1
|
Abend M, Ostheim P, Port M. Radiation-Induced Gene Expression Changes Used for Biodosimetry and Clinical Outcome Prediction: Challenges and Promises. Cytogenet Genome Res 2023; 163:223-230. [PMID: 37231879 DOI: 10.1159/000530947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
As the war in Ukraine progresses, the radiological and nuclear threat has never been as real as now. The formation of life-threatening acute radiation syndrome (ARS), in particular after the deployment of a nuclear weapon or an attack on a nuclear power station, must be considered realistic. ARS is caused by massive cell death, leading to functional organ deficits and, via systemic inflammatory responses, finally aggravates into multiple organ failure. As a deterministic effect, the severity of the disease dictates the clinical outcome. Hence, predicting ARS severity via biodosimetry or alternative approaches appears straightforward. Because the disease occurs delayed, therapy starting as early as possible has the most significant benefit. A clinically relevant diagnosis should be carried out within the diagnostic time window of about 3 days after exposure. Biodosimetry assays providing retrospective dose estimations within this time frame will support medical management decision-making. However, how closely can dose estimates be associated with the later developing ARS severity degrees when considering dose as one among other determinants of radiation exposure and cell death? From a clinical/triage point of view, ARS severity degrees can be further aggregated into unexposed, weakly diseased (no acute health effects expected), and strongly diseased patient groups, with the latter requiring hospitalization as well as an early and intensive treatment. Radiation-induced gene expression (GE) changes occur early after exposure and can be quickly quantified. GE can be used for biodosimetry purposes. Can GE be used to predict later developing ARS severity degrees and allocate individuals to the three clinically relevant groups as well?
Collapse
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
2
|
Ostheim P, Amundson SA, Badie C, Bazyka D, Evans AC, Ghandhi SA, Gomolka M, López Riego M, Rogan PK, Terbrueggen R, Woloschak GE, Zenhausern F, Kaatsch HL, Schüle S, Ullmann R, Port M, Abend M. Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021. Int J Radiat Biol 2021; 98:843-854. [PMID: 34606416 DOI: 10.1080/09553002.2021.1987571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Christophe Badie
- PHE CRCE, Chilton, Didcot, Oxford, UK.,Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Dimitry Bazyka
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Angela C Evans
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Milagrosa López Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter K Rogan
- Biochemistry, University of Western Ontario, London, Canada.,CytoGnomix Inc, London, Canada
| | | | - Gayle E Woloschak
- Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Frederic Zenhausern
- Department of Basic Medical Sciences, College of Medicine, The University of Arizona, Phoenix, AZ, USA.,Center for Applied Nanobioscience and Medicine, University of Arizona, Phoenix, AZ, USA
| | - Hanns L Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
3
|
Port M, Hérodin F, Drouet M, Valente M, Majewski M, Ostheim P, Lamkowski A, Schüle S, Forcheron F, Tichy A, Sirak I, Malkova A, Becker BV, Veit DA, Waldeck S, Badie C, O'Brien G, Christiansen H, Wichmann J, Beutel G, Davidkova M, Doucha-Senf S, Abend M. Gene Expression Changes in Irradiated Baboons: A Summary and Interpretation of a Decade of Findings. Radiat Res 2021; 195:501-521. [PMID: 33788952 DOI: 10.1667/rade-20-00217.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/05/2021] [Indexed: 11/03/2022]
Affiliation(s)
- M Port
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Hérodin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Drouet
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Valente
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Forcheron
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - A Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czech Republic and Biomedical Research Centre, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - I Sirak
