1
|
Bennink S, Pradel G. The Multiple Roles of LCCL Domain-Containing Proteins for Malaria Parasite Transmission. Microorganisms 2024; 12:279. [PMID: 38399683 PMCID: PMC10892792 DOI: 10.3390/microorganisms12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Multi-protein complexes are crucial for various essential biological processes of the malaria parasite Plasmodium, such as protein synthesis, host cell invasion and adhesion. Especially during the sexual phase of the parasite, which takes place in the midgut of the mosquito vector, protein complexes are required for fertilization, sporulation and ultimately for the successful transmission of the parasite. Among the most noticeable protein complexes of the transmission stages are the ones formed by the LCCL domain-containing protein family that play critical roles in the generation of infective sporozoites. The six members of this protein family are characterized by numerous adhesive modules and domains typically found in secreted proteins. This review summarizes the findings of expression and functional studies on the LCCL domain-containing proteins of the human pathogenic P. falciparum and the rodent-infecting P. berghei and discusses the common features and differences of the homologous proteins.
Collapse
Affiliation(s)
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany;
| |
Collapse
|
2
|
Ozubek S, Alzan HF, Bastos RG, Laughery JM, Suarez CE. Identification of CCp5 and FNPA as Novel Non-canonical Members of the CCp Protein Family in Babesia bovis. Front Vet Sci 2022; 9:833183. [PMID: 35242841 PMCID: PMC8886879 DOI: 10.3389/fvets.2022.833183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine babesiosis, caused by Babesia bovis, is an economically significant tick-borne disease that imposes restrictions to livestock production worldwide. Current methods to control bovine babesiosis have severe limitations and novel approaches, including transmission-blocking vaccines, are needed. Members of the widely conserved CCp family are multidomain adhesion proteins containing LCCL motifs, which are differentially expressed on gametocytes of apicomplexans, including Babesia spp. and Plasmodium spp. While Plasmodium parasites contain 6 distinct CCp genes, only three members (CCp 1-3) were previously identified in B. bovis. In this study, we describe the identification and characterization of two novel non-canonical members of the CCp gene family in B. bovis, named CCp5 and FNPA. The genes were identified in silico by TBLASTN using P. falciparum CCp family domains as queries. Unlike CCp1-3, the B. bovis CCp5 and FNPA proteins lack the LCCL canonical domain but contain other typical multidomain adhesion motifs which are present in classical CCp proteins. In addition, the B. bovis CCp5 and FNPA are in synteny with known CCp genes in related apicomplexans. Sequence analysis of these two proteins demonstrated high sequence conservation among B. bovis different isolates. Transcription, immunoblot, and immunofluorescence analyses demonstrated expression of CCp5 and FNPA in blood and in vitro induced sexual stages of B. bovis. The FNPA, in contrast to CCp5, has a predicted transmembrane domain, suggesting that it might be expressed in the surface of sexual stage parasites. Altogether, finding of this study support FNPA as a possible target of a transmission-blocking vaccine against B. bovis.
Collapse
Affiliation(s)
- Sezayi Ozubek
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elâzig, Turkey
- *Correspondence: Sezayi Ozubek ;
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza, Egypt
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
- Carlos E. Suarez
| |
Collapse
|
3
|
Müller K, Silvie O, Mollenkopf HJ, Matuschewski K. Pleiotropic Roles for the Plasmodium berghei RNA Binding Protein UIS12 in Transmission and Oocyst Maturation. Front Cell Infect Microbiol 2021; 11:624945. [PMID: 33747980 PMCID: PMC7973279 DOI: 10.3389/fcimb.2021.624945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
Colonization of the mosquito host by Plasmodium parasites is achieved by sexually differentiated gametocytes. Gametocytogenesis, gamete formation and fertilization are tightly regulated processes, and translational repression is a major regulatory mechanism for stage conversion. Here, we present a characterization of a Plasmodium berghei RNA binding protein, UIS12, that contains two conserved eukaryotic RNA recognition motifs (RRM). Targeted gene deletion resulted in viable parasites that replicate normally during blood infection, but form fewer gametocytes. Upon transmission to Anopheles stephensi mosquitoes, both numbers and size of midgut-associated oocysts were reduced and their development stopped at an early time point. As a consequence, no salivary gland sporozoites were formed indicative of a complete life cycle arrest in the mosquito vector. Comparative transcript profiling in mutant and wild-type infected red blood cells revealed a decrease in transcript abundance of mRNAs coding for signature gamete-, ookinete-, and oocyst-specific proteins in uis12(-) parasites. Together, our findings indicate multiple roles for UIS12 in regulation of gene expression after blood infection in good agreement with the pleiotropic defects that terminate successful sporogony and onward transmission to a new vertebrate host.
