1
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Thompson SJ, Rooney A, Prise KM, McMahon SJ. Evaluating Iodine-125 DNA Damage Benchmarks of Monte Carlo DNA Damage Models. Cancers (Basel) 2022; 14:463. [PMID: 35158731 PMCID: PMC8833774 DOI: 10.3390/cancers14030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
A wide range of Monte Carlo models have been applied to predict yields of DNA damage based on nanoscale track structure calculations. While often similar on the macroscopic scale, these models frequently employ different assumptions which lead to significant differences in nanoscale dose deposition. However, the impact of these differences on key biological readouts remains unclear. A major challenge in this area is the lack of robust datasets which can be used to benchmark models, due to a lack of resolution at the base pair level required to deeply test nanoscale dose deposition. Studies investigating the distribution of strand breakage in short DNA strands following the decay of incorporated 125I offer one of the few benchmarks for model predictions on this scale. In this work, we have used TOPAS-nBio to evaluate the performance of three Geant4-DNA physics models at predicting the distribution and yield of strand breaks in this irradiation scenario. For each model, energy and OH radical distributions were simulated and used to generate predictions of strand breakage, varying energy thresholds for strand breakage and OH interaction rates to fit to the experimental data. All three models could fit well to the observed data, although the best-fitting strand break energy thresholds ranged from 29.5 to 32.5 eV, significantly higher than previous studies. However, despite well describing the resulting DNA fragment distribution, these fit models differed significantly with other endpoints, such as the total yield of breaks, which varied by 70%. Limitations in the underlying data due to inherent normalisation mean it is not possible to distinguish clearly between the models in terms of total yield. This suggests that, while these physics models can effectively fit some biological data, they may not always generalise in the same way to other endpoints, requiring caution in their extrapolation to new systems and the use of multiple different data sources for robust model benchmarking.
Collapse
Affiliation(s)
| | | | | | - Stephen J. McMahon
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (S.J.T.); (A.R.); (K.M.P.)
| |
Collapse
|
3
|
Bucher M, Trinkl S, Endesfelder D, Weiss T, Gomolka M, Pätzold J, Lechel U, Roessler U, de Las Heras Gala H, Moertl S, Giussani A. Radiation field and dose inhomogeneities using an X-ray cabinet in radiation biology research. Med Phys 2021; 48:8140-8151. [PMID: 34655237 DOI: 10.1002/mp.15297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE X-ray cabinets are replacing 137 Cs/60 Co sources in radiation biology research due to advantages in size, handling, and radiation protection. However, because of their different physical properties, X-ray cabinets are more susceptible to experimental influences than conventional sources. The aim of this study was to examine the variations related to the experimental setups typically used to investigate biological radiation effects with X-ray cabinets. MATERIALS AND METHODS A combined approach of physical dose measurements by thermoluminescence dosimetry and detection of biological effects by quantification of γH2AX and 53BP1 foci was used to analyze field inhomogeneity and evaluate the influence of the components of the experimental setup. RESULTS Irradiation was performed using an X-ray tube (195 kV, 10 mA, 0.5-mm-thick copper filter, dose rate of 0.59 Gy/min). Thermoluminescence dosimetry revealed inhomogeneity and a dose decrease of up to 42.3% within the beam area (diameter 31.1 cm) compared to the dose at the center. This dose decrease was consistent with the observed decline in the number of radiation-induced foci by up to 55.9 %. Uniform dose distribution was measured after reducing the size of the radiation field (diameter 12.5 cm). However, when using 15-ml test tubes placed at different positions within this field, the dose decreased by up to 17% in comparison to the central position. Analysis of foci number revealed significant differences between the tubes for γH2AX (1 h) and 53BP1 (4 h) at different time points after irradiation. Neither removal of some tubes nor of the caps improved the dose decrease significantly. By contrast, when using 1.5-ml tubes, dose differences were less than 4%, and no significant differences in foci number were detected. CONCLUSION X-ray cabinets are user-friendly irradiation units for investigating biological radiation effects. However, field inhomogeneities and experimental setup components considerably affect the delivered irradiation doses. For this reason, strict dosimetric monitoring of experimental irradiation setups is mandatory for reliable studies.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Sebastian Trinkl
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Tina Weiss
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Maria Gomolka
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Juliane Pätzold
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Ursula Lechel
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Ute Roessler
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Hugo de Las Heras Gala
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Augusto Giussani
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| |
Collapse
|
4
|
McConnell KA, Chang C, Giebeler A, Liu L, Zhu Qu L, Moiseenko V. Double-strand breaks measured along a 160 MeV proton Bragg curve using a novel FIESTA-DNA probe in a cell-free environment. Phys Med Biol 2021; 66:054001. [PMID: 33470972 DOI: 10.1088/1361-6560/abdd89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proton radiotherapy treatment planning systems use a constant relative biological effectiveness (RBE) = 1.1 to convert proton absorbed dose into biologically equivalent high-energy photon dose. This method ignores linear energy transfer (LET) distributions, and RBE is known to change as a function of LET. Variable RBE approaches have been proposed for proton planning optimization. Experimental validation of models underlying these approaches is a pre-requisite for their clinical implementation. This validation has to probe every level in the evolution of radiation-induced biological damage leading to cell death, starting from DNA double-strand breaks (DSB). Using a novel FIESTA-DNA probe, we measured the probability of double-strand break (P DSB) along a 160 MeV proton Bragg curve at two dose levels (30 and 60 Gy (RBE)) and compared it to measurements in a 6 MV photon beam. A machined setup that held an Advanced Markus parallel plate chamber for proton dose verification alongside the probes was fabricated. Each sample set consisted of five 10 μl probes suspended inside plastic microcapillary tubes. These were irradiated with protons to 30 Gy (RBE) at depths of 5-17.5 cm and 60 Gy (RBE) at depths of 10-17.2 cm with 1 mm resolution around Bragg peak. Sample sets were also irradiated using 6MV photons to 20, 40, 60, and 80 Gy. For the 30 Gy (RBE) measurements, increases in P DSB/Gy were observed at 17.0 cm followed by decreases at larger depth. For the 60 Gy (RBE) measurements, no increase in P DSB/Gy was observed, but there was a decrease after 17.0 cm. Dose-response for P DSB between 30 and 60 Gy (RBE) showed less than doubling of P DSB when dose was doubled. Proton RBE effect from DSB, RBEP,DSB, was <1 except at the Bragg peak. The experiment showed that the novel probe can be used to perform DNA DSB measurements in a proton beam. To establish relevance to clinical environment, further investigation of the probe's chemical scavenging needs to be performed.
Collapse
Affiliation(s)
- Kristen A McConnell
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America. California Proton Cancer Therapy Center, San Diego, CA 92121, United States of America
| | | | | | | | | | | |
Collapse
|
5
|
Datesman AM. Radiobiological shot noise explains Three Mile Island biodosimetry indicating nearly 1,000 mSv exposures. Sci Rep 2020; 10:10933. [PMID: 32616922 PMCID: PMC7331574 DOI: 10.1038/s41598-020-67826-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
The 1979 accident at the Three Mile Island nuclear power station in Pennsylvania released about 22 million Curies of xenon-133 into the environment. Because physical dosimetry indicated exposures to the nearby population of less than about 2 mSv, discernible impacts to the health of the exposed population are not generally believed to have resulted. However, there is contrary evidence, including especially the results of biodosimetry via cytogenetic analysis using the FISH method. This report examines the discrepancy between the results of physical dosimetry and biodosimetry, which among the small number of persons examined indicated exposures between 600 and 900 mSv. The paradox reveals a fundamental error in the health physics body of knowledge: the definition of the energy imparted to tissue, ε, fails to properly account for the temporal distribution of ionization products resulting from dilute contamination with an internally incorporated beta-emitting radionuclide. Application of a century-old result describing "shot noise" in an electronic system repairs the deficiency. The Xe-133 concentration in the tissue of those individuals exposed to the most intense portion of the radioactive plume released from the TMI facility is shown to have been on the order of 0.1 μCi/l, persisting for multiple hours. Shot noise reference doses in the range from 820 to 1,700 mSv follow, a result which is consistent with biodosimetric analysis. The finding should motivate a comprehensive re-evaluation of the conventional understanding of the 1979 accident at the Three Mile Island nuclear power station, especially regarding its impact upon the population of the surrounding area.