- Department of Oncology and Radiotherapy, University Hospital, Hradec Králové, Hradec Králové, Czech Republic
| | - A Malkova
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - B V Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - D A Veit
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - S Waldeck
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - C Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - G O'Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - H Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - J Wichmann
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - G Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic
| | - S Doucha-Senf
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich Germany
| |
Collapse
|
4
|
Majewski M, Ostheim P, Gluzman-Poltorak Z, Vainstein V, Basile L, Schüle S, Haimerl M, Stroszczynski C, Port M, Abend M. Gene expression changes in male and female rhesus macaque 60 days after irradiation. PLoS One 2021; 16:e0254344. [PMID: 34288924 PMCID: PMC8294544 DOI: 10.1371/journal.pone.0254344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Transcriptome changes can be expected in survivors after lethal irradiation. We aimed to characterize these in males and females and after different cytokine treatments 60 days after irradiation. MATERIAL AND METHODS Male and female rhesus macaques (n = 142) received a whole-body exposure with 700 cGy, from which 60 animals survived. Peripheral whole blood was drawn pre-exposure and before sacrificing the surviving animals after 60 days. RESULTS We evaluated gene expression in a three-phase study design. Phase I was a whole-genome screening (NGS) for mRNAs using five pre- and post-exposure RNA samples from both sexes (n = 20). Differential gene expression (DGE) was calculated between samples of survivors and pre-exposure samples (reference), separately for males and females. 1,243 up- and down-regulated genes were identified with 30-50% more deregulated genes in females. 37 candidate mRNAs were chosen for qRT-PCR validation in phase II using the remaining samples (n = 117). Altogether 17 genes showed (borderline) significant (t-test) DGE in groups of untreated or treated animals. Nine genes (CD248, EDAR, FAM19A5, GAL3ST4, GCNT4, HBG2/1, LRRN1, NOG, SYT14) remained with significant changes and were detected in at least 50% of samples per group. Panther analysis revealed an overlap between both sexes, related to the WNT signaling pathway, cell adhesion and immunological functions. For phase III, we validated the nine genes with candidate genes (n = 32) from an earlier conducted study on male baboons. Altogether 14 out of 41 genes showed a concordantly DGE across both species in a bilateral comparison. CONCLUSIONS Sixty days after radiation exposure, we identified (1) sex and cytokine treatment independent transcriptional changes, (2) females with almost twice as much deregulated genes appeared more radio-responsive than males, (3) Panther analysis revealed an association with immunological processes and WNT pathway for both sexes.
Collapse
Affiliation(s)
- Matthäus Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Department of Urology, Bundeswehr Hospital Ulm, Ulm, Germany
| | | | - Zoya Gluzman-Poltorak
- Neumedicines Inc, Pasadena, CA, United States of America
- Applied Stem Cell Therapeutics, Milpitas, CA, United States of America
| | - Vladimir Vainstein
- Neumedicines Inc, Pasadena, CA, United States of America
- Hadassah Medical Center, Jerusalem, Israel
| | - Lena Basile
- Neumedicines Inc, Pasadena, CA, United States of America
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
- * E-mail:
| |
Collapse
|
5
|
Ullmann R, Becker BV, Rothmiller S, Schmidt A, Thiermann H, Kaatsch HL, Schrock G, Müller J, Jakobi J, Obermair R, Port M, Scherthan H. Genomic Adaption and Mutational Patterns in a HaCaT Subline Resistant to Alkylating Agents and Ionizing Radiation. Int J Mol Sci 2021; 22:ijms22031146. [PMID: 33498964 PMCID: PMC7865644 DOI: 10.3390/ijms22031146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.