Collapse
Affiliation(s)
- Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray/Genomics, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
4
|
Jenwithisuk R, Kangwanrangsan N, Tachibana M, Thongkukiatkul A, Otsuki H, Sattabongkot J, Tsuboi T, Torii M, Ishino T. Identification of a PH domain-containing protein which is localized to crystalloid bodies of Plasmodium ookinetes. Malar J 2018; 17:466. [PMID: 30545367 PMCID: PMC6291999 DOI: 10.1186/s12936-018-2617-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background For the success of the malaria control and eradication programme it is essential to reduce parasite transmission by mosquito vectors. In the midguts of mosquitoes fed with parasite-infected blood, sexual-stage parasites fertilize to develop into motile ookinetes that traverse midgut epithelial cells and reside adjacent the basal lamina. Therefore, the ookinete is a promising target of transmission-blocking vaccines to break the parasite lifecycle in mosquito vectors. However, the molecular mechanisms of ookinete formation and invasion of epithelial cells have not been fully elucidated. A unique structure called the crystalloid body has been identified in the ookinete cytoplasm by electron microscopy, but its biological functions remain unclear. Methods A recombinant protein of a novel molecule, designated as crystalloid body specific PH domain-containing protein of Plasmodium yoelii (PyCryPH), was synthesized using a wheat germ cell-free system. Specific rabbit antibodies against PyCryPH were obtained to characterize the expression and localization of PyCryPH during sexual-stage parasite development. In addition, PyCryPH knockout parasites were generated by targeted gene disruption to examine PyCryPH function in mosquito-stage parasite development. Results Western blot and immunofluorescence assays using specific antibodies showed that PyCryPH is specifically expressed in zygotes and ookinetes. By immunoelectron microscopy it was demonstrated that PyCryPH is localized within crystalloid bodies. Parasites with a disrupted PyCryPH gene developed normally into ookinetes and formed oocysts on the basal lamina of midguts. In addition, the number of sporozoites residing in salivary glands was comparable to that of wild-type parasites. Conclusions CryPH, containing a signal peptide and PH domain, is predominantly expressed in zygotes and ookinetes and is localized to crystalloid bodies in P. yoelii. CryPH accumulates in vesicle-like structures prior to the appearance of typical crystalloid bodies. Unlike other known crystalloid body localized proteins, CryPH does not appear to have a multiple domain architecture characteristic of the LAP/CCp family proteins. Although CryPH is highly conserved among Plasmodium, Babesia, Theileria, and Cryptosporidium, PyCryPH is dispensable for the development of invasive ookinetes and sporozoites in mosquito bodies. Electronic supplementary material The online version of this article (10.1186/s12936-018-2617-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachaneeporn Jenwithisuk
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Amporn Thongkukiatkul
- Department of Biology, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Hitoshi Otsuki
- Division of Medical Zoology, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
5
|
Interaction with complement proteins and dendritic cells implicates LCCL domain-containing proteins (CCps) of malaria parasites in immunomodulation. Biochem J 2018; 475:3311-3314. [PMID: 30401681 DOI: 10.1042/bcj20180494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022]
Abstract
The evasion of host immune defense is critical for pathogens to invade, establish infection and perpetuate in the host. The complement system is one of the first lines of innate immune defense in humans that destroys pathogens in the blood circulation. Activation of the complement system through direct encounter with pathogens or some other agents leads to osmolysis of pathogens, clearance of soluble immune complexes and recruitment of lymphocytes at the site of activation. Although malaria parasites are not exposed to the complement system owing to their intracellular development for most part of their life cycle in the human host, the extracellular stages must face the complement system of human or mosquito or both. In a recent issue of the Biochemical Journal, Sharma et al. reported that P lasmodium falciparum LCCL domain-containing protein 1 (PfCCp1) inhibited activation of the classical complement pathway and down-regulated effector responses of dendritic cells, which implicate PfCCp1 and related proteins in immunomodulation of the host that likely benefits the parasite. PfCCp1 belongs to a multi-domain protein family that exists as multimeric protein complexes. It needs to be investigated whether PfCCp1 or its multimeric protein complexes have an immunomodulatory effect in vivo and on the mosquito complement system.
Collapse
|
6
|
Saeed S, Tremp AZ, Dessens JT. The Plasmodium LAP complex affects crystalloid biogenesis and oocyst cell division. Int J Parasitol 2018; 48:1073-1078. [PMID: 30367865 PMCID: PMC6284103 DOI: 10.1016/j.ijpara.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023]
Abstract
Fusion of GFP to Plasmodium berghei LAP4 causes abnormal crystalloid formation. LAP4/GFP oocysts have reduced size. LAP4/GFP oocyst populations show earlier sporulation dynamics. LAP4/GFP sporozoites are not transmitted by mosquito bite.
Malaria parasite oocysts located on the mosquito midgut generate sporozoites by a process called sporogony. Plasmodium berghei parasites express six LCCL lectin domain adhesive-like proteins (LAPs), which operate as a complex and share a localisation in the crystalloid – an organelle found in the ookinete and young oocyst. Depletion of LAPs prevents crystalloid formation, increases oocyst growth, and blocks sporogony. Here, we describe a LAP4 mutant that has abnormal crystalloid biogenesis and produces oocysts that display reduced growth and premature sporogony. These findings provide evidence for a role of the LAP complex in regulating oocyst cell division via the crystalloid.
Collapse
Affiliation(s)
- Sadia Saeed
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Annie Z Tremp
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Johannes T Dessens
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
7
|
Biochemical characterization of Plasmodium complement factors binding protein for its role in immune modulation. Biochem J 2018; 475:2877-2891. [PMID: 30049893 DOI: 10.1042/bcj20180142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/17/2022]
Abstract
Complement system is the first line of human defence against intruding pathogens and is recognized as a potentially useful therapeutic target. Human malaria parasite Plasmodium employs a series of intricate mechanisms that enables it to evade different arms of immune system, including the complement system. Here, we show the expression of a multi-domain Plasmodium Complement Control Protein 1, PfCCp1 at asexual blood stages and its binding affinity with C3b as well as C4b proteins of human complement cascade. Using a biochemical assay, we demonstrate that PfCCp1 binds with complement factors and inhibits complement activation. Active immunization of mice with PfCCp1 followed by challenge with Plasmodium berghei resulted in the loss of biphasic growth of parasites and early death in comparison to the control group. The study also showed a role of PfCCp1 in modulating Toll-like receptor (TLR)-mediated signalling and effector responses on antigen-presenting cells. PfCCp1 binds with dendritic cells that down-regulates the expression of signalling molecules and pro-inflammatory cytokines, thereby dampening the TLR2-mediated signalling; hence acting as a potent immuno-modulator. In summary, PfCCp1 appears to be an important component of malaria parasite directed immuno-modulating strategies that promote the adaptive fitness of pathogens in the host.