Collapse
Affiliation(s)
- Aaron M Datesman
- NASA Goddard Space Flight Center, Greenbelt, MD, USA. .,Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA. .,, Washington, DC, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Mats Harms-Ringdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Calabrese EJ. From Muller to mechanism: How LNT became the default model for cancer risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:289-302. [PMID: 29843011 DOI: 10.1016/j.envpol.2018.05.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
This paper summarizes the historical and scientific foundations of the Linear No-Threshold (LNT) cancer risk assessment model. The story of cancer risk assessment is an extraordinary one as it was based on an initial incorrect gene mutation interpretation of Muller, the application of this incorrect assumption in the derivation of the LNT single-hit model, and a series of actions by leading radiation geneticists during the 1946-1956 period, including a National Academy of Sciences (NAS) Biological Effects of Atomic Radiation (BEAR) I Genetics Panel (Anonymous, 1956), to sustain the LNT belief via a series of deliberate obfuscations, deceptions and misrepresentations that provided the basis of modern cancer risk assessment policy and practices. The reaffirming of the LNT model by a subsequent and highly influential NAS Biological Effects of Ionizing Radiation (BEIR) I Committee (NAS/NRC, 1972) using mouse data has now been found to be inappropriate based on the discovery of a significant documented error in the historical control group that led to incorrect estimations of risk in the low dose zone. Correction of this error by the original scientists and the application of the adjusted/corrected data back to the BEIR I (NAS/NRC, 1972) report indicates that the data would have supported a threshold rather than the LNT model. Thus, cancer risk assessment has a poorly appreciated, complex and seriously flawed history that has undermined policies and practices of regulatory agencies in the U.S. and worldwide to the present time.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
8
|
Strauss BS. Why Is DNA Double Stranded? The Discovery of DNA Excision Repair Mechanisms. Genetics 2018; 209:357-366. [PMID: 29844089 PMCID: PMC5972412 DOI: 10.1534/genetics.118.300958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The persistence of hereditary traits over many generations testifies to the stability of the genetic material. Although the Watson-Crick structure for DNA provided a simple and elegant mechanism for replication, some elementary calculations implied that mistakes due to tautomeric shifts would introduce too many errors to permit this stability. It seemed evident that some additional mechanism(s) to correct such errors must be required. This essay traces the early development of our understanding of such mechanisms. Their key feature is the cutting out of a section of the strand of DNA in which the errors or damage resided, and its replacement by a localized synthesis using the undamaged strand as a template. To the surprise of some of the founders of molecular biology, this understanding derives in large part from studies in radiation biology, a field then considered by many to be irrelevant to studies of gene structure and function. Furthermore, genetic studies suggesting mechanisms of mismatch correction were ignored for almost a decade by biochemists unacquainted or uneasy with the power of such analysis. The collective body of results shows that the double-stranded structure of DNA is critical not only for replication but also as a scaffold for the correction of errors and the removal of damage to DNA. As additional discoveries were made, it became clear that the mechanisms for the repair of damage were involved not only in maintaining the stability of the genetic material but also in a variety of biological phenomena for increasing diversity, from genetic recombination to the immune response.
Collapse
Affiliation(s)
- Bernard S Strauss
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637
| |
Collapse
|
9
|
Mori R, Matsuya Y, Yoshii Y, Date H. Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus. JOURNAL OF RADIATION RESEARCH 2018; 59:253-260. [PMID: 29800455 PMCID: PMC5967466 DOI: 10.1093/jrr/rrx097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 05/06/2023]
Abstract
DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure.
Collapse
Affiliation(s)
- Ryosuke Mori
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Center, Sapporo Medical University, Minami-1, Nichi-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-812, Japan
- Corresponding author. Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-812, Japan. Tel: +81-11-706-3423; Fax: +81-11-706-4916;
| |
Collapse
|
10
|
Matsuya Y, Sasaki K, Yoshii Y, Okuyama G, Date H. Integrated Modelling of Cell Responses after Irradiation for DNA-Targeted Effects and Non-Targeted Effects. Sci Rep 2018; 8:4849. [PMID: 29555939 PMCID: PMC5859303 DOI: 10.1038/s41598-018-23202-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/07/2018] [Indexed: 01/10/2023] Open
Abstract
Intercellular communication after ionizing radiation exposure, so-called non-targeted effects (NTEs), reduces cell survival. Here we describe an integrated cell-killing model considering NTEs and DNA damage along radiation particle tracks, known as DNA-targeted effects (TEs) based on repair kinetics of DNA damage. The proposed model was applied to a series of experimental data, i.e., signal concentration, DNA damage kinetics, cell survival curve and medium transfer bystander effects (MTBEs). To reproduce the experimental data, the model considers the following assumptions: (i) the linear-quadratic (LQ) function as absorbed dose to express the hit probability to emit cell-killing signals, (ii) the potentially repair of DNA lesions induced by NTEs, and (iii) lower efficiency of repair for the damage in NTEs than that in TEs. By comparing the model results with experimental data, we found that signal-induced DNA damage and lower repair efficiency in non-hit cells are responsible for NTE-related repair kinetics of DNA damage, cell survival curve with low-dose hyper-radiosensitivity (HRS) and MTBEs. From the standpoint of modelling, the integrated cell-killing model with the LQ relation and a different repair function for NTEs provide a reasonable signal-emission probability and a new estimation of low-dose HRS linked to DNA repair efficiency.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Kohei Sasaki
- Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo, 006-8585, Japan
| | - Yuji Yoshii
- Biological Research, Education and Instrumentation Center, Sapporo Medical University, Minami-1, Nichi-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Go Okuyama
- Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo, 006-8585, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
11
|
Whicker FW. Forty-First Lauriston S. Taylor Lecture: Environmental Radiation and Life-A Broad View. HEALTH PHYSICS 2018; 114:192-203. [PMID: 30086014 DOI: 10.1097/hp.0000000000000740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Since Earth's creation some 4.5 billion years ago, primordial radioactivity has been part of the planet, and radiations from space have continuously impinged on its surface. Primordial radioactivity has helped shape Earth's surface through the heat from radioactive decay energy, and omnipresent natural radiation has likely influenced the origin, and certainly the evolution, of all life forms in our biosphere today. This paper offers a brief discussion of our natural radiation environment and its impacts, from the beginning of life to the present, and provides a broad overview of present day radioecology, which includes the use of radioactive tracers to study ecosystem functions, the fate and transport of radionuclides in the biosphere, and radiation effects on plants and animals. Large releases of radioactivity, although tragic and regrettable, have been studied to increase our knowledge of Earth's basic processes and of radionuclide transport and accumulation in the environment. On a much smaller scale, purposeful use of natural and anthropogenic radioactive tracers has contributed further knowledge. This information has solidified basic concepts and provided data for constructing dynamic models to calculate concentrations of radionuclides in, and radiation doses to, plants and animals. Sealed radiation sources have been used to study effects of chronic exposure on natural biotic communities. Existing transport models and knowledge of radiation effects provide tools to evaluate human health risks and environmental impacts of radioactive releases. Applications have included guidance for environmental protection, radiation litigation, environmental cleanup decisions and informed responses to releases of radioactivity. This paper concludes with a brief discussion of the more urgent knowledge gaps and potential new research approaches.
Collapse
|
12
|
Calabrese EJ. Flaws in the LNT single-hit model for cancer risk: An historical assessment. ENVIRONMENTAL RESEARCH 2017; 158:773-788. [PMID: 28756009 DOI: 10.1016/j.envres.2017.07.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 05/10/2023]
Abstract
The LNT single-hit model was derived from the Nobel Prize-winning research of Herman J. Muller who showed that x-rays could induce gene mutations in Drosophila and that the dose response for these so-called mutational events was linear. Lewis J. Stadler, another well-known and respected geneticist at the time, strongly disagreed with and challenged Muller's claims. Detailed evaluations by Stadler over a prolonged series of investigations revealed that Muller's experiments had induced gross heritable chromosomal damage instead of specific gene mutations as had been claimed by Muller at his Nobel Lecture. These X-ray-induced alterations became progressively more frequent and were of larger magnitude (more destructive) with increasing doses. Thus, Muller's claim of having induced discrete gene mutations represented a substantial speculative overreach and was, in fact, without proof. The post hoc arguments of Muller to support his gene mutation hypothesis were significantly challenged and weakened by a series of new findings in the areas of cytogenetics, reverse mutation, adaptive and repair processes, and modern molecular methods for estimating induced genetic damage. These findings represented critical and substantial limitations to Muller's hypothesis of X-ray-induced gene mutations. Furthermore, they challenged the scientific foundations used in support of the LNT single-hit model by severing the logical nexus between Muller's data on radiation-induced inheritable alterations and the LNT single-hit model. These findings exposed fundamental scientific flaws that undermined not only the seminal recommendation of the 1956 BEAR I Genetics Panel to adopt the LNT single-hit Model for risk assessment but also any rationale for its continued use in the present day.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Nagasawa H, Lin YF, Kato TA, Brogan JR, Shih HY, Kurimasa A, Bedford JS, Chen BPC, Little JB. Coordination of the Ser2056 and Thr2609 Clusters of DNA-PKcs in Regulating Gamma Rays and Extremely Low Fluencies of Alpha-Particle Irradiation to G 0/G 1 Phase Cells. Radiat Res 2017; 187:259-267. [PMID: 28118114 DOI: 10.1667/rr14679.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The catalytic subunit of DNA dependent protein kinase (DNA-PKcs) and its kinase activity are critical for mediation of non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSB) in mammalian cells after gamma-ray irradiation. Additionally, DNA-PKcs phosphorylations at the T2609 cluster and the S2056 cluster also affect DSB repair and cellular sensitivity to gamma radiation. Previously we reported that phosphorylations within these two regions affect not only NHEJ but also homologous recombination repair (HRR) dependent DSB repair. In this study, we further examine phenotypic effects on cells bearing various combinations of mutations within either or both regions. Effects studied included cell killing as well as chromosomal aberration induction after 0.5-8 Gy gamma-ray irradiation delivered to synchronized cells during the G0/G1 phase of the cell cycle. Blocking phosphorylation within the T2609 cluster was most critical regarding sensitization and depended on the number of available phosphorylation sites. It was also especially interesting that only one substitution of alanine in each of the two clusters separately abolished the restoration of wild-type sensitivity by DNA-PKcs. Similar patterns were seen for induction of chromosomal aberrations, reflecting their connection to cell killing. To study possible change in coordination between HRR and NHEJ directed repair in these DNA-PKcs mutant cell lines, we compared the induction of sister chromatid exchanges (SCEs) by very low fluencies of alpha particles with mutant cells defective in the HRR pathway that is required for induction of SCEs. Levels of true SCEs induced by very low fluence of alpha-particle irradiation normally seen in wild-type cells were only slightly decreased in the S2056 cluster mutants, but were completely abolished in the T2609 cluster mutants and were indistinguishable from levels seen in HRR deficient cells. Again, a single substitution in the S2056 together with a single substitution in the T2609 cluster abolished SCE formation and thus also effectively interferes with HRR.