Collapse
Affiliation(s)
- Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
- Correspondence:
| | - Benjamin Valentin Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Rübenacherstrasse 170, D-56072 Koblenz, Germany;
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Hanns Leonhard Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Gerrit Schrock
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Jessica Müller
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Julia Jakobi
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Richard Obermair
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| |
Collapse
|
6
|
Ostheim P, Haupt J, Schüle S, Herodin F, Valente M, Drouet M, Majewski M, Port M, Abend M. Differentiating Total- or Partial-Body Irradiation in Baboons Using mRNA Expression Patterns: A Proof of Concept. Radiat Res 2020; 194:476-484. [DOI: 10.1667/rade-20-00121.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/12/2020] [Indexed: 11/03/2022]
Affiliation(s)
- P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - J. Haupt
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - F. Herodin
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Valente
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Drouet
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
7
|
Ostheim P, Haupt J, Herodin F, Valente M, Drouet M, Majewski M, Port M, Abend M. miRNA Expression Patterns Differ by Total- or Partial-Body Radiation Exposure in Baboons. Radiat Res 2019; 192:579-588. [DOI: 10.1667/rr15450.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - J. Haupt
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - F. Herodin
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Valente
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Drouet
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
8
|
Rybkina VL, Bannikova MV, Adamova GV, Dörr H, Scherthan H, Azizova TV. Immunological Markers of Chronic Occupational Radiation Exposure. HEALTH PHYSICS 2018; 115:108-113. [PMID: 29787436 DOI: 10.1097/hp.0000000000000855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to identify immunological biomarkers for prolonged occupational radiation exposure and thus studied a random sample of the Mayak Production Association worker cohort (91 individuals). The control group included 43 local individuals never employed at the Mayak Production Association. To identify biomarkers, two groups of workers were formed: the first one included workers chronically exposed to external gamma rays at cumulative doses of 0.5-3.0 Gy (14 individuals); the second one included workers exposed to combined radiation-external gamma rays at doses ranging from 0.7 to 5.1 Gy and internal alpha radiation from incorporated plutonium with 0.3-16.4 kBq body burden (77 individuals). The age range of the study individuals was 66-91 y. Peripheral blood serum protein concentrations of cytokines, immunoglobulins, and matrix metalloproteinase-9 were analyzed using enzyme-linked immunoassay following the manufacturer's protocol. Flow cytometry was used to analyze levels of various lymphocyte subpopulations. The findings of the current study demonstrate that some immunological characteristics may be considered as biomarkers of prolonged chronic radiation exposure for any radiation type (in the delayed period after the exposure) based on fold differences from controls: M immunoglobulin fold differences were 1.75 ± 0.27 (p = 0.0001) for external gamma-ray exposure and 1.50 ± 0.27 (p = 0.0003) for combined radiation exposure; matrix metalloproteinase-9 fold differences were 1.5 ± 0.22 (p = 0.008) for external gamma-ray exposure and 1.69 ± 0.24 (p = 0.00007) for combined radiation exposure; A immunoglobulin fold differences were 1.61 ± 0.27 (p = 0.002) for external gamma-ray exposure and 1.56 ± 0.27 (p = 0.00002) for combined radiation exposure; relative concentration of natural killer cell fold differences were 1.53 ± 0.23 (p = 0.01) for external gamma-ray exposure and 1.35 ± 0.22 (p = 0.001) for combined radiation exposure; and relative concentration of T-lymphocytes fold differences were 0.89 ± 0.04 (p = 0.01) for external gamma-ray exposure and 0.95 ± 0.05 (p = 0.003) for combined radiation exposure. Based on fold differences from controls, interferon-gamma (3.50 ± 0.65, p = 0.031), transforming growth factor-beta (2.91 ± 0.389, p = 0.026), and relative blood serum levels of T-helper cells (0.90 ± 0.065, p = 0.02) may be used as immunological markers of chronic external gamma-ray exposure. Moreover, there was a significant inverse linear association of relative concentration of T-helper cells with dose from external gamma rays accumulated over an extended period.
Collapse
Affiliation(s)
- Valentina L Rybkina
- Southern Urals Biophysics Institute, Ozerskoe shosse, 19, Ozyorsk 456780, Ozyorsk, Russia
| | - Maria V Bannikova
- Southern Urals Biophysics Institute, Ozerskoe shosse, 19, Ozyorsk 456780, Ozyorsk, Russia
| | - Galina V Adamova
- Southern Urals Biophysics Institute, Ozerskoe shosse, 19, Ozyorsk 456780, Ozyorsk, Russia
| | - Harald Dörr
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr. 11, Ernst von Bergmann Kaserne, 80937 Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr. 11, Ernst von Bergmann Kaserne, 80937 Munich, Germany
| | - Tamara V Azizova
- Southern Urals Biophysics Institute, Ozerskoe shosse, 19, Ozyorsk 456780, Ozyorsk, Russia
| |
Collapse
|
9
|