Collapse
|
8
|
A novel genetic technique in Plasmodium berghei allows liver stage analysis of genes required for mosquito stage development and demonstrates that de novo heme synthesis is essential for liver stage development in the malaria parasite. PLoS Pathog 2017; 13:e1006396. [PMID: 28617870 PMCID: PMC5472305 DOI: 10.1371/journal.ppat.1006396] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/03/2017] [Indexed: 11/19/2022] Open
Abstract
The combination of drug resistance, lack of an effective vaccine, and ongoing conflict and poverty means that malaria remains a major global health crisis. Understanding metabolic pathways at all parasite life stages is important in prioritising and targeting novel anti-parasitic compounds. The unusual heme synthesis pathway of the rodent malaria parasite, Plasmodium berghei, requires eight enzymes distributed across the mitochondrion, apicoplast and cytoplasm. Deletion of the ferrochelatase (FC) gene, the final enzyme in the pathway, confirms that heme synthesis is not essential in the red blood cell stages of the life cycle but is required to complete oocyst development in mosquitoes. The lethality of FC deletions in the mosquito stage makes it difficult to study the impact of these mutations in the subsequent liver stage. To overcome this, we combined locus-specific fluorophore expression with a genetic complementation approach to generate viable, heterozygous oocysts able to produce a mix of FC expressing and FC deficient sporozoites. These sporozoites show normal motility and can invade liver cells, where FC deficient parasites can be distinguished by fluorescence and phenotyped. Parasites lacking FC exhibit a severe growth defect within liver cells, with development failure detectable in the early to mid stages of liver development in vitro. FC deficient parasites could not complete liver stage development in vitro nor infect naïve mice, confirming liver stage arrest. These results validate the heme pathway as a potential target for prophylactic drugs targeting liver stage parasites. In addition, we demonstrate that our simple genetic approach can extend the phenotyping window beyond the insect stages, opening considerable scope for straightforward reverse genetic analysis of genes that are dispensable in blood stages but essential for completing mosquito development.
Collapse
|
9
|
LCCL protein complex formation in Plasmodium is critically dependent on LAP1. Mol Biochem Parasitol 2017; 214:87-90. [PMID: 28414172 PMCID: PMC5482319 DOI: 10.1016/j.molbiopara.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Successful sporogony of Plasmodium berghei in vector mosquitoes requires expression of a family of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs). The LAPs share a subcellular localization in the crystalloid, a unique parasite organelle that forms during ookinete development. Here, LAP interactions in P. berghei were studied using a series of parasite lines stably expressing reporter-tagged LAPs combined with affinity purification and high accuracy label free quantitative mass spectrometry. Our results show that abundant complexes containing LAP1, LAP2 and LAP3 are formed in gametocytes through high avidity interactions. Following fertilization, LAP4, LAP5 and LAP6 are recruited to this complex, a process that is facilitated by LAP1 chiefly through its scavenger receptor cysteine-rich modules. These collective findings provide new insight into the temporal and molecular dynamics of protein complex formation that lead up to, and are required for, crystalloid biogenesis and downstream sporozoite transmission of malaria parasites.
Collapse
|
10
|
Smith RC, Barillas-Mury C. Plasmodium Oocysts: Overlooked Targets of Mosquito Immunity. Trends Parasitol 2016; 32:979-990. [PMID: 27639778 DOI: 10.1016/j.pt.2016.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/18/2022]
Abstract
Although the ability of mosquitoes to limit Plasmodium infection is well documented, many questions remain as to how malaria parasites are recognized and killed by the mosquito host. Recent evidence suggests that anti-Plasmodium immunity is multimodal, with different immune mechanisms regulating ookinete and oocyst survival. However, most experiments determine the number of mature oocysts, without considering that different immune mechanisms may target different developmental stages of the parasite. Complement-like proteins have emerged as important determinants of early immunity targeting the ookinete stage, yet the mechanisms by which the mosquito late-phase immune response limits oocyst survival are less understood. Here, we describe the known components of the mosquito immune system that limit oocyst development, and provide insight into their possible mechanisms of action.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, USA.
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
11
|
Rao PN, Santos JM, Pain A, Templeton TJ, Mair GR. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium. Parasitol Int 2016; 65:463-71. [PMID: 27312996 DOI: 10.1016/j.parint.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In Plasmodium falciparum and Plasmodium berghei blood stage parasites, the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. By establishing a luciferase transgene assay, we show that the 3' untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.
Collapse
Affiliation(s)
- Pavitra N Rao
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Jorge M Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo 001-0020, Japan
| | - Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki 852-8523, Japan.
| | - Gunnar R Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Saeed S, Tremp AZ, Dessens JT. Biogenesis of the crystalloid organelle in Plasmodium involves microtubule-dependent vesicle transport and assembly. Int J Parasitol 2015; 45:537-47. [PMID: 25900212 PMCID: PMC4459735 DOI: 10.1016/j.ijpara.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Malaria parasites possess unique subcellular structures and organelles. One of these is the crystalloid, a multivesicular organelle that forms during the parasite's development in vector mosquitoes. The formation and function of these organelles remain poorly understood. A family of six conserved and modular proteins named LCCL-lectin adhesive-like proteins (LAPs), which have essential roles in sporozoite transmission, localise to the crystalloids. In this study we analyse crystalloid formation using transgenic Plasmodium berghei parasites expressing GFP-tagged LAP3. We show that deletion of the LCCL domain from LAP3 causes retarded crystalloid development, while knockout of LAP3 prevents formation of the organelle. Our data reveal that the process of crystalloid formation involves active relocation of endoplasmic reticulum-derived vesicles to common assembly points via microtubule-dependent transport. Inhibition of microtubule-dependent cargo transport disrupts this process and replicates the LCCL domain deletion mutant phenotype in wildtype parasites. These findings provide the first clear insight into crystalloid biogenesis, demonstrating a fundamental role for the LAP family in this process, and identifying the crystalloid and its formation as potential targets for malaria transmission control.