Collapse
Affiliation(s)
- Hatsumi Nagasawa
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Yu-Fen Lin
- b Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Takamitsu A Kato
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - John R Brogan
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Hung-Ying Shih
- b Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Akihiro Kurimasa
- c Tohoku Medical and Pharmaceutical University, Sendai, Japan, 981-8558; and
| | - Joel S Bedford
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Benjamin P C Chen
- b Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - John B Little
- d Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
14
|
Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Sci Rep 2016; 6:33290. [PMID: 27624453 PMCID: PMC5022028 DOI: 10.1038/srep33290] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Characterising and predicting the effects of ionising radiation on cells remains challenging, with the lack of robust models of the underlying mechanism of radiation responses providing a significant limitation to the development of personalised radiotherapy. In this paper we present a mechanistic model of cellular response to radiation that incorporates the kinetics of different DNA repair processes, the spatial distribution of double strand breaks and the resulting probability and severity of misrepair. This model enables predictions to be made of a range of key biological endpoints (DNA repair kinetics, chromosome aberration and mutation formation, survival) across a range of cell types based on a set of 11 mechanistic fitting parameters that are common across all cells. Applying this model to cellular survival showed its capacity to stratify the radiosensitivity of cells based on aspects of their phenotype and experimental conditions such as cell cycle phase and plating delay (correlation between modelled and observed Mean Inactivation Doses R(2) > 0.9). By explicitly incorporating underlying mechanistic factors, this model can integrate knowledge from a wide range of biological studies to provide robust predictions and may act as a foundation for future calculations of individualised radiosensitivity.
Collapse
|
15
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
16
|
Thotala D, Karvas RM, Engelbach JA, Garbow JR, Hallahan AN, DeWees TA, Laszlo A, Hallahan DE. Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells. Oncotarget 2016; 6:35004-22. [PMID: 26413814 PMCID: PMC4741505 DOI: 10.18632/oncotarget.5253] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/04/2015] [Indexed: 12/18/2022] Open
Abstract
Neurocognitive deficits are serious sequelae that follow cranial irradiation used to treat patients with medulloblastoma and other brain neoplasms. Cranial irradiation causes apoptosis in the subgranular zone of the hippocampus leading to cognitive deficits. Valproic acid (VPA) treatment protected hippocampal neurons from radiation-induced damage in both cell culture and animal models. Radioprotection was observed in VPA-treated neuronal cells compared to cells treated with radiation alone. This protection is specific to normal neuronal cells and did not extend to cancer cells. In fact, VPA acted as a radiosensitizer in brain cancer cells. VPA treatment induced cell cycle arrest in cancer cells but not in normal neuronal cells. The level of anti-apoptotic protein Bcl-2 was increased and the pro-apoptotic protein Bax was reduced in VPA treated normal cells. VPA inhibited the activities of histone deacetylase (HDAC) and glycogen synthase kinase-3β (GSK3β), the latter of which is only inhibited in normal cells. The combination of VPA and radiation was most effective in inhibiting tumor growth in heterotopic brain tumor models. An intracranial orthotopic glioma tumor model was used to evaluate tumor growth by using dynamic contrast-enhanced magnetic resonance (DCE MRI) and mouse survival following treatment with VPA and radiation. VPA, in combination with radiation, significantly delayed tumor growth and improved mouse survival. Overall, VPA protects normal hippocampal neurons and not cancer cells from radiation-induced cytotoxicity both in vitro and in vivo. VPA treatment has the potential for attenuating neurocognitive deficits associated with cranial irradiation while enhancing the efficiency of glioma radiotherapy.
Collapse
Affiliation(s)
- Dinesh Thotala
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in St. Louis, Missouri, USA
| | - Rowan M Karvas
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA
| | - John A Engelbach
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA
| | - Joel R Garbow
- School of Medicine, Washington University in St. Louis, Missouri, USA.,Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in St. Louis, Missouri, USA
| | - Andrew N Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA
| | - Todd A DeWees
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA
| | - Andrei Laszlo
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, Missouri, USA.,Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in St. Louis, Missouri, USA.,Hope Center, Washington University in St. Louis, Missouri, USA
| |
Collapse
|
17
|
Maeda J, Yurkon CR, Fujii Y, Fujisawa H, Kato S, Brents CA, Uesaka M, Fujimori A, Kitamura H, Kato TA. Solution Radioactivated by Hadron Radiation Can Increase Sister Chromatid Exchanges. PLoS One 2015; 10:e0144619. [PMID: 26657140 PMCID: PMC4682810 DOI: 10.1371/journal.pone.0144619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022] Open
Abstract
When energetic particles irradiate matter, it becomes activated by nuclear reactions. Radioactivation induced cellular effects are not clearly understood, but it could be a part of bystander effects. This investigation is aimed at understanding the biological effects from radioactivation in solution induced by hadron radiation. Water or phosphate buffered saline was activated by being exposed to hadron radiation including protons, carbon- and iron-ions. 1 mL of radioactivated solution was transferred to flasks with Chinese hamster ovary (CHO) cells cultured in 5 mL of complete media. The induction of sister chromatid exchanges (SCE) was used to observe any increase in DNA damage responses. The energy spectrum and the half-lives of the radioactivation were analyzed by NaI scintillation detector in order to identify generated radionuclides. In the radioactivated solution, 511 keV gamma-rays were observed, and their half-lives were approximately 2 min, 10 min, and 20 min. They respectively correspond to the beta+ decay of 15O, 13N, and 11C. The SCE frequencies in CHO cells increased depending on the amount of radioactivation in the solution. These were suppressed with a 2-hour delayed solution transfer or pretreatment with dimethyl sulfoxide (DMSO). Our results suggest that the SCE induction by radioactivated solution was mediated by free radicals produced by the annihilated gamma-rays. Since the SCE induction and DMSO modulation are also reported in radiation-induced bystander effects, our results imply that radioactivation of the solution may have some contribution to the bystander effects from hadron radiation. Further investigations are required to assess if radioactivation effects would attribute an additional level of cancer risk of the hadron radiation therapy itself.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Charles R. Yurkon
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Yoshihiro Fujii
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki, Ibaraki, Japan
| | - Hiroshi Fujisawa
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Sayaka Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Colleen A. Brents
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mitsuru Uesaka
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akira Fujimori
- Research Center for Charged Particle Therapy, International Open Laboratory, National Institute of Radiological Sciences, Chiba, Chiba, Japan
| | - Hisashi Kitamura
- Research Development and Support Center, National Institute of Radiological Sciences, Chiba, Chiba, Japan
| | - Takamitsu A. Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
18
|
Lin YF, Nagasawa H, Little JB, Kato TA, Shih HY, Xie XJ, Wilson Jr. PF, Brogan JR, Kurimasa A, Chen DJ, Bedford JS, Chen BPC. Differential radiosensitivity phenotypes of DNA-PKcs mutations affecting NHEJ and HRR systems following irradiation with gamma-rays or very low fluences of alpha particles. PLoS One 2014; 9:e93579. [PMID: 24714417 PMCID: PMC3979685 DOI: 10.1371/journal.pone.0093579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/04/2014] [Indexed: 12/03/2022] Open
Abstract
We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Hatsumi Nagasawa
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - John B. Little
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Hung-Ying Shih
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Xian-Jin Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Paul F. Wilson Jr.
- Department of Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - John R. Brogan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Akihiro Kurimasa
- Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
| | - David J. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| |
Collapse
|
19
|
Ponomarev AL, George K, Cucinotta FA. Generalized time-dependent model of radiation-induced chromosomal aberrations in normal and repair-deficient human cells. Radiat Res 2014; 181:284-92. [PMID: 24611656 DOI: 10.1667/rr13303.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have developed a model that can simulate the yield of radiation-induced chromosomal aberrations (CAs) and unrejoined chromosome breaks in normal and repair-deficient cells. The model predicts the kinetics of chromosomal aberration formation after exposure in the G₀/G₁ phase of the cell cycle to either low- or high-LET radiation. A previously formulated model based on a stochastic Monte Carlo approach was updated to consider the time dependence of DNA double-strand break (DSB) repair (proper or improper), and different cell types were assigned different kinetics of DSB repair. The distribution of the DSB free ends was derived from a mechanistic model that takes into account the structure of chromatin and DSB clustering from high-LET radiation. The kinetics of chromosomal aberration formation were derived from experimental data on DSB repair kinetics in normal and repair-deficient cell lines. We assessed different types of chromosomal aberrations with the focus on simple and complex exchanges, and predicted the DSB rejoining kinetics and misrepair probabilities for different cell types. The results identify major cell-dependent factors, such as a greater yield of chromosome misrepair in ataxia telangiectasia (AT) cells and slower rejoining in Nijmegen (NBS) cells relative to the wild-type. The model's predictions suggest that two mechanisms could exist for the inefficiency of DSB repair in AT and NBS cells, one that depends on the overall speed of joining (either proper or improper) of DNA broken ends, and another that depends on geometric factors, such as the Euclidian distance between DNA broken ends, which influences the relative frequency of misrepair.