Liu Z, Yu D, Xu J, Li X, Wang X, He Z, Zhao T. Human umbilical cord mesenchymal stem cells improve irradiation-induced skin ulcers healing of rat models. Biomed Pharmacother 2018. [PMID: 29524881 DOI: 10.1016/j.biopha.2018.02.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irradiation-induced skin ulcers can be resultant from nuclear accident or reaction to radiation therapy of tumor and is intractable for healing. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been considered to be the potential therapeutic tools for tissue regeneration. However, the underlying mechanisms are still not well understood. This study aims to investigate the effects of hUC-MSCs on irradiation-induced skin ulcers healing and the related mechanisms. The ulcers were induced by irradiating the skin of adult SD rats. The ulcers of SD rats were treated with vehicle or hUC-MSCs donated from mother giving birth. The ulcer healing was measured by imaging the healing rate and the H&E staining. CD31 and VEGF expression was measured with immunohistochemistry assay. iTRAQ proteomics analysis was used to analyze the signaling pathway. The results showed that hUC-MSCs improved healing of irradiation-induced skin ulcers in vivo using a rat model of skin ulcer. Transplantation of hUC-MSCs promoted keratin generation and keratinocytes proliferation of ulcer areas. Furthermore, the results demonstrated that hUC-MSCs increased expression of CD31 and VEGF in ulcers and promoted neovascularization. iTRAQ proteomics analysis results indicated that PI3K/Akt signaling pathway involved in hUC-MSCs-mediated repairing of irradiation-induced skin ulcer. In conclusion, human umbilical cord mesenchymal stem cells promoted neovascularization and re-epithelization, and improved healing of irradiation-induced skin ulcers. This healing improvement may be conducted through activating the PI3K/Akt signaling pathway, however, which needs to be proven by the further investigations.
Collapse
Affiliation(s)
- Zhongshan Liu
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of the Burns and Plastic, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daojiang Yu
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianwei Xu
- The Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, China
| | - Xiujie Li
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianyao Wang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Zhixu He
- The Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, China.
| | - Tianlan Zhao
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Candéias SM, Mika J, Finnon P, Verbiest T, Finnon R, Brown N, Bouffler S, Polanska J, Badie C. Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice. Cell Mol Life Sci 2017; 74:4339-4351. [PMID: 28667356 PMCID: PMC11107572 DOI: 10.1007/s00018-017-2581-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces "aging-like" effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.
Collapse
Affiliation(s)
- Serge M Candéias
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute, Laboratory of Chemistry and Biology of Metals, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, CNRS, UMR5249, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, UMR5249, University of Grenoble-Alpes, 38054, Grenoble, France.
| | - Justyna Mika
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Natalie Brown
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Joanna Polanska
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK.
| |
Collapse
|
11
|
Rybkina VL, Azizova TV, Scherthan H, Meineke V, Doerr H, Adamova GV, Teplyakova OV, Osovets SV, Bannikova MV, Zurochka AV. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:659-70. [PMID: 25073961 DOI: 10.1007/s00411-014-0556-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/08/2014] [Indexed: 05/20/2023]
Abstract
This study aimed to assess effects of chronic occupational exposure on immune status in Mayak workers chronically exposed to ionizing radiation (IR). The study cohort consists of 77 workers occupationally exposed to external gamma-rays at total dose from 0.5 to 3.0 Gy (14 individuals) and workers with combined exposure (external gamma-rays at total dose range 0.7-5.1 Gy and internal alpha-radiation from incorporated plutonium with a body burden of 0.3-16.4 kBq). The control group consists of 43 age- and sex-matched individuals who never were exposed to IR, never involved in any cleanup operations following radiation accidents and never resided at contaminated areas. Enzyme-linked immunoassay and flow cytometry were used to determine the relative concentration of lymphocytes and proteins. The concentrations of T-lymphocytes, interleukin-8 and immunoglobulins G were decreased in external gamma-exposed workers relative to control. Relative concentrations of NKT-lymphocytes, concentrations of transforming growth factor-β, interferon gamma, immunoglobulins A, immunoglobulins M and matrix proteinase-9 were higher in this group as compared with control. Relative concentrations of T-lymphocytes and concentration of interleukin-8 were decreased, while both the relative and absolute concentration of natural killers, concentration of immunoglobulins A and M and matrix proteinase-9 were increased in workers with combined exposure as compared to control. An inverse linear relation was revealed between absolute concentration of T-lymphocytes, relative and absolute concentration of T-helpers cells, concentration of interferon gamma and total absorbed dose from external gamma-rays in exposed workers. For workers with incorporated plutonium, there was an inverse linear relation of absolute concentration of T-helpers as well as direct linear relation of relative concentration of NKT-lymphocytes to total absorbed red bone marrow dose from internal alpha-radiation. In all, chronic occupational IR exposure of workers induced a depletion of immune cells in peripheral blood of the individuals involved.