Collapse
Affiliation(s)
- Sadia Saeed
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Annie Z Tremp
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Johannes T Dessens
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
13
|
Saeed S, Carter V, Tremp AZ, Dessens JT. Translational repression controls temporal expression of the Plasmodium berghei LCCL protein complex. Mol Biochem Parasitol 2013; 189:38-42. [PMID: 23684590 PMCID: PMC3694310 DOI: 10.1016/j.molbiopara.2013.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022]
Abstract
We have GFP-tagged the LCCL proteins PbLAP4, PbLAP5 and PbLAP6 in Plasmodium berghei. PbLAP4, PbLAP5 and PbLAP6 associate with the crystalloid organelle in ookinetes. Translational repression controls expression of the LCCL protein repertoire in gametocytes.
Plasmodium LCCL proteins comprise a family of six proteins that function as a protein complex and have essential roles in sporozoite transmission. In Plasmodium berghei, family members PbLAP1, PbLAP2 and PbLAP3 have been shown to be expressed in gametocytes and, following gametogenesis and fertilization, to be targeted to distinctive multivesicular organelles termed crystalloids that form in the ookinete. Here, we show by GFP-tagging that PbLAP4, PbLAP5 and PbLAP6, like their family members, are associated with the crystalloids. However, in contrast to their family members, protein expression of PbLAP4, PbLAP5 and PbLAP6 was not detected in gametocytes, even though transcription of the corresponding genes is most prominent in the sexual blood stage parasites. These results suggest that translational repression controls expression of the LCCL protein repertoire and, consequently, the temporal function of the protein complex during P. berghei development in the mosquito.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | | | | | |
Collapse
|
14
|
Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability. Mol Biochem Parasitol 2012; 185:170-3. [PMID: 22877575 PMCID: PMC3473356 DOI: 10.1016/j.molbiopara.2012.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 11/22/2022]
Abstract
Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex.
Collapse
|
15
|
Liu Z, Miao J, Cui L. Gametocytogenesis in malaria parasite: commitment, development and regulation. Future Microbiol 2012; 6:1351-69. [PMID: 22082293 DOI: 10.2217/fmb.11.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malaria parasites have evolved a complicated life cycle alternating between two hosts. Gametocytes are produced in the vertebrate hosts and are obligatory for natural transmission of the parasites through mosquito vectors. The mechanism of sexual development in Plasmodium has been the focus of extensive studies. In the postgenomic era, the advent of genome-wide analytical tools and genetic manipulation technology has enabled rapid advancement of our knowledge in this area. Patterns of gene expression during sexual development, molecular distinction of the two sexes, and mechanisms underlying subsequent formation of gametes and their fertilization have been progressively elucidated. However, the triggers and mechanism of sexual development remain largely unknown. This article provides an update of our understanding of the molecular and cellular events associated with the decision for commitment to sexual development and regulation of gene expression during gametocytogenesis. Insights into the molecular mechanisms of gametocyte development are essential for designing proper control strategies for interruption of malaria transmission and ultimate elimination.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Entomology, The Pennsylvania State University, 537 ASI Building University Park, PA 16802, USA
| | | | | |
Collapse
|
16
|
Dessens JT, Saeed S, Tremp AZ, Carter V. Malaria crystalloids: specialized structures for parasite transmission? Trends Parasitol 2011; 27:106-10. [PMID: 21237711 PMCID: PMC3133641 DOI: 10.1016/j.pt.2010.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/22/2022]
Abstract
Malaria parasites possess many unique subcellular structures and organelles that are essential for the successful completion of the complex life cycle of Plasmodium in the vertebrate host and mosquito vector. Among these are the crystalloids: transient structures whose presence is restricted to the mosquito-specific ookinete and young oocyst stages of the parasite. Nearly five decades after they were first described, the crystalloids are back in the spotlight, with recent discoveries pointing to an important role in protein trafficking and sporozoite transmission that could be exploited as new targets for control of malaria transmission.
Collapse
Affiliation(s)
- Johannes T Dessens
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | | | | | | |
Collapse
|
17
|
Becker C, Malandrin L, Depoix D, Larcher T, David P, Chauvin A, Bischoff E, Bonnet S. Identification of three CCp genes in Babesia divergens: Novel markers for sexual stages parasites. Mol Biochem Parasitol 2010; 174:36-43. [DOI: 10.1016/j.molbiopara.2010.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/25/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
18
|
Kuehn A, Simon N, Pradel G. Family members stick together: multi-protein complexes of malaria parasites. Med Microbiol Immunol 2010; 199:209-26. [PMID: 20419315 DOI: 10.1007/s00430-010-0157-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 11/24/2022]
Abstract
Malaria parasites express a broad repertoire of proteins whose expression is tightly regulated depending on the life-cycle stage of the parasite and the environment of target organs in the respective host. Transmission of malaria parasites from the human to the anopheline mosquito is mediated by intraerythrocytic sexual stages, termed gametocytes, which circulate in the peripheral blood and are essential for the spread of the tropical disease. In Plasmodium falciparum, gametocytes express numerous extracellular proteins with adhesive motifs, which might mediate important interactions during transmission. Among these is a family of six secreted proteins with adhesive modules, termed PfCCp proteins, which are highly conserved throughout the apicomplexan clade. In P. falciparum, the proteins are expressed in the parasitophorous vacuole of gametocytes and are subsequently exposed on the surface of macrogametes during parasite reproduction in the mosquito midgut. One characteristic of the family is a co-dependent expression, such that loss of all six proteins occurs if expression of one member is disrupted via gene knockout. The six PfCCp proteins interact by adhesion domain-mediated binding and thus form complexes on the sexual stage surface having adhesive properties. To date, the PfCCp proteins represent the only protein family of the malaria parasite sexual stages that assembles to multimeric complexes, and only a small number of such protein complexes have so far been identified in other life-cycle stages of the parasite.
