chickens and airborne transmission has not been investigated. Furthermore, relatively high levels of ILTV DNA have been detected in poultry dust and blood but the infectivity of these is unknown. In this study, comparison of in-contact and airborne transmission of two vaccine and one field strain of ILTV revealed that all transmitted to 100% of in-contact birds by 6 days post-exposure (dpe). Airborne transmission without contact resulted in 100% transmission by 14 and 17 dpe for the wild-type and Serva vaccine virus but only 27% transmission by 21 dpe for the A20 vaccine virus. The infectivity of dust or extracts of dust and blood or plasma from infected chickens at various stages of infection was assessed by inoculation into susceptible chickens. There was no transmission by any of these materials. In conclusion, direct contact facilitated efficient ILTV transmission but the virus was unable to be transmitted by dust from infected chickens suggestive of a limited role in the epidemiology of ILTV.
Collapse
Affiliation(s)
- Addisu A Yegoraw
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia.
| | - Awol M Assen
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
4
|
Tran TT, Nazir S, Yegoraw AA, Assen AM, Walkden-Brown SW, Gerber PF. Detection of infectious laryngotracheitis virus (ILTV) in tissues and blood fractions from experimentally infected chickens using PCR and immunostaining analyses. Res Vet Sci 2020; 134:64-68. [PMID: 33310555 DOI: 10.1016/j.rvsc.2020.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
The ability of infectious laryngotracheitis virus (ILTV) to replicate in organs outside of the upper respiratory tract and conjunctiva associated-lymphoid tissues is still not well understood. This study investigated the tissue distribution of an Australian field strain of ILTV (class 9) on birds experimentally inoculated via eye-drop at 7 days of age by using quantitative PCR (qPCR) and immunohistochemistry. Tissues including conjunctiva, caecal tonsil, kidney, liver, lung, spleen, thymus, trachea and blood were collected from sham-inoculated (control group; n = 2) and ILTV-inoculated (n = 8) birds at 7 days post-inoculation (dpi). Blood was collected from 13 infected birds at 14 dpi and fractionated using ficoll-paque. At 7 dpi, the highest detection rate and genomic copies (GC) were in conjunctiva (8/8; 8.08 ± 0.48 log10 GC/mg) followed by trachea (8/8; 4.64 ± 0.48) and thymus (8/8; 4.52 ± 0.48), kidney (8/8; 3.97 ± 0.48), lung (8/8; 3.65 ± 0.48), spleen (8/8; 3.55 ± 0.48), liver (8/8; 3.51 ± 0.48), caecal tonsil (7/8; 3.76 ± 0.48) and plasma (4/8; 2.40 ± 0.48 log10 GC/ml). ILTV antigen was only detected in conjunctiva (7/8), trachea (6/8) and lung (4/8) samples. At 14 dpi, ILTV detection rate and genomic copies in buffy coat cells were 12/13 and 2.86 ± 0.39 log10 GC/mg, respectively while those of plasma were 11/13 and 4.29 ± 0.39 log10 GC/ml and red blood cell were 3/13 and 0.36 ± 0.39 log10 GC/mg. In conclusion, ILTV DNA was detected in a wide range of tissues and blood fractions but ILTV antigen was only detected in respiratory organs and conjunctiva.
Collapse
Affiliation(s)
- Thanh T Tran
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Shahid Nazir
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Addisu A Yegoraw
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Awol M Assen
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
| | - Stephen W Walkden-Brown
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Priscilla F Gerber
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia.
| |
Collapse
|