Collapse
|
12
|
Kutanes Strahlensyndrom nach akzidenteller Exposition des Hautorgans mit ionisierenden Strahlen. Hautarzt 2013; 64:894-903. [DOI: 10.1007/s00105-013-2625-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Schwarz-Finsterle J, Scherthan H, Huna A, González P, Mueller P, Schmitt E, Erenpreisa J, Hausmann M. Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells. Mutat Res 2013; 756:56-65. [PMID: 23685102 DOI: 10.1016/j.mrgentox.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
The exposure of tumour cells to high doses of ionizing radiation can induce endopolyploidization as an escape route from cell death. This strategy generally results in mitotic catastrophe during the first few days after irradiation. However, some cells escape mitotic catastrophe, polyploidize and attempt to undergo genome reduction and de-polyploidization in order to create new, viable para-diploid tumour cell sub-clones. In search for the consequences of ionizing radiation induced endopolyploidization, genome and chromosome architecture in nuclei of polyploid tumour cells, and sub-nuclei after division of bi- or multi-nucleated cells were investigated during 7 days following irradiation. Polyploidization was induced in p53-function deficient HeLa cells by exposure to 10Gy of X-irradiation. Chromosome territories #1, #4, #12 and centromeres of chromosomes #6, #10, #X were labelled by FISH and analysed for chromosome numbers, volumes and spatial distribution during 7 days post irradiation. The numbers of interphase chromosome territories or centromeres, respectively, the positions of the most peripherally and centrally located chromosome territories, and the territory volumes were compared to non-irradiated controls over this time course. Nuclei with three copies of several chromosomes (#1, #6, #10, #12, #X) were found in the irradiated as well as non-irradiated specimens. From day 2 to day 5 post irradiation, chromosome territories (#1, #4, #12) shifted towards the nuclear periphery and their volumes increased 16- to 25-fold. Consequently, chromosome territories returned towards the nuclear centre during day 6 and 7 post irradiation. In comparison to non-irradiated cells (∼500μm(3)), the nuclear volume of irradiated cells was increased 8-fold (to ∼4000μm(3)) at day 7 post irradiation. Additionally, smaller cell nuclei with an average volume of about ∼255μm(3) were detected on day 7. The data suggest a radiation-induced generation of large intra-nuclear chromosome territories and their repositioning prior to genome reduction.
Collapse
Affiliation(s)
- Jutta Schwarz-Finsterle
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Akita S, Yoshimoto H, Ohtsuru A, Hirano A, Yamashita S. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries. RADIATION PROTECTION DOSIMETRY 2012; 151:656-660. [PMID: 22914335 DOI: 10.1093/rpd/ncs176] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Effective therapy for chronic radiation injuries, such as ulcers, is prone to infection. Stiffness is expected since the therapeutic radiation often involves wider and deeper tissues and often requires extensive debridement and reconstruction, which are not sometimes appropriate for elderly and compromised hosts. Autologous adipose-derived regenerative cells (ADRCs) are highly yielding, forming relatively elderly aged consecutive 10 cases, 63.6±14.9 y (52-89 y), with mean radiation dose of 75.0±35.4 Gy (50-120 Gy) were included with at least 10-month follow-up. Minimal debridement and ADRC injection in the wound bed and margin along with the injection of mixture of fat and ADRCs in the periphery were tested for efficacy and regenerated tissue quality by clinically as well as imaging by computed tomography and magnetic resonance imaging. Uncultured ADRCs of 1.6±1.3×10(7) cells were obtained. All cases healed uneventfully after 6.6±3.2 weeks (2-10 weeks) post-operatively. The done site morbidity was negligible and without major complications, such as paralysis or massive haematoma. The regenerated tissue quality was significantly superior to the pre-operative one and the mixture of fat and ADRCs connected to the intact tissue was very soft and pliable. Mean follow-up at 1.9±0.8 y (0.9-2.9 y) revealed no recurrence or new ulceration after treatment. Thus, the ADRCs treatment for decades-long radiation injuries is effective, safe and improves the quality of wounds.