Collapse
Affiliation(s)
- Artem L Ponomarev
- a Division of Space Life Sciences, Universities Space Research Association, Houston, Texas 77058
| | | | | |
Collapse
|
20
|
Odell J, Whipple EC. The changing landscape of scholarly publishing: will radiation research survive? Radiat Res 2013; 180:335-9. [PMID: 24044487 DOI: 10.1667/rr3528.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a society published journal, Radiation Research has been a successful and enduring project of the Radiation Research Society (RRS). In 59 years of publication, the journal has produced 732 issues and 10,712 articles. As a nonprofit organization, RRS, like most societies, has used revenues from subscriptions to support, in part, the life of the organization (meetings, conferences and grants to new scholars). The model for scientific publishing, however, continues to evolve. Radiation Research has weathered the rise of electronic publishing, consolidation in the commercial publishing industry, the aggregation of library subscriptions and library subscription cuts. Recent years have seen dramatic changes in how scholarly publishing is financed and new funder and institution policies will accelerate these changes. The growth of open access to journal articles reflects the information habits of readers and facilitates the dissemination of new knowledge. The Radiation Research Society, however, will need to account for and adapt to changes in the publishing market if it intends to support the communication of peer reviewed scholarship in the future.
Collapse
Affiliation(s)
- Jere Odell
- a University Library, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | | |
Collapse
|
21
|
Evidence from clinical trials for the use of valproic acid in solid tumors: focus on prostate cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/cli.13.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Chen X, Wong JYC, Wong P, Radany EH. Low-dose valproic acid enhances radiosensitivity of prostate cancer through acetylated p53-dependent modulation of mitochondrial membrane potential and apoptosis. Mol Cancer Res 2011; 9:448-61. [PMID: 21303901 DOI: 10.1158/1541-7786.mcr-10-0471] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone deacetylase inhibitors (HDI) have shown promise as candidate radiosensitizers for many types of cancers, including prostate cancer. However, the mechanisms of action are not well understood. In this study, we show in prostate cancer cells that valproic acid (VPA) at low concentrations has minimal cytotoxic effects yet can significantly increase radiation-induced apoptosis. VPA seems to stabilize a specific acetyl modification (lysine 120) of the p53 tumor suppressor protein, resulting in an increase in its proapoptotic function at the mitochondrial membrane. These effects of VPA are independent of any action of the p53 protein as a transcription factor in the nucleus, since these effects were also observed in native and engineered prostate cancer cells containing mutant forms of p53 protein having no transcription factor activity. Transcription levels of p53-related or Bcl-2 family member proapoptotic proteins were not affected by VPA exposure. The results of this study suggest that, in addition to nuclear-based pathways previously reported, HDIs may also result in radiosensitization at lower concentrations via a specific p53 acetylation and its mitochondrial-based pathway(s).
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Radiation Oncology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
23
|
Nagasawa H, Little JB, Lin YF, So S, Kurimasa A, Peng Y, Brogan JR, Chen DJ, Bedford JS, Chen BPC. Differential role of DNA-PKcs phosphorylations and kinase activity in radiosensitivity and chromosomal instability. Radiat Res 2010; 175:83-9. [PMID: 21175350 DOI: 10.1667/rr2092.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is the key functional element in the DNA-PK complex that drives nonhomologous end joining (NHEJ), the predominant DNA double-strand break (DSB) repair mechanism operating to rejoin such breaks in mammalian cells after exposure to ionizing radiation. It has been reported that DNA-PKcs phosphorylation and kinase activity are critical determinants of radiosensitivity, based on responses reported after irradiation of asynchronously dividing populations of various mutant cell lines. In the present study, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase activity) were examined after exposure of synchronized G(1) cells to (137)Cs γ rays. DNA-PKcs mutant cells defective in phosphorylation at multiple sites within the T2609 cluster or within the PI3K domain displayed extreme radiosensitivity. Cells defective at the S2056 cluster or T2609 single site alone were only mildly radiosensitive, but cells defective at even one site in both the S2056 and T2609 clusters were maximally radiosensitive. Thus a synergism between the capacity for phosphorylation at the S2056 and T2609 clusters was found to be critical for induction of radiosensitivity.
Collapse
Affiliation(s)
- Hatsumi Nagasawa
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
García-Barros M, Thin TH, Maj J, Cordon-Cardo C, Haimovitz-Friedman A, Fuks Z, Kolesnick R. Impact of stromal sensitivity on radiation response of tumors implanted in SCID hosts revisited. Cancer Res 2010; 70:8179-86. [PMID: 20924105 PMCID: PMC2976483 DOI: 10.1158/0008-5472.can-10-1871] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe combined immunodeficient (SCID) mice carry a germ-line mutation in DNA-PK, associated with deficiency in recognition and repair DNA double-strand breaks. Thus, SCID cells and tissues display increased sensitivity to radiation-induced postmitotic (clonogenic) cell death. Nonetheless, the single-radiation doses required for 50% permanent local control (TCD(50)) of tumors implanted in SCID mice are not significantly different from the TCD(50) values of the same tumors in wild-type hosts. Whereas the tumor stroma is derived from the host, the observation that tumors implanted in SCID mice do not exhibit hypersensitivity to radiation might imply that stromal endothelial elements do not contribute substantially to tumor cure by ionizing radiation. Here, we challenge this notion, testing the hypothesis that ASMase-mediated endothelial apoptosis, which results from plasma membrane alterations, not DNA damage, is a crucial element in the cure of tumors in SCID mice by single-dose radiotherapy (SDRT). We show that the endothelium in MCA/129 fibrosarcomas and B16 melanomas exhibits a wild-type apoptotic phenotype in SCID hosts, abrogated in tumors in SCID(asmase-/-) littermates, which also acquire resistance to SDRT. Conversion into a radioresistant tumor phenotype when implanted in SCID(asmase-/-) hosts provides compelling evidence that cell membrane ASMase-mediated microvascular dysfunction, rather than DNA damage-mediated endothelial clonogenic lethality, plays a mandatory role in the complex pathophysiologic mechanism of tumor cure by SDRT, and provides an explanation for the wild-type SDRT responses reported in tumors implanted in SCID mice.
Collapse
Affiliation(s)
- Mónica García-Barros
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Tin Htwe Thin
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Jerzy Maj
- Department of Oncology and Radiation Therapy Cancer Center, University of Warmia and Mazury, Al., Wojska Polskiego 37, 10–228 Olsztyn, Poland
| | - Carlos Cordon-Cardo
- Department of Pathology, Columbia, University, 1130 St. Nicholas Ave. Room 309, New York, NY 10032
| | - Adriana Haimovitz-Friedman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
25
|
Nagasawa H, Brogan JR, Peng Y, Little JB, Bedford JS. Some unsolved problems and unresolved issues in radiation cytogenetics: A review and new data on roles of homologous recombination and non-homologous end joining. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 701:12-22. [DOI: 10.1016/j.mrgentox.2010.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/09/2010] [Indexed: 12/14/2022]
|
26
|
Kravets AP, Musse TA, Omel’chenko ZA, Vengzhen GS. Dynamics of hybrid dysgenesis frequency in Drosophila melanogaster in controlled terms of protracted radiation exposure. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Yang M, Kim JS, Song MS, Kim JC, Shin T, Lee SS, Kim SH, Moon C. Dose-response and relative biological effectiveness of fast neutrons: induction of apoptosis and inhibition of neurogenesis in the hippocampus of adult mice. Int J Radiat Biol 2010; 86:476-85. [PMID: 20470197 DOI: 10.3109/09553001003667990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Our study compared the effects of high linear energy transfer (LET) fast neutrons on the induction of apoptosis and reduction of neurogenesis in the hippocampus of adult ICR mice with those of low-LET (60)Co gamma-rays, to evaluate the relative biological effectiveness (RBE) of fast neutrons in the adult hippocampal dentate gyrus (DG). MATERIALS AND METHODS The mice were exposed to 35 MeV fast neutrons or (60)Co gamma-rays. We evaluated acutely the incidence of apoptosis and expression of Ki-67 (a protein marker for cell proliferation originally defined by the monoclonal antibody Kiel-67) and doublecortin (DCX: an immature progenitor neuron marker) in the hippocampus after a single whole-body irradiation. RESULTS The number of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labelling (TUNEL)-positive apoptotic nuclei in the DG increased and both Ki-67- and DCX-positive cells declined in a dose-dependent pattern, with fast neutrons or gamma-rays. In the hippocampus, which showed an apoptosis frequency between 2 and 8 per DG, the RBE of fast neutrons was approximately 1.9. Additionally, the inhibitory effects of fast neutrons on the expression frequencies of Ki-67 (4-8) and DCX (8-32) were approximately 3.2 and 2.5 times, respectively, the effects of gamma-rays at the same dose. CONCLUSIONS Increased apoptotic cell death and decreased neurogenesis in the hippocampal DG were seen in a dose-dependent pattern after exposure to fast neutrons and gamma-rays. In addition, the different rate of hippocampal neurogenesis between different radiation qualities may be an index of RBE.