Collapse
Affiliation(s)
- Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2, Building D15, Würzburg, Germany
| | | | | |
Collapse
|
19
|
Malaria gametocytogenesis. Mol Biochem Parasitol 2010; 172:57-65. [PMID: 20381542 PMCID: PMC2880792 DOI: 10.1016/j.molbiopara.2010.03.019] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023]
Abstract
Male and female gametocytes are the components of the malaria parasite life cycle which are taken up from an infected host bloodstream by mosquitoes and thus mediate disease transmission. These gamete precursors are morphologically and functionally quite distinct from their asexual blood stage counterparts and this is reflected in their distinct patterns of gene expression, cellular development and metabolism. Recent transcriptome, proteome and reverse genetic studies have added valuable information to that obtained from traditional studies. However, we still have no answer to the fundamental question regarding sexual development: 'what triggers gametocytogenesis'? In the current climate of eradication/elimination, tackling transmission by killing gametocytes has an important place on the agenda because most antimalarial drugs, whilst killing asexual blood stage parasites, have no effect on the transmissible stages.
Collapse
|
20
|
Mosquito cell line glycoproteins: an unsuitable model system for the Plasmodium ookinete-mosquito midgut interaction? Parasit Vectors 2010; 3:22. [PMID: 20338056 PMCID: PMC2861666 DOI: 10.1186/1756-3305-3-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/25/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito midgut glycoproteins may act as key recognition sites for the invading malarial ookinete. Effective transmission blocking strategies require the identification of novel target molecules. We have partially characterised the surface glycoproteins of two cell lines from two mosquito species; Anopheles stephensi and Anopheles gambiae, and investigated the binding of Plasmodium berghei ookinetes to carbohydrate ligands on the cells. Cell line extracts were run on SDS-PAGE gels and carbohydrate moieties determined by blotting against a range of biotinylated lectins. In addition, specific glycosidases were used to cleave the oligosaccharides. Results An. stephensi 43 and An. gambiae 55 cell line glycoproteins expressed oligosaccharides containing oligomannose and hybrid oligosaccharides, with and without α1-6 core fucosylation; N-linked oligosaccharides with terminal Galβ1-3GalNAc or GalNAcβ1-3Gal; O-linked α/βGalNAc. An. stephensi 43 cell line glycoproteins also expressed N-linked Galβ1-4R and O-linked Galβ1-3GalNAc. Although P. berghei ookinetes bound to both mosquito cell lines, binding could not be inhibited by GlcNAc, GalNAc or Galactose. Conclusions Anopheline cell lines displayed a limited range of oligosaccharides. Differences between the glycosylation patterns of the cell lines and mosquito midgut epithelial cells could be a factor why ookinetes did not bind in a carbohydrate inhibitable manner. Anopheline cell lines are not suitable as a potential model system for carbohydrate-mediated adhesion of Plasmodium ookinetes.
Collapse
|
21
|
Smith RC, Jacobs-Lorena M. Plasmodium-Mosquito Interactions: A Tale of Roadblocks and Detours. ADVANCES IN INSECT PHYSIOLOGY 2010; 39:119-149. [PMID: 23729903 PMCID: PMC3666160 DOI: 10.1016/b978-0-12-381387-9.00004-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Ryan C Smith
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | |
Collapse
|
22
|
Plasmodium berghei crystalloids contain multiple LCCL proteins. Mol Biochem Parasitol 2009; 170:49-53. [PMID: 19932717 PMCID: PMC2816727 DOI: 10.1016/j.molbiopara.2009.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 11/22/2022]
Abstract
Malaria crystalloids are unique organelles of unknown function that are present only in the mosquito-specific ookinete and early oocyst stages of the parasite. Recently, crystalloid formation in Plasmodium berghei was linked to the parasite protein PbSR, a member of the Plasmodium LCCL protein family composed of six modular multidomain proteins involved in sporozoite development and infectivity. Here, we show by fluorescent protein tagging that two other LCCL protein family members are targeted to the crystalloids in a similar way to PbSR. These results extend the similarities between the LCCL proteins, and provide strong supporting evidence for the hypothesis that members of this protein family work in concert and are involved in a similar molecular process.
Collapse
|
23
|
Aly ASI, Vaughan AM, Kappe SHI. Malaria parasite development in the mosquito and infection of the mammalian host. Annu Rev Microbiol 2009; 63:195-221. [PMID: 19575563 DOI: 10.1146/annurev.micro.091208.073403] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmodium sporozoites are the product of a complex developmental process in the mosquito vector and are destined to infect the mammalian liver. Attention has been drawn to the mosquito stages and pre-erythrocytic stages owing to recognition that these are bottlenecks in the parasite life cycle and that intervention at these stages can block transmission and prevent infection. Parasite progression in the Anopheles mosquito, sporozoite transmission to the mammalian host by mosquito bite, and subsequent infection of the liver are characterized by extensive migration of invasive stages, cell invasion, and developmental changes. Preparation for the liver phase in the mammalian host begins in the mosquito with an extensive reprogramming of the sporozoite to support efficient infection and survival. Here, we discuss what is known about the molecular and cellular basis of the developmental progression of parasites and their interactions with host tissues in the mosquito and during the early phase of mammalian infection.