Collapse
Affiliation(s)
- S Akita
- Division of Plastic and Reconstructive Surgery, Department of Developmental and Reconstructive Medicine, Nagasaki University, Graduate School of Biomedical and Sciences, Nagasaki, Japan.
| | | | | | | | | |
Collapse
|
15
|
Kinoshita N, Tsuda M, Hamuy R, Nakashima M, Nakamura-Kurashige T, Matsuu-Matsuyama M, Hirano A, Akita S. The usefulness of basic fibroblast growth factor for radiation-exposed tissue. Wound Repair Regen 2012; 20:91-102. [PMID: 22276588 DOI: 10.1111/j.1524-475x.2011.00758.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high dose of ionizing external radiation damage to the skin and soft tissue results in changes in function as well as in the general body condition. Once radiation surpasses the tissue safety or survival level, progressive alteration in the damaged tissue results in tissue loss and then flap loss. Local expression and action of stem cells or local growth factors in the irradiated tissue is mitigated, and external administration is sought to investigate the possibility of skin and soft tissue survival after an elevating flap. Basic fibroblast growth factor (bFGF) is primarily considered as a potent angiogenic growth factor. In burns, resurfacing with a dermal component is required, and bFGF stimulates wound healing and enhances human skin-derived mesenchymal stem cells under serum-free conditions in a dose-dependent manner. Thirty-five male, 4- to 8-week-old CLAWN miniature pigs received radiation exposure to assess the effectiveness of bFGF in terms of the progressive clinical course relevant to human skin and soft tissue. At 2 weeks following 10-Gy irradiation, tissue was preserved in the group receiving subcutaneous placement of a round-type tissue expander and bFGF. The expander plus bFGF group demonstrated significantly greater dermo-epidermal proliferation than the radiation alone, radiation plus bFGF, or expander plus radiation plus vehicle-solution groups, and new blood vessel formation was significantly increased in the expander tissue with bFGF after irradiation (p < 0.01). Electron microscopy revealed that tissue with expander and bFGF maintained more stable skin adnexae with preserved intact epidermis and dermis. Thus, bFGF improved and maintained the tissue viability after immediate irradiation in the skin and soft tissue.
Collapse
Affiliation(s)
- Naoshi Kinoshita
- Division of Plastic and Reconstructive Surgery, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Williams JP, McBride WH. After the bomb drops: a new look at radiation-induced multiple organ dysfunction syndrome (MODS). Int J Radiat Biol 2011; 87:851-68. [PMID: 21417595 PMCID: PMC3314299 DOI: 10.3109/09553002.2011.560996] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE There is increasing concern that, since the Cold War era, there has been little progress regarding the availability of medical countermeasures in the event of either a radiological or nuclear incident. Fortunately, since much is known about the acute consequences that are likely to be experienced by an exposed population, the probability of survival from the immediate hematological crises after total body irradiation (TBI) has improved in recent years. Therefore focus has begun to shift towards later down-stream effects, seen in such organs as the gastrointestinal tract (GI), skin, and lung. However, the mechanisms underlying therapy-related normal tissue late effects, resulting from localised irradiation, have remained somewhat elusive and even less is known about the development of the delayed syndrome seen in the context of whole body exposures, when it is likely that systemic perturbations may alter tissue microenvironments and homeostasis. CONCLUSIONS The sequence of organ failures observed after near-lethal TBI doses are similar in many ways to that of multiple organ dysfunction syndrome (MODS), leading to multiple organ failure (MOF). In this review, we compare the mechanistic pathways that underlie both MODS and delayed normal tissue effects since these may impact on strategies to identify radiation countermeasures.