Collapse
Affiliation(s)
- Miyoung Yang
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Buk-Gu, Gwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rotolo JA, Mesicek J, Maj J, Truman JP, Haimovitz-Friedman A, Kolesnick R, Fuks Z. Regulation of ceramide synthase-mediated crypt epithelium apoptosis by DNA damage repair enzymes. Cancer Res 2010; 70:957-67. [PMID: 20086180 DOI: 10.1158/0008-5472.can-09-1562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute endothelial cell apoptosis and microvascular compromise couple gastrointestinal tract irradiation to reproductive death of intestinal crypt stem cell clonogens (SCCs) following high-dose radiation. Genetic or pharmacologic inhibition of endothelial apoptosis prevents intestinal damage, but as the radiation dose is escalated, SCCs become directly susceptible to an alternate cell death mechanism, mediated via ceramide synthase (CS)-stimulated de novo synthesis of the proapoptotic sphingolipid ceramide, and p53-independent apoptosis of crypt SCCs. We previously reported that ataxia-telangiectasia mutated deficiency resets the primary radiation lethal pathway, allowing CS-mediated apoptosis at the low-dose range of radiation. The mechanism for this event, termed target reordering, remains unknown. Here, we show that inactivation of DNA damage repair pathways signals CS-mediated apoptosis in crypt SCCs, presumably via persistent unrepaired DNA double-strand breaks (DSBs). Genetic loss of function of sensors and transducers of DNA DSB repair confers the CS-mediated lethal pathway in intestines of sv129/B6Mre11(ATLD1/ATLD1) and C57BL/6(Prkdc/SCID) (severe combined immunodeficient) mice exposed to low-dose radiation. In contrast, CS-mediated SCC lethality was mitigated in irradiated gain-of-function Rad50(s/s) mice, and epistasis studies order Rad50 upstream of Mre11. These studies suggest unrepaired DNA DSBs as causative in target reordering in intestinal SCCs. As such, we provide an in vivo model of DNA damage repair that is standardized, can be exploited to understand allele-specific regulation in intact tissue, and is pharmacologically tractable.
Collapse
Affiliation(s)
- Jimmy A Rotolo
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen X, Wong P, Radany E, Wong JYC. HDAC inhibitor, valproic acid, induces p53-dependent radiosensitization of colon cancer cells. Cancer Biother Radiopharm 2010; 24:689-99. [PMID: 20025549 DOI: 10.1089/cbr.2009.0629] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Agents that inhibit histone deacetylases (HDAC inhibitors) have been shown to enhance radiation response. The aim of this study was to evaluate the effects of low, minimally cytotoxic concentrations of the HDAC inhibitor, valproic acid (VPA), on radiation response of colorectal cancer cells. Cell lines LS174T and an isogenic pair of HCT116, which differed only for the presence of wild-type p53, were exposed to ionizing radiation (IR) alone, VPA alone, or the combination. Clonogenic survival, gamma-H2AX induction, apoptosis, changes in mitochondrial membrane potential, and mitochondrial levels of p53 and Bcl-2 family proteins were assessed. In vivo studies monitored tumor growth suppression after therapy in mice bearing HCT116/p53(+/+) and HCT116/p53(-/-) tumor xenografts. VPA led to radiosensitization, which was dependent on p53 status. A decrease in clonogenic survival, an increase in apoptosis, and an increase in levels of gamma-H2AX were observed after VPA+IR, compared to IR alone, in wild-type p53 cells (LS174T and HCT116/p53(+/+)), as opposed to p53 null cells (HCT116/p53(-/-)). Exposure to VPA resulted in enhancement of IR-induced mitochondrial localizations of Bax and Bcl-xL, mitochondrial membrane potential, and cytochrome c release only in wild-type p53 cell lines. VPA also enhanced tumor growth suppression after IR only in wild-type p53 xenografts. These data suggest that VPA may have an important role in enhancing radiotherapy response in colorectal cancer, particularly in tumors with the wild-type p53 genotype.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Radiation Oncology, City of Hope Cancer Center, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
30
|
Abdollahi A, Folkman J. Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 2010; 13:16-28. [PMID: 20061178 DOI: 10.1016/j.drup.2009.12.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 12/20/2009] [Accepted: 12/22/2009] [Indexed: 12/20/2022]
Abstract
Within three decades, anti-angiogenic therapy has rapidly evolved into an integral component of current standard anti-cancer treatment. Anti-angiogenic therapy has fulfilled a number of its earlier proposed promises. The universality of this approach is demonstrated by the broad spectrum of malignant and benign tumor entities, as well as non-neoplastic diseases, that are currently treated with anti-angiogenic agents. In contrast to tumor cell targeting therapies, the development of acquired drug resistance (e.g., via mutations in growth factor receptor signaling genes) has not been described yet for the principal target of anti-angiogenic therapy--the tumor endothelium. Moreover, the tumor endothelium has emerged as a critical target of conventional cancer therapies, such as chemotherapy and radiotherapy. The presumption that tumor growth and metastasis are angiogenesis-dependent implies that the number of potential targets of an anti-cancer therapy could be reduced to those that stimulate the angiogenesis process. Therefore, the set of endogenous angiogenesis stimulants might constitute an "Achilles heel" of cancer. Direct targeting of tumor endothelium via, e.g., endogenous angiogenesis inhibitors poses another promising but clinically less explored therapeutic strategy. Indeed, the majority of current anti-angiogenic approaches block the activity of a single or at most a few pro-angiogenic proteins secreted by tumor cells or the tumor stroma. Based on our systems biology work on the angiogenic switch, we predicted that the redundancy of angiogenic signals might limit the efficacy of anti-angiogenic monotherapies. In support of this hypothesis, emerging experimental evidence suggests that tumors may become refractory or even evade the inhibition of a single pro-angiogenic pathway via compensatory upregulation of alternative angiogenic factors. Here, we discuss current concepts and propose novel strategies to overcome tumor evasion of anti-angiogenic therapy. We believe that early detection of tumors, prediction of tumor evasive mechanisms and rational design of anti-angiogenic combinations will direct anti-angiogenic therapy towards its ultimate goal--the conversion of cancer to a dormant, chronic, manageable disease.
Collapse
Affiliation(s)
- Amir Abdollahi
- Center of Cancer Systems Biology, Dept. of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | | |
Collapse
|
31
|
Hamasaki K, Kusunoki Y, Nakashima E, Takahashi N, Nakachi K, Nakamura N, Kodama Y. Clonally expanded T lymphocytes from atomic bomb survivors in vitro show no evidence of cytogenetic instability. Radiat Res 2009; 172:234-43. [PMID: 19630528 DOI: 10.1667/rr1705.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Genomic instability has been suggested as a mechanism by which exposure to ionizing radiation can lead to cancer in exposed humans. However, the data from human cells needed to support or refute this idea are limited. In our previous study on clonal lymphocyte populations carrying stable-type aberrations derived from A-bomb survivors, we found no increase in the frequency of sporadic additional aberrations among the clonal cell populations compared with the spontaneous frequency in vivo. That work has been extended by using multicolor FISH (mFISH) to quantify the various kinds of chromosome aberrations known to be indicative of genomic instability in cloned T lymphocytes after they were expanded in culture for 25 population doublings. The blood T cells used were obtained from each of two high-dose-exposed survivors (>1 Gy) and two control subjects, and a total of 66 clonal populations (36 from exposed and 30 from control individuals) were established. For each clone, 100 metaphases were examined. In the case of exposed lymphocytes, a total of 39 additional de novo stable, exchange-type aberrations [translocation (t) + derivative chromosome (der)] were found among 3600 cells (1.1%); the corresponding value in the control group was 0.6% (17/3000). Although the ratio (39/3600) obtained from the exposed cases was greater than that of the controls (17/3000), the difference was not statistically significant (P = 0.101). A similar lack of statistical difference was found for the total of all structural chromosome alterations including t, der, dicentrics, duplications, deletions and fragments (P = 0.142). Thus there was no clear evidence suggesting the presence of chromosome instabilities among the clonally expanded lymphocytes in vitro from A-bomb survivors.
Collapse
Affiliation(s)
- K Hamasaki
- Departments of Radiobiology and Molecular Epidemiology, Radiation Effects Research Foundation, Minami-ku, Hiroshima, 732-0815, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Bignold L. Mechanisms of clastogen-induced chromosomal aberrations: A critical review and description of a model based on failures of tethering of DNA strand ends to strand-breaking enzymes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:271-298. [DOI: 10.1016/j.mrrev.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 01/15/2023]
|
33
|
Strzelczyk J, Potter W, Zdrojewicz Z. Rad-by-rad (bit-by-bit): triumph of evidence over activities fostering fear of radiogenic cancers at low doses. Dose Response 2007; 5:275-83. [PMID: 18648568 DOI: 10.2203/dose-response.07-021.strzelczyk] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Large segments of Western populations hold sciences in low esteem. This trend became particularly pervasive in the field of radiation sciences in recent decades. The resulting lack of knowledge, easily filled with fear that feeds on itself, makes people susceptible to prevailing dogmas. Decades-long moratorium on nuclear power in the US, resentment of "anything nuclear", and delay/refusal to obtain medical radiation procedures are some of the societal consequences. The problem has been exacerbated by promulgation of the linear-no-threshold (LNT) dose response model by advisory bodies such as the ICRP, NCRP and others. This model assumes no safe level of radiation and implies that response is the same per unit dose regardless of the total dose. The most recent (June 2005) report from the National Research Council, BEIR VII (Biological Effects of Ionizing Radiation) continues this approach and quantifies potential cancer risks at low doses by linear extrapolation of risk values obtained from epidemiological observations of populations exposed to high doses, 0.2 Sv to 3 Sv. It minimizes the significance of a lack of evidence for adverse effects in populations exposed to low doses, and discounts documented beneficial effects of low dose exposures on the human immune system. The LNT doctrine is in direct conflict with current findings of radiobiology and important features of modern radiation oncology. Fortunately, these aspects are addressed in-depth in another major report-issued jointly in March 2005 by two French Academies, of Sciences and of Medicine. The latter report is much less publicized, and thus it is a responsibility of radiation professionals, physicists, nuclear engineers, and physicians to become familiar with its content and relevant studies, and to widely disseminate this information. To counteract biased media, we need to be creative in developing means of sharing good news about radiation with co-workers, patients, and the general public.