Collapse
Affiliation(s)
- Ahmed S I Aly
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
24
|
Simon N, Scholz SM, Moreira CK, Templeton TJ, Kuehn A, Dude MA, Pradel G. Sexual stage adhesion proteins form multi-protein complexes in the malaria parasite Plasmodium falciparum. J Biol Chem 2009; 284:14537-46. [PMID: 19304662 DOI: 10.1074/jbc.m808472200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The sexual phase of the malaria parasite Plasmodium falciparum is accompanied by the coordinated expression of stage-specific adhesive proteins. Among these are six secreted proteins with multiple adhesion domains, termed P. falciparum LCCL domain-containing protein (PfCCp) proteins, which are expressed in the parasitophorous vacuole of the differentiating gametocytes and which are later associated with macrogametes. Although the majority of the PfCCp proteins are implicated in parasite development in the mosquito vector, their functions remain unknown. In the present study we investigated the molecular interactions between the PfCCp proteins during gametocyte development and emergence. Using five different gene-disruptant parasite lines, we show that the lack of one PfCCp protein leads to the loss of other PfCCp family members. Co-immunoprecipitation assays on gametocyte lysates revealed formation of complexes involving all PfCCp proteins, and affinity chromatography co-elution binding assays with recombinant PfCCp domains further indicated direct binding between distinct adhesion domains. PfCCp-coated latex beads bind to newly formed macrogametes but not to gametocytes or older macrogametes 6 or 24 h post-activation. In view of these data, we propose that the PfCCp proteins form multi-protein complexes that are exposed during gametogenesis, thereby mediating cell contacts of macrogametes.
Collapse
Affiliation(s)
- Nina Simon
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Lavazec C, Moreira CK, Mair GR, Waters AP, Janse CJ, Templeton TJ. Analysis of mutant Plasmodium berghei parasites lacking expression of multiple PbCCp genes. Mol Biochem Parasitol 2008; 163:1-7. [PMID: 18848846 DOI: 10.1016/j.molbiopara.2008.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
Plasmodium encodes a family of six secreted multi-domain adhesive proteins, termed PCCps, which are released from gametocytes during emergence within the mosquito midgut. The expression and cellular localization of PCCp proteins predict a role either in gametocyte development or within the mosquito midgut during the transition from gametes into the ookinete stage. However, mutant parasites lacking expression of any single PCCp protein show a phenotype at the oocyst stage with a failure of oocyst maturation and sporozoite formation. In this study we investigated the stage-specific transcription of the PCCp genes of the rodent malaria parasite, Plasmodium berghei, and analyzed their promoter activities. Transcript expression analysis by quantitative real time RT-PCR showed that as in the human malaria parasite, Plasmodium falciparum, all PbCCp genes are predominantly transcribed in the gametocyte stage with a low level of transcription in the oocyst stage. Transgenic P. berghei parasites that contain the reporter protein GFP driven by the promoter regions of PbCCps showed pronounced GFP expression exclusively in gametocytes, in agreement with the RT-PCR data. To determine whether functional redundancies of different PCCp family members could explain the lack of a phenotype in gametocytes or gametes in single knockout mutant parasites, double gene null mutant P. berghei parasites were generated lacking either PCCp1 and PCCp3, or PCCp1 and PCCp4. The phenotype of these double knockout mutants was similar to that observed for single gene knockout mutants and manifest at the oocyst rather than the gametocyte or other stages within the mosquito midgut lumen.
Collapse
Affiliation(s)
- Catherine Lavazec
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ecker A, Bushell ESC, Tewari R, Sinden RE. Reverse genetics screen identifies six proteins important for malaria development in the mosquito. Mol Microbiol 2008; 70:209-20. [PMID: 18761621 PMCID: PMC2658712 DOI: 10.1111/j.1365-2958.2008.06407.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transmission from the vertebrate host to the mosquito vector represents a major population bottleneck in the malaria life cycle that can successfully be targeted by intervention strategies. However, to date only about 25 parasite proteins expressed during this critical phase have been functionally analysed by gene disruption. We describe the first systematic, larger scale generation and phenotypic analysis of Plasmodium berghei knockout (KO) lines, characterizing 20 genes encoding putatively secreted proteins expressed by the ookinete, the parasite stage responsible for invasion of the mosquito midgut. Of 12 KO lines that were generated, six showed significant reductions in parasite numbers during development in the mosquito, resulting in a block in transmission of five KOs. While expression data, time point of essential function and mutant phenotype correlate well in three KOs defective in midgut invasion, in three KOs that fail at sporulation, maternal inheritance of the mutant phenotype suggests that essential function occurs during ookinete formation and thus precedes morphological abnormalities by several days.
Collapse
Affiliation(s)
- Andrea Ecker
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
27
|
Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol 2008; 24:210-8. [DOI: 10.1016/j.pt.2008.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 02/02/2008] [Accepted: 02/05/2008] [Indexed: 11/22/2022]
|
28
|
Carter V, Shimizu S, Arai M, Dessens JT. PbSR is synthesized in macrogametocytes and involved in formation of the malaria crystalloids. Mol Microbiol 2008; 68:1560-9. [PMID: 18452513 PMCID: PMC2615194 DOI: 10.1111/j.1365-2958.2008.06254.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Crystalloids are transient organelles that form in developing malaria ookinetes and disappear after ookinete-to-oocyst transition. Their origins and functions remain poorly understood. The Plasmodium berghei scavenger receptor-like protein PbSR is essential for mosquito-to-host transmission of the parasite: PbSR knockout parasites produce normal numbers of oocysts that fail to form sporozoites, pointing to a role for PbSR in the oocyst during sporogony. Here, using fluorescent protein tagging and targeted gene disruption, we show that PbSR is synthesized in macrogametocytes, gets targeted to the crystalloids of developing ookinetes and is involved in crystalloid formation. While oocyst sporulation rates of PbSR knockout parasites are highly reduced in parasite-infected mosquitoes, sporulation rates in vitro are not adversely affected, supporting the view that mosquito factors could be involved in the PbSR loss-of-function phenotype. These findings are the first to identify a parasite protein involved with the crystalloid organelle, and suggest a novel protein-trafficking mechanism to deliver PbSR to the oocysts.