Collapse
Affiliation(s)
- Jacqueline P Williams
- Department of Radiation Oncology, University of Rochester Medical Center Rochester, NY 14642, USA.
| | | |
Collapse
|
18
|
Muradyan A, Gilbertz K, Stabentheiner S, Klause S, Madle H, Meineke V, Ullmann R, Scherthan H. Acute high-dose X-radiation-induced genomic changes in A549 cells. Radiat Res 2011; 175:700-7. [PMID: 21361782 DOI: 10.1667/rr2341.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accidents with ionizing radiation often involve single, acute high-dose exposures that can lead to acute radiation syndrome and late effects such as carcinogenesis. To study such effects at the cellular level, we investigated acute ionizing radiation-induced chromosomal aberrations in A549 adenocarcinoma cells at the genome-wide level by exposing the cells to an acute dose of 6 Gy 240 kV X rays. One sham-irradiated clone and four surviving irradiated clones were recovered by minimal dilution and further expanded and analyzed by chromosome painting and tiling-path array CGH, with the nonirradiated clone 0 serving as the control. Acute X-ray exposure induced specific translocations and changes in modal chromosome number in the four irradiated clones. Array CGH disclosed unique and recurrent genomic changes, predominantly losses, and revealed that the fragile sites FRA3B and FRA16D were preferential regions of genomic alterations in all irradiated clones, which is likely related to radioresistant S-phase progression and genomic stress. Furthermore, clone 4 displayed an increased radiosensitivity at doses >5 Gy. Pairwise comparisons of the gene expression patterns of all irradiated clones to the sham-irradiated clone 0 revealed an enrichment of the Gene Ontology term "M Phase" (P = 6.2 × 10(-7)) in the set of differentially expressed genes of clone 4 but not in those of clones 1-3. Ionizing radiation-induced genomic changes and fragile site expression highlight the capacity of a single acute radiation exposure to affect the genome of exposed cells by inflicting genomic stress.
Collapse
Affiliation(s)
- A Muradyan
- a Max-Planck-Inst. für Molekulare Genetik, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Akita S, Akino K, Hirano A, Ohtsuru A, Yamashita S. Noncultured autologous adipose-derived stem cells therapy for chronic radiation injury. Stem Cells Int 2010; 2010:532704. [PMID: 21151652 PMCID: PMC2995929 DOI: 10.4061/2010/532704] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/04/2010] [Accepted: 09/28/2010] [Indexed: 11/30/2022] Open
Abstract
Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs) with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.
Collapse
Affiliation(s)
- Sadanori Akita
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | |
Collapse
|
20
|
Jikia D. Long-term follow-up of the patients injured in the Lilo Radiological Accident. HEALTH PHYSICS 2010; 98:872-875. [PMID: 20445397 DOI: 10.1097/hp.0b013e3181c8f949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper presents follow-up of the patients injured in the Lilo Radiological Accident in 1996-1997, Georgia, and discusses initial and intermediate medical accident management. There is also given estimation of the patients' medical status after 11 years since Lilo Radiological Accident. Consequently, the main lessons to be drawn from this accident are (1) Satisfactory initial surgery did not prevent in all cases the occurrence of some secondary (often localized) radionecrotic ulcerations several months, or even years, later; and (2) Skin lesions which spontaneously healed and appeared stable at the initial examination could deteriorate, with secondary reopening, a long time (months to years) thereafter. Moreover, a number of sequelae were responsible for severe impairment of these patients' life quality; functional sequelae (finger amputations, etc.) for some of them, cosmetic ones for almost all patients, oligo or azoospermia in all cases, and various understandable psychomatic symptoms and nervous breakdowns.
Collapse
Affiliation(s)
- David Jikia
- Al Aladashvili University Clinic of Tbilisi State Medical University, 103 Uznadze str, 0102 Tbilisi, Georgia.