Collapse
Affiliation(s)
- J Strzelczyk
- Radiology/Health Sciences Center, University of Colorado at Denver, CO., USA.
| | | | | |
Collapse
|
34
|
Strzelczyk JJ, Damilakis J, Marx MV, Macura KJ. Facts and controversies about radiation exposure, part 2: low-level exposures and cancer risk. J Am Coll Radiol 2007; 4:32-9. [PMID: 17412222 DOI: 10.1016/j.jacr.2006.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Indexed: 11/28/2022]
Abstract
In this 2-part article, the authors address the need to put in perspective the risks of radiation exposure in the rapidly changing field of radiology, considering the current state of knowledge of effects at low levels. The article is based on the content of the refresher course RC 516 presented at the Radiological Society of North America's 2005 annual meeting. In part 1, the authors presented a brief review of epidemiologic studies, a discussion of typical radiation doses experienced in medicine by both patients and professionals, and the description of practical approaches to reduce unnecessary exposures. Part 2 addresses a special concern for the unborn and discusses advisory and regulatory cancer risk estimates based mainly on epidemiologic studies. The limitations of epidemiologic studies at low-level exposures and recent new findings in radiobiology, some of which are summarized, challenge the notion that any amount of radiation causes adverse effects.
Collapse
Affiliation(s)
- Jadwiga Jodi Strzelczyk
- Department of Radiology, University of Colorado at Denver Health Sciences Center, Denver, CO, USA
| | | | | | | |
Collapse
|
35
|
Williams ES, Stap J, Essers J, Ponnaiya B, Luijsterburg MS, Krawczyk PM, Ullrich RL, Aten JA, Bailey SM. DNA double-strand breaks are not sufficient to initiate recruitment of TRF2. Nat Genet 2007; 39:696-8; author reply 698-9. [PMID: 17534357 DOI: 10.1038/ng0607-696] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Abstract
Current understanding of risk associated with low-dose radiation exposure has for many years been embedded in the linear-no-threshold (LNT) approach, based on simple extrapolation from the Japanese atomic bomb survivors. Radiation biology research has supported the LNT approach although much of this has been limited to relatively high-dose studies. Recently, with new advances for studying effects of low-dose exposure in experimental models and advances in molecular and cellular biology, a range of new effects of biological responses to radiation has been observed. These include genomic instability, adaptive responses and bystander effects. Most have one feature in common in that they are observed at low doses and suggest significant non-linear responses. These new observations pose a significant challenge to our understanding of low-dose exposure and require further study to elucidate mechanisms and determine their relevance.
Collapse
Affiliation(s)
- Kevin M Prise
- Cell and Molecular Radiation Biology Group, Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex, HA6 2JR, UK.
| |
Collapse
|
37
|
Bailey SM, Bedford JS. Studies on chromosome aberration induction: What can they tell us about DNA repair? DNA Repair (Amst) 2006; 5:1171-81. [PMID: 16814619 DOI: 10.1016/j.dnarep.2006.05.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many, if not the majority of spontaneous or induced mutations in somatic mammalian cells associated with cancer are large chromosome level changes. For exposure to carcinogenic agents, certain specific chromosomal aberrations are likely to lie early along the pathway leading from initial molecular damage to cancer. The kinds of aberrations that occur, and the positions of breakpoints involved in their formation, can reveal not only genes and controlling elements whose expression or suppression underlie the molecular nature of the initiation of malignant transformation, but also how structural and functional features of chromatin can affect processes involved in repair or mis-repair of initial DNA damage. Thus, cytogenetics can provide information in ways that are not readily appreciated in studies requiring disruption of chromatin organization as it exists in the cell and its tissue context, and where DNA repair assays measure effects averaged over the entire genome. Examples include the fact that in contrast to a more efficient repair of single strand or base damage in transcriptionally active chromatin, after ionizing radiation exposure, the preponderance of translocation breakpoints indicating mis-repair occur in transcriptionally active or potentially active chromatin. Cytogenetic studies have led to the recognition that processing of DNA ends - both ends resulting from breaks along chromosomes and natural chromosomal termini, or telomeres - share very interesting similarities and differences. Further, direct observation of chromatin in cells during interphase can speak directly to early stages of aberration formation where processes occur within the context of intact cells, and to the role (or lack thereof) of cell cycle checkpoint responses that often accompany DNA damage. The superior resolution of many of the current molecular cytogenetics approaches, combined with immunocytochemical detection of proteins involved in DNA damage processing, and the availability of repair deficient mutants or knockdown strategies such as RNA interference, suggest that cytogenetics may still provide useful information and set certain restrictions important for rational interpretation of studies of DNA repair and associated protein interactions that can only be carried out in vitro. The intent of this paper is to focus on contributions of studies on the production of chromosomal aberrations following ionizing radiation exposure regarding important insights on associated DNA repair processes involved, and further, on guidelines or constraints they provide for the interpretation of in vitro DNA repair studies that would have been difficult to appreciate without the cytogenetics. We will first briefly summarize some early studies that serve as a reminder of the background on which current studies are based, and then carry forward to the present day certain interesting facets of these studies.
Collapse
|
38
|
Livingston GK, Falk RB, Schmid E. Effect of occupational radiation exposures on chromosome aberration rates in former plutonium workers. Radiat Res 2006; 166:89-97. [PMID: 16808624 DOI: 10.1667/rr3586.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A fluorescence in situ hybridization (FISH) method was used to measure chromosome aberration rates in lymphocytes of 30 retired plutonium workers with combined internal and external radiation doses greater than 0.5 Sv along with 17 additional workers with predominantly external doses below 0.1 Sv. The former group was defined as high-dose and the latter as low-dose with respect to occupational radiation exposure. The two groups were compared to each other and also to 21 control subjects having no history of occupational radiation exposure. Radiation exposures to the high-dose group were primarily the result of internal depositions of plutonium and its radioactive decay products resulting from various work-related activities and accidents. The median external dose for the high-dose group was 280 mSv (range 10-730) compared to a median of 22 mSv (range 10-76) for the low-dose group. The median internal dose to the bone marrow for the high-dose group was 168 mSv (range 29-20,904) while that of the low-dose group was considered negligible. Over 200,000 metaphase cells were analyzed for chromosome aberrations by painting pairs 1, 4 and 12 in combination with a pancentromeric probe. Additionally, 136,000 binucleated lymphocytes were analyzed for micronuclei in parallel cultures to assess mitotic abnormalities arising from damaged chromosomes. The results showed that the frequency of structural aberrations affecting any of the painted chromosomes in the high-dose group correlated with the bone marrow dose but not with the external dose. In contrast, the frequency of micronuclei did not vary significantly between the study groups. The total translocation frequency per genome equivalent x 10(-3) +/- SE was 4.0 +/- 0.6, 9.0 +/- 1.1 and 17.0 +/- 2.1 for the control, low-dose and high-dose groups, respectively. Statistical analysis of the data showed that the frequency of total translocations and S-cells correlated with the bone marrow dose, with P values of 0.005 and 0.004, respectively. In contrast, these two end points did not correlate with the external dose, with P values of 0.45 and 0.39, respectively. In conclusion, elevated rates of stable chromosome aberrations were found in lymphocytes of former workers decades after plutonium intakes, providing evidence that chronic irradiation of hematopoietic precursor cells in the bone marrow induces cytogenetically altered cells that persist in peripheral blood.
Collapse
Affiliation(s)
- Gordon K Livingston
- Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117, USA.
| | | | | |
Collapse
|
39
|
Pandey BN, Gordon DM, De Toledo SM, Pain D, Azzam EI. Normal human fibroblasts exposed to high- or low-dose ionizing radiation: differential effects on mitochondrial protein import and membrane potential. Antioxid Redox Signal 2006; 8:1253-61. [PMID: 16910773 DOI: 10.1089/ars.2006.8.1253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
How oxidative metabolism modulates effects of ionizing radiation is incompletely understood. Because mitochondria participate in oxidative metabolism, we investigated the modulation of mitochondrial protein import and membrane potential (DeltaPsi) in irradiated cells. Our data show that effects at low dose cannot be predicted from effects at high dose. When density-inhibited normal human fibroblasts were exposed to a toxic dose of 4 Gy, protein import into mitochondria isolated from these cells was decreased. In contrast, protein import into mitochondria isolated from low-dose-irradiated (10 cGy) cells was enhanced, suggesting that mitochondria may play a crucial role in low-dose-induced adaptive responses. At high dose, import defects were not solely due to changes in mitochondrial DeltaPsi, and modulation of import was not tightly linked to the cellular capacity to repair radiation damage. Another striking observation is that in proliferating nonirradiated cells, mitochondrial protein import and DeltaPsi were regulated in a cell cycle-dependent manner, being lower in S phase than in G (1). Interestingly, when quiescent G (0)/G (1) phase cells exposed to high-dose radiation were stimulated to proliferate, events associated with S phase, but not G (1), significantly affected import. The strategy described here may serve as novel end points to study radiation-induced effects.