Collapse
Affiliation(s)
- Victoria Carter
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | |
Collapse
|
29
|
Scholz SM, Simon N, Lavazec C, Dude MA, Templeton TJ, Pradel G. PfCCp proteins of Plasmodium falciparum: gametocyte-specific expression and role in complement-mediated inhibition of exflagellation. Int J Parasitol 2007; 38:327-40. [PMID: 17950739 DOI: 10.1016/j.ijpara.2007.08.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
The sexual phase of the malaria parasite Plasmodium falciparum is essential for transmission of the disease and is accompanied by the co-ordinated expression of sexual stage proteins. Six of these proteins belong to a highly conserved apicomplexan family of multi-domain adhesion proteins, termed PfCCps. PfCCp1, PfCCp2 and PfCCp3 are co-dependently expressed in the parasitophorous vacuole associated with the gametocyte plasma membrane. PfCCp2 and PfCCp3 also play an essential role for parasite development in the mosquito. We show that the six PfCCp proteins are expressed in stages II-V of gametocytogenesis as well as during early gamete formation. The proteins are expressed in association with the surface of both male and female gametocytes and macrogametes, but are not present in exflagellating microgametes. Further, the newly described protein PfCCp4 co-localizes with the transmission blocking candidate Pfs230, with which it forms a protein complex. In contrast to the phenotypes that are observed following targeted gene disruption of PfCCp2, PfCCp3 or Pfs230, the lack of PfCCp4 expression does not inhibit parasite development in the mosquito vector. This indicates a non-essential role for this protein during parasite transmission. Exflagellation assays revealed that antibodies directed against distinct domains of PfCCp1 through PfCCp4 and PfFNPA support a complement-mediated decrease in gametocyte emergence. We conclude that the six PfCCp proteins are specifically expressed during gametocytogenesis and gamete formation, and that select members may represent prospective candidates for transmission blocking vaccines.
Collapse
Affiliation(s)
- Sabrina Maria Scholz
- University of Würzburg, Research Center for Infectious Diseases, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Dinglasan RR, Alaganan A, Ghosh AK, Saito A, van Kuppevelt TH, Jacobs-Lorena M. Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion. Proc Natl Acad Sci U S A 2007; 104:15882-7. [PMID: 17873063 PMCID: PMC2000438 DOI: 10.1073/pnas.0706340104] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Malaria transmission entails development of the Plasmodium parasite in its insect vector, the Anopheles mosquito. Parasite invasion of the mosquito midgut is the critical first step and involves adhesion to host epithelial cell ligands. Partial evidence suggests that midgut oligosaccharides are important ligands for parasite adhesion; however, the identity of these glycans remains unknown. We have identified a population of chondroitin glycosaminoglycans along the apical midgut microvilli of Anopheles gambiae and further demonstrated ookinete recognition of these glycans in vitro. By repressing the expression of the peptide-O-xylosyltransferase homolog of An. gambiae by means of RNA interference, we blocked glycosaminoglycan chain biosynthesis, diminished chondroitin sulfate levels in the adult midgut, and substantially inhibited parasite development. We provide evidence for the in vivo role of chondroitin sulfate proteoglycans in Plasmodium falciparum invasion of the midgut and insight into the molecular mechanisms mediating parasite-mosquito interactions.
Collapse
Affiliation(s)
- Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Pradel G. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 2007; 134:1911-29. [PMID: 17714601 DOI: 10.1017/s0031182007003381] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe sexual phase of the malaria pathogen,Plasmodium falciparum, culminates in fertilization within the midgut of the mosquito and represents a crucial step in the completion of the parasite's life-cycle and transmission of the disease. Two decades ago, the first sexual stage-specific surface proteins were identified, among themPfs230,Pfs48/45, andPfs25, which were of scientific interest as candidates for the development of transmission blocking vaccines. A decade later, gene information gained from the sequencing of theP. falciparumgenome led to the identification of numerous additional sexual-stage proteins with antigenic properties and novel enzymes that putatively possess regulatory functions during sexual-stage development. This review aims to summarize the sexual-stage proteins identified to date, to compare their stage specificities and expression patterns and to highlight novel regulative mechanisms of sexual differentiation. The prospective candidacy of select sexual-stage proteins as targets for transmission blocking strategies will be discussed.
Collapse
Affiliation(s)
- G Pradel
- University of Würzburg, Research Center for Infectious Diseases, Röntgenring 11, 97070 Würzburg, Germany.