| |
Collapse
|
21
|
Abstract
Localized radiation injuries account for the vast majority of accidental radiation exposures and mainly occur due to direct handling of highly intense radioactive sources. Their clinical course and severity mainly depend on the type of radiation, radiation source, dose and dose rate, duration of exposure, dose distribution, and location and size of the area exposed. Local injuries appear as skin injuries; however, they may involve radiation damage to other organs and tissues. Local injuries evolve slowly over time and clinical signs and symptoms usually take days to weeks to manifest. Although in most cases not life threatening, their delayed effects may result in serious impairments. Standardized therapeutic protocols and evidence-based approaches for the management of local injuries do not exist yet. Local injuries should therefore be treated symptomatically. The two main approaches comprise conservative and surgical treatment. Conservative methods focus on pain control, reduction of inflammation, prevention of infection and of further vasculature insult, improvement of circulation, healing acceleration, wound cleaning, and minimizing fibrosis. Surgical treatment and plastic remodeling of anatomic structures may be required. During recent years, significant progress has been made in the management of local injuries. There is increasing evidence that injections of human mesenchymal stem cells may be a promising therapeutic approach in the treatment of cutaneous radiation reactions. A consistent follow-up of radiation patients keeping in mind the possible onset of late radiation effects will contribute to the comprehensive understanding of the pathophysiology of the radiation reaction which is crucial to establish evidence-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kerstin Müller
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | |
Collapse
|
22
|
Akleyev AV. Tissue reactions under chronic exposure to ionizing radiation. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Levêque P, Godechal Q, Bol A, Trompier F, Gallez B. X-band EPR imaging as a tool for gradient dose reconstruction in irradiated bones. Med Phys 2009; 36:4223-9. [DOI: 10.1118/1.3194775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
|
25
|
Accumulation of DSBs in γ-H2AX domains fuel chromosomal aberrations. Biochem Biophys Res Commun 2008; 371:694-7. [DOI: 10.1016/j.bbrc.2008.04.127] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 11/18/2022]
|
26
|
Stepanova E, Karmaus W, Naboka M, Vdovenko V, Mousseau T, Shestopalov VM, Vena J, Svendsen E, Underhill D, Pastides H. Exposure from the Chernobyl accident had adverse effects on erythrocytes, leukocytes, and, platelets in children in the Narodichesky region, Ukraine: a 6-year follow-up study. Environ Health 2008; 7:21. [PMID: 18513393 PMCID: PMC2459146 DOI: 10.1186/1476-069x-7-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 05/30/2008] [Indexed: 05/15/2023]
Abstract
BACKGROUND After the Chernobyl nuclear accident on April 26, 1986, all children in the contaminated territory of the Narodichesky region, Zhitomir Oblast, Ukraine, were obliged to participate in a yearly medical examination. We present the results from these examinations for the years 1993 to 1998. Since the hematopoietic system is an important target, we investigated the association between residential soil density of 137Caesium (137Cs) and hemoglobin concentration, and erythrocyte, platelet, and leukocyte counts in 1,251 children, using 4,989 repeated measurements taken from 1993 to 1998. METHODS Soil contamination measurements from 38 settlements were used as exposures. Blood counts were conducted using the same auto-analyzer in all investigations for all years. We used linear mixed models to compensate for the repeated measurements of each child over the six year period. We estimated the adjusted means for all markers, controlling for potential confounders. RESULTS Data show a statistically significant reduction in red and white blood cell counts, platelet counts and hemoglobin with increasing residential 137Cs soil contamination. Over the six-year observation period, hematologic markers did improve. In children with the higher exposure who were born before the accident, this improvement was more pronounced for platelet counts, and less for red blood cells and hemoglobin. There was no exposurextime interaction for white blood cell counts and not in 702 children who were born after the accident. The initial exposure gradient persisted in this sub-sample of children. CONCLUSION The study is the first longitudinal analysis from a large cohort of children after the Chernobyl accident. The findings suggest persistent adverse hematological effects associated with residential 137Cs exposure.
Collapse
Affiliation(s)
- Eugenia Stepanova
- Scientific Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Wilfried Karmaus
- Department of Epidemiology and Biostatistics, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Marina Naboka
- Radioecological Center, Ukrainian National Academy of Sciences, Kyiv, Ukraine
| | - Vitaliy Vdovenko
- Scientific Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Tim Mousseau
- College of Arts and Sciences, University of South Carolina, Columbia, South Carolina, USA
| | | | - John Vena
- Department of Epidemiology and Biostatistics, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Erik Svendsen
- Department of Epidemiology and Biostatistics, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Dwight Underhill
- Department of Environmental Health Science, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Harris Pastides
- Department of Epidemiology and Biostatistics, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|