Collapse
Affiliation(s)
- Badri N Pandey
- Department of Radiology, UMDNJ-New Jersey Medical School, Newark, 07101, USA.
| | | | | | | | | |
Collapse
|
40
|
Liu ZZ, Huang WY, Lin JS, Li XS, Lan X, Cai XK, Liang KH, Zhou HJ. Cell survival curve for primary hepatic carcinoma cells and relationship between SF(2) of hepatic carcinoma cells and radiosensitivity. World J Gastroenterol 2006; 11:7040-3. [PMID: 16437614 PMCID: PMC4717052 DOI: 10.3748/wjg.v11.i44.7040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To establish the cell survival curve for primary hepatic carcinoma cells and to study the relationship between SF(2) of primary hepatic carcinoma cells and radiosensitivity. METHODS Hepatic carcinoma cells were cultured in vitro using 39 samples of hepatic carcinoma at stages II-IV. Twenty-nine samples were cultured successfully in the fifth generation cells. After these cells were radiated with different dosages, the cell survival ratio and SF(2) were calculated by clonogenic assay and SF(2) model respectively. The relationship between SF(2) and the clinical pathological feature was analyzed. RESULTS Twenty-nine of thirty-nine samples were successfully cultured. After X-ray radiation of the fifth generation cells with 0, 2, 4, 6, 8 Gy, the cell survival rate was 41%, 36.5%, 31.0%, 26.8%, and 19%, respectively. There was a negative correlation between cell survival and irradiation dosage (r = -0.973, P<0.05). SF(2) ranged 0.28-0.78 and correlated with the clinical stage and pathological grade of hepatic carcinoma (P<0.05). There was a positive correlation between SF(2) and D0.5 (r = 0.773, P<0.05). CONCLUSION SF(2) correlates with the clinical stage and pathological grade of hepatic carcinoma and is a marker for predicting the radiosensitivity of hepatic carcinomas.
Collapse
Affiliation(s)
- Zhi-Zhong Liu
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hanin L, Hyrien O, Bedford J, Yakovlev A. A comprehensive stochastic model of irradiated cell populations in culture. J Theor Biol 2006; 239:401-16. [PMID: 16171827 DOI: 10.1016/j.jtbi.2005.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 07/22/2005] [Accepted: 08/05/2005] [Indexed: 10/25/2022]
Abstract
A comprehensive entirely mechanistic model of the kinetics of cell population in vitro exposed to continuous irradiation is formulated and analysed. The model provides a stochastic description of the processes of formation and repair of radiation-induced lesions, as well as of cell cycling, cell proliferation, and cell death. Unobservable kinetic parameters of the model are estimated from experimental data on the sizes of clones formed in synchronized cultures of S3 HeLa cells exposed to continuous irradiation by gamma-rays at various dose rates. The effects of dose rate on cell cycle duration and damage repair kinetics are studied. Continuous and acute exposures with the same total dose are compared in terms of their impact on cell survival.
Collapse
Affiliation(s)
- Leonid Hanin
- Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, Box 630, NY 14642, USA.
| | | | | | | |
Collapse
|
42
|
Zhang Q, Williams ES, Askin KF, Peng Y, Bedford JS, Liber HL, Bailey SM. Suppression of DNA-PK by RNAi has different quantitative effects on telomere dysfunction and mutagenesis in human lymphoblasts treated with gamma rays or HZE particles. Radiat Res 2005; 164:497-504. [PMID: 16187756 DOI: 10.1667/rr3366.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Basic to virtually all relevant biological effects of ionizing radiation is the underlying damage produced in DNA and the subsequent cellular processing of such damage. The damage can be qualitatively different for different kinds of radiations, and the genetics of the biological systems exposed can greatly affect damage processing and ultimate outcome--the biological effect of concern. The accurate repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and function. Incorrect repair of such lesions results in chromosomal rearrangements and mutations that can lead to cancer and heritable defects in the progeny of irradiated parents. We have focused on the consequent phenotypic effects of faulty repair by examining connections between cellular radiosensitivity phenotypes relevant for carcinogenesis after exposure to ionizing radiation, and deficiencies in various components of the non-homologous end-joining (NHEJ) system. Here we produced deficiencies of individual components of the DNA-dependent protein kinase (DNA-PK) holoenzyme (Ku86 and the catalytic subunit, DNA-PKcs), both singly and in combination, using RNA interference (RNAi) in human lymphoblastoid cell lines. Exposure of cells exhibiting reduced protein expression to either gamma rays or 1 GeV/nucleon iron particles demonstrated differential effects on telomere dysfunction and mutation frequency as well as differential effects between radiation qualities.
Collapse
Affiliation(s)
- Qinming Zhang
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Becker KA, Lu S, Dickinson ES, Dunphy KA, Mathews L, Schneider SS, Jerry DJ. Estrogen and progesterone regulate radiation-induced p53 activity in mammary epithelium through TGF-beta-dependent pathways. Oncogene 2005; 24:6345-53. [PMID: 15940247 DOI: 10.1038/sj.onc.1208787] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA damage normally induces p53 activity, but responses to ionizing radiation in the mammary epithelium vary among developmental stages. The following studies examined the hormones and growth factors that regulate radiation-responsiveness of p53 in mouse mammary epithelium. Immunoreactive p21/WAF1 and TUNEL staining were used as indicators of p53 activity following exposure to ionizing radiation. In ovariectomized mice, radiation-induced accumulation of p21/WAF1 was minimal in the mammary epithelial cells (<1%). Systemic injections of estrogen and progesterone (E+P) for 72 h were necessary to recover maximal expression of p21/WAF1 following ionizing radiation (55%). The effects of E+P on radiation-induced p21/WAF1 were p53-dependent as responses were absent in Trp53-/- mice. Though hormonal treatments stimulated increases in the proportion of cycling cells (PCNA-positive), this was not directly correlated with p53 activity. Whole organ cultures were used to determine whether E+P act directly upon the mammary gland. Treatment with E+P was sufficient to render p53 responsive to radiation, but TGF-beta-neutralizing antibodies blocked responsiveness. In the absence of E+P, TGF-beta1 alone did not alter p53 activity. These results demonstrate that estrogen and progesterone together with TGF-beta signaling are necessary for maintenance of p53 activity in the mammary epithelium.
Collapse
Affiliation(s)
- Klaus A Becker
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Ionising radiation has been an important part of cancer treatment for almost a century, being used in external-beam radiotherapy, brachytherapy, and targeted radionuclide therapy. At the molecular and cellular level, cell killing has been attributed to deposition of energy from the radiation in the DNA within the nucleus, with production of DNA double-strand breaks playing a central part. However, this DNA-centric model has been questioned because cell-death pathways, in which direct relations between cell killing and DNA damage diverge, have been reported. These pathways include membrane-dependent signalling pathways and bystander responses (when cells respond not to direct radiation exposure but to the irradiation of their neighbouring cells). New insights into mechanisms of these responses coupled with technological advances in targeting of cells in experimental systems with microbeams have led to a reassessment of the model of how cells are killed by ionising radiation. This review provides an update on these mechanisms.
Collapse
Affiliation(s)
- Kevin M Prise
- Gray Cancer Institute, Mount Vernon Hospital, PO Box 100, Northwood, Middlesex HA6 2JR, UK.
| | | | | | | |
Collapse
|
45
|
Abstract
The opportunity to write a historical review of the field of radiation biology allows for the viewing of the development and maturity of a field of study, thereby being able to provide the appropriate context for the earlier years of research and its findings. The pioneering work of Muller, Sax, and McClintock, and many others, has stood the test of time. The idea that x-rays could damage the genetic material and result in interactions that could lead to gene mutations and a range of chromosomal alterations is now interpretable in terms of induced DNA damage and errors of DNA repair. The expanded idea that such genetic alterations can be induced by DNA damage that is produced by one or two tracks of ionizing radiation remains the mainstay of radiation biology. The impact of the more recent molecular approaches to unraveling the mechanism behind this simple concept has confirmed this fundamental observation. The remarkable advances have allowed for a fairly complete understanding of the specific types of DNA damage induced by ionizing radiations and the pivotal role played by the errors of repair of double-strand breaks. Given our considerably enhanced knowledge of the details of the DNA repair processes involved, misrepair is a very unlikely event. The role of potential confounders of the concept of dose-response (e.g., bystander effects, genomic instability, and adaptive responses) is taking on a growing importance to the field. The evolving need is to begin to consider mechanistically-based dose-response models for cancer risk such that any potential impact of confounders on the response at low, environmental doses can be assessed. Thus, radiation biology research has always had a focus on how best to protect human health from radiation exposures and will continue to do so.