| |
Collapse
|
32
|
Raine JD, Ecker A, Mendoza J, Tewari R, Stanway RR, Sinden RE. Female inheritance of malarial lap genes is essential for mosquito transmission. PLoS Pathog 2007; 3:e30. [PMID: 17335349 PMCID: PMC1808070 DOI: 10.1371/journal.ppat.0030030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 01/16/2007] [Indexed: 11/19/2022] Open
Abstract
Members of the LCCL/lectin adhesive-like protein (LAP) family, a family of six putative secreted proteins with predicted adhesive extracellular domains, have all been detected in the sexual and sporogonic stages of Plasmodium and have previously been predicted to play a role in parasite-mosquito interactions and/or immunomodulation. In this study we have investigated the function of PbLAP1, 2, 4, and 6. Through phenotypic analysis of Plasmodium berghei loss-of-function mutants, we have demonstrated that PbLAP2, 4, and 6, as previously shown for PbLAP1, are critical for oocyst maturation and sporozoite formation, and essential for transmission from mosquitoes to mice. Sporozoite formation was rescued by a genetic cross with wild-type parasites, which results in the production of heterokaryotic polyploid ookinetes and oocysts, and ultimately infective Deltapblap sporozoites, but not if the individual Deltapblap parasite lines were crossed amongst each other. Genetic crosses with female-deficient (Deltapbs47) and male-deficient (Deltapbs48/45) parasites show that the lethal phenotype is only rescued when the wild-type pblap gene is inherited from a female gametocyte, thus explaining the failure to rescue in the crosses between different Deltapblap parasite lines. We conclude that the functions of PbLAPs1, 2, 4, and 6 are critical prior to the expression of the male-derived gene after microgametogenesis, fertilization, and meiosis, possibly in the gametocyte-to-ookinete period of differentiation. The phenotypes detectable by cytological methods in the oocyst some 10 d after the critical period of activity suggests key roles of the LAPs or LAP-dependent processes in the regulation of the cell cycle, possibly in the regulation of cytoplasm-to-nuclear ratio, and, importantly, in the events of cytokinesis at sporozoite formation. This phenotype is not seen in the other dividing forms of the mutant parasite lines in the liver and blood stages.
Collapse
Affiliation(s)
- J. Dale Raine
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Andrea Ecker
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Jacqui Mendoza
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Rita Tewari
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Rebecca R Stanway
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Robert E Sinden
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Vlachou D, Schlegelmilch T, Runn E, Mendes A, Kafatos FC. The developmental migration of Plasmodium in mosquitoes. Curr Opin Genet Dev 2006; 16:384-91. [PMID: 16793259 DOI: 10.1016/j.gde.2006.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/09/2006] [Indexed: 11/19/2022]
Abstract
Migration of the protozoan parasite Plasmodium through the mosquito is a complex and delicate process, the outcome of which determines the success of malaria transmission. The mosquito is not simply the vector of Plasmodium but, in terms of the life cycle, its definitive host: there, the parasite undergoes its sexual development, which results in colonization of the mosquito salivary glands. Two of the parasite's developmental stages in the mosquito, the ookinete and the sporozoite, are invasive and depend on gliding motility to access, penetrate and traverse their host cells. Recent advances in the field have included the identification of numerous Plasmodium molecules that are essential for parasite migration in the mosquito vector.
Collapse
Affiliation(s)
- Dina Vlachou
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
34
|
Pradel G, Wagner C, Mejia C, Templeton TJ. Plasmodium falciparum: Co-dependent expression and co-localization of the PfCCp multi-adhesion domain proteins. Exp Parasitol 2006; 112:263-8. [PMID: 16388802 DOI: 10.1016/j.exppara.2005.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/07/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
In Plasmodium falciparum, a family of six secreted proteins having a conserved architecture of multiple adhesive domains was recently identified by genome annotation. Three of the proteins, termed PfCCp1, PfCCp2, and PfCCp3 due to a common LCCL domain, are expressed inside the gametocyte parasitophorous vacuole and released during gamete emergence, where they relocate extracellularly surrounding exflagellation complexes. In this study we show that the three PfCCp proteins are co-expressed at the gametocyte surface. Abrogation of PfCCp3 in gene disruptant parasites leads to the loss of PfCCp1 and PfCCp2 protein but not transcript, indicating a co-dependent protein expression. In view of these data we propose that the three PfCCp proteins interact during gametocytogenesis by formation of a protein complex.
Collapse
Affiliation(s)
- Gabriele Pradel
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | | | | | | |
Collapse
|
35
|
Dinglasan RR, Jacobs-Lorena M. Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 2006; 73:7797-807. [PMID: 16299269 PMCID: PMC1307025 DOI: 10.1128/iai.73.12.7797-7807.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W4008, Baltimore, MD 21205, USA.
| | | |
Collapse
|
36
|
Abstract
The Plasmodium ookinete is the developmental stage of the malaria parasite that invades the mosquito midgut. The ookinete faces two physical barriers in the midgut which it must traverse to become an oocyst: the chitin- and protein-containing peritrophic matrix; and the midgut epithelial cell. This chapter will consider basic aspects of ookinete biology, molecules known to be involved in midgut invasion, and cellular processes of the ookinete that facilitate parasite invasion. Detailed knowledge of these mechanisms may be exploitable in the future towards developing novel strategies of blocking malaria transmission.
Collapse
Affiliation(s)
- J M Vinetz
- Division of Infectious Diseases, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA.
| |
Collapse
|
37
|
Sinden RE. A proteomic analysis of malaria biology: integration of old literature and new technologies. Int J Parasitol 2005; 34:1441-50. [PMID: 15582521 DOI: 10.1016/j.ijpara.2004.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Revised: 09/20/2004] [Accepted: 10/01/2004] [Indexed: 11/25/2022]
Abstract
The genomic revolution has brought a new vitality into research on Plasmodium, its insect and vertebrate hosts. At the cellular level nowhere is the impact greater than in the analysis of protein expression and the 'assembly' of the supramolecular machines that together comprise the functional cell. The repetitive phases of invasion and replication that typify the malaria life cycle, together with the unique phase of sexual differentiation provide a powerful platform on which to investigate the 'molecular machines' that underpin parasite strategy and stage-specific functions. This approach is illustrated here in an analysis of the ookinete of Plasmodium berghei. Such analyses are useful only if conducted with a secure understanding of parasite biology. The importance of carefully searching the older literature to reach this understanding cannot be over-emphasised. When viewed together, the old and new data can give rapid and penetrating insights into what some might now term the 'Systems-Biology' of Plasmodium.
Collapse
Affiliation(s)
- R E Sinden
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, London SW7 2AZ, UK.
| |
Collapse
|