Collapse
Affiliation(s)
- R Julian Preston
- Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
46
|
Kashino G, Prise KM, Schettino G, Folkard M, Vojnovic B, Michael BD, Suzuki K, Kodama S, Watanabe M. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells. Mutat Res 2004; 556:209-15. [PMID: 15491649 DOI: 10.1016/j.mrfmmm.2004.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 08/17/2004] [Accepted: 08/20/2004] [Indexed: 05/01/2023]
Abstract
This study investigated the role of DNA double strand breaks and DNA base damage in radiation-induced bystander responses in Chinese hamster ovary (CHO) cell lines. Two CHO repair-deficient clones, xrs5 (DNA double strand break repair-deficient) and EM9 (DNA base excision repair-deficient) were used in addition to the wild type (CHO). The Gray Cancer Institute ultrasoft X-ray microprobe is a powerful tool for investigating the bystander response, because it permits the irradiation of only a single nucleus of a cell, as reported previously. In order to investigate the bystander effect in each repair-deficient cell line, we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population was targeted with 1 Gy, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells in the EM9 and xrs5 cell lines, whereas induction was not observed in CHO. The induction of micronuclei in xrs5 was significantly higher than that in EM9. Under these conditions, the surviving fraction in the neighbouring cells was significantly lower in xrs5 than in the other cell lines, showing a higher cell killing effect in xrs5. To confirm that bystander factors secreted from irradiated cells caused these effects, we carried out medium transfer experiments using conventional X-irradiation. Medium conditioned for 24 h with irradiated cells was transferred to unirradiated cells and elevated induction of micronuclei was observed in xrs5. These results suggest that DNA double strand breaks rather than base damage are caused by factors secreted in the medium from irradiated cells.
Collapse
Affiliation(s)
- Genro Kashino
- Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Suzuki G, Shimada Y, Hayashi T, Akashi M, Hirama T, Kusunoki Y. An association between oxidative stress and radiation-induced lymphomagenesis. Radiat Res 2004; 161:642-7. [PMID: 15161356 DOI: 10.1667/rr3188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is generally thought that reactive oxygen species (ROS) play an important role in carcinogenesis. However, direct evidence supporting this idea is still lacking. In the present study, we measured ROS in thymocytes at the thymic prelymphoma stage in C57BL/6 mice. Mice (n = 20) were irradiated at 1.6 Gy/week for 4 consecutive weeks and the levels of ROS were measured 8 to 11 weeks later by dehydrorhodamine 123, which accumulated in mitochondria and became fluorescent dye upon oxidation. Unirradiated littermates (n = 17) served as controls. Thymic prelymphoma cells were diagnosed by the aberrant CD4/CD8 staining profile and monoclonal or oligoclonal T-cell receptor gene rearrangement. A significant fraction of mice (11/13) bearing thymic prelymphoma cells exhibited elevated levels of ROS in thymocytes (P < 0.001). The result is consistent with the hypothesis that ROS may play an important role in radiation carcinogenesis.
Collapse
Affiliation(s)
- Gen Suzuki
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Kubota Y, Takahashi S, Sato H, Suetomi K, Aizawa S. Radiation-induced apoptosis in peritoneal resident macrophages of C3H mice. JOURNAL OF RADIATION RESEARCH 2004; 45:205-211. [PMID: 15304962 DOI: 10.1269/jrr.45.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gamma ray-radiation induced significant apoptosis in peritoneal resident macrophages (PRMs) of C3H/HeJ (C3H) mice, but not in other strains of mice. To investigate the role of DNA damage in the apoptosis, DNA damage was quantified in PRMs by use of the alkaline single-cell gel electrophoresis (Comet) assay. No significant difference was found between C3H and C57Black/6 mice in either radiation-induced DNA damage or repair. Radiation induced apoptosis at the same levels in PRMs of p53 knockout mice and atm knockout mice as those of wild-type C3H mice; however radiation-induced apoptosis was significantly less extensive in the thymocytes of these mutant mice than in those of wild-type mice. Apoptosis was also induced at the same level by an irradiation in PRMs of C3H scid mice as in those of wild-type C3H mice. Therefore it was suggested that radiation-induced DNA damage and TP53, ATM, or DNA-PK-mediated cellular responses occurring downstream thereof were not involved in the radiation-induced apoptotic cell death in C3H mouse PRMs.
Collapse
MESH Headings
- Animals
- Apoptosis/radiation effects
- Ataxia Telangiectasia Mutated Proteins
- Cell Cycle Proteins
- Cell Size/radiation effects
- Cells, Cultured
- DNA/radiation effects
- DNA/ultrastructure
- DNA Damage
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- Female
- Gamma Rays
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Macrophages, Peritoneal/radiation effects
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Protein Serine-Threonine Kinases/deficiency
- Species Specificity
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Yoshihisa Kubota
- Environmental and Toxicological Sciences Research Group, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | |
Collapse
|
49
|
Seno JD, Dynlacht JR. Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat-shock. J Cell Physiol 2004; 199:157-70. [PMID: 15039997 DOI: 10.1002/jcp.10475] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mre11, Rad50, and Nbs1form a tight complex which is homogeneously distributed throughout the nuclei of mammalian cells. However, after irradiation, the Mre11/Rad50/Nbs1 (M/R/N) complex rapidly migrates to sites of double strand breaks (DSBs), forming foci which remain until DSB repair is complete. Mre11 and Rad50 play direct roles in DSB repair, while Nbs1 appears to be involved in damage signaling. Hyperthermia sensitizes mammalian cells to ionizing radiation. Radiosensitization by heat shock is believed to be mediated by an inhibition of DSB repair. While the mechanism of inhibition of repair by heat shock remains to be elucidated, recent reports suggest that the M/R/N complex may be a target for inhibition of DSB repair and radiosensitization by heat. We now demonstrate that when human U-1 melanoma cells are heated at 42.5 or 45.5 degrees C, Mre11, Rad50, and Nbs1 are rapidly translocated from the nucleus to the cytoplasm. Interestingly, when cells were exposed to ionizing radiation (12 Gy of X-rays) prior to heat treatment, the extent and kinetics of translocation were increased when nuclear and cytoplasmic fractions of protein were analyzed immediately after treatment. The kinetics of the translocation and subsequent relocalization back into the nucleus when cells were incubated at 37 degrees C from 30 min to 7 h following treatment were different for each protein, which suggests that the proteins redistribute independently. However, a significant fraction of the translocated proteins exist as a triple complex in the cytoplasm. Treatment with leptomycin B (LMB) inhibits the translocation of Mre11, Rad50, and Nbs1 to the cytoplasm, leading us to speculate that the relocalization of the proteins to the cytoplasm occurs via CRM1-mediated nuclear export. In addition, while Nbs1 is rapidly phosphorylated in the nuclei of irradiated cells and is critical for a normal DNA damage response, we have found that Nbs1 is rapidly phosphorylated in the cytoplasm, but not in the nucleus, of heated irradiated cells. The phosphorylation of cytoplasmic Nbs1, which cannot be inhibited by wortmannin, appears to be a unique post-translational modification in heated, irradiated cells, and coupled with our novel observations that Mre11, Rad50, and Nbs1 translocate to the cytoplasm, lend further support for a role of the M/R/N complex in thermal radiosensitization and inhibition of DSB repair.
Collapse
Affiliation(s)
- Joshua D Seno
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
50
|
Qutob SS, Multani AS, Pathak S, Feng Y, Kendal WS, Ng CE. Comparison of the X-Radiation, Drug and Ultraviolet-Radiation Responses of Clones Isolated from a Human Colorectal Tumor Cell Line. Radiat Res 2004; 161:326-34. [PMID: 14982481 DOI: 10.1667/rr3144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We isolated several clones with a wide range of responses to X radiation from an unirradiated human colorectal (HCT 116) tumor cell line. The responses of one of these clones (HCT116-Clone10) and nine other clones to either fractionated or acute (i.e. single, nonfractionated doses) X irradiation in vitro was similar to that of the parental cell line. By contrast, after the same types of treatment, another clone (HCT116-Clone2) manifested a significantly increased survival whereas a third clone (HCT116-CloneK) manifested a significantly decreased survival relative to the parental cell line. This suggested that they were, respectively, a radioresistant and a radiosensitive clone. All three clones (clones 2, 10, K) retained their tumorigenic phenotype and formed tumors in nude mice. G-banding studies demonstrated that they were of human origin and were derived from the same parental cell line. The metaphases of HCT116-Clone2 demonstrated features commonly associated with genomic instability (i.e. mitotic catastrophe including chromosome and chromatid breaks, dicentrics and additional nonclonal markers). Data obtained by quantitative fluorescence in situ hybridization (Q- FISH) analysis failed to demonstrate any apparent correlation between the radiosensitivity and the relative telomere content of these three clones. Interestingly, HCT116-CloneK was the most resistant to several chemotherapeutic drugs (topotecan, camptothecin, etoposide and cisplatin) with diverse mechanisms of action. Also, there were no significant differences in the survivals of the three clones after treatment with UV radiation. Because of the lack of overlap among the relative sensitivities of these clones to X radiation, chemotherapeutic drugs and UV radiation, these clones may be useful models for evaluating the genetic basis of the response of human tumor cells to these treatment agents both in vitro and in vivo.
Collapse
Affiliation(s)
- Sami S Qutob
- Centre for Cancer Therapeutics, Ottawa Regional Cancer Centre, Ottawa, Ontario, K1H 1C4, Canada
| | | | | | | | | | | |
Collapse
|