1
|
Dziurman G, Drzał A, Murzyn AA, Kmiec MM, Elas M, Krzykawska-Serda M. Pulse and CW EPR Oximetry Using Oxychip in Gemcitabine-Treated Murine Pancreatic Tumors. Mol Imaging Biol 2024; 26:473-483. [PMID: 37784004 PMCID: PMC11211198 DOI: 10.1007/s11307-023-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE The goal of this work was to compare pO2 measured using both continuous wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopy. The Oxychip particle spin probe enabled longitudinal monitoring of pO2 in murine pancreatic tumor treated with gemcitabine during the course of therapy. PROCEDURES Pancreatic PanO2 tumors were growing in the syngeneic mice, in the leg. Five doses of saline in control animals or gemcitabine were administered every 3 days, and pO2 was measured after each dose at several time points. Oxygen partial pressure was determined from the linewidth of the CW EPR signal (Bruker E540L) or from the T2 measured using the electron spin echo sequence (Jiva-25™). RESULTS The oxygen sensitivity was determined from a calibration curve as 6.1 mG/mm Hg in CW EPR and 68.5 ms-1/mm Hg in pulse EPR. A slight increase in pO2 of up to 20 mm Hg was observed after the third dose of gemcitabine compared to the control. The maximum delta pO2 during the therapy correlated with better survival. CONCLUSIONS Both techniques offer fast and reliable oximetry in vivo, allowing to follow the effects of pharmaceutic intervention.
Collapse
Affiliation(s)
- Gabriela Dziurman
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, 7 Gronostajowa St., 30-387, Krakow, Poland
| | - Agnieszka Drzał
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, 7 Gronostajowa St., 30-387, Krakow, Poland
| | - Aleksandra Anna Murzyn
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, 7 Gronostajowa St., 30-387, Krakow, Poland
| | - Maciej Mikolaj Kmiec
- Department of Radiology, Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Rd, Hanover, NH, 03755, USA
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, 7 Gronostajowa St., 30-387, Krakow, Poland
| | - Martyna Krzykawska-Serda
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, 7 Gronostajowa St., 30-387, Krakow, Poland.
- Department of Radiation & Cellular Oncology, The University of Chicago, 5758 S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Swartz HM, Flood AB. Re-examining What the Results of "a Measurement of Oxygen Level in Tissues" Really Mean. Mol Imaging Biol 2024; 26:391-402. [PMID: 38177616 DOI: 10.1007/s11307-023-01887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Within this special issue, many eminent investigators report on measurements of oxygen (O2) levels in tissues. Given the complexities of spatial and temporal heterogeneities of O2 in tissues and its many sources, this commentary draws attention to what such measurements do and do not actually assess regarding O2 levels in tissues. Given this limitation, it also discusses how these results can be used most effectively. To provide a convenient mechanism to discuss these issues more fully, this analysis focuses on measurements using EPR oximetry, but these considerations apply to all other techniques. The nature of the delivery of O2 to tissues and the mechanisms by which O2 is consumed necessarily result in very different levels of O2 within the volume of each voxel of a measurement. Better spatial resolution cannot fully resolve the problem because the variations include O2 gradients within each cell. Improved resolution of the time-dependent variation in O2 is also very challenging because O2 levels within tissues can have fluctuations of O2 levels in the range of milliseconds, while most methods require longer times to acquire the data from each voxel. Based on these issues, we argue that the values obtained inevitably are complex aggregates of averages of O2 levels across space and time in the tissue. These complexities arise from the complex physiology of tissues and are compounded by the limitations of the technique and its ability to acquire data. However, one often can obtain very meaningful and useful results if these complexities and limitations are taken into account. We illustrate this, using results obtained with in vivo EPR oximetry, especially utilizing its capacity to make repeated measurements to follow changes in O2 levels that occur with interventions and/or over time.
Collapse
Affiliation(s)
- Harold M Swartz
- Dept. of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Clin-EPR, LLC, Lyme, NH, USA
| | - Ann Barry Flood
- Dept. of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
- Clin-EPR, LLC, Lyme, NH, USA.
| |
Collapse
|
3
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
4
|
Pagare PP, Rastegar A, Abdulmalik O, Omar AM, Zhang Y, Fleischman A, Safo MK. Modulating hemoglobin allostery for treatment of sickle cell disease: current progress and intellectual property. Expert Opin Ther Pat 2022; 32:115-130. [PMID: 34657559 PMCID: PMC8881396 DOI: 10.1080/13543776.2022.1994945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Sickle cell disease (SCD) is a debilitating inherited disorder that affects millions worldwide. Four novel SCD therapeutics have been approved, including the hemoglobin (Hb) modulator Voxelotor. AREAS COVERED This review provides an overview of discovery efforts toward modulating Hb allosteric behavior as a treatment for SCD, with a focus on aromatic aldehydes that increase Hb oxygen affinity to prevent the primary pathophysiology of hypoxia-induce erythrocyte sickling. EXPERT OPINION The quest to develop small molecules, especially aromatic aldehydes, to modulate Hb allosteric properties for SCD began in the 1970s; however, early promise was dogged by concerns that stalled support for research efforts. Persistent efforts eventually culminated in the discovery of the anti-sickling agent 5-HMF in the 2000s, and reinvigorated interest that led to the discovery of vanillin analogs, including Voxelotor, the first FDA approved Hb modulator for the treatment of SCD. With burgeoning interest in the field of Hb modulation, there is a growing landscape of intellectual property, including drug candidates at various stages of preclinical and clinical investigations. Hb modulators could provide not only the best chance for a highly effective oral therapy for SCD, especially in the under-developed world, but also a way to treat a variety of other human conditions.
Collapse
Affiliation(s)
- Piyusha P. Pagare
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Aref Rastegar
- The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, PA 19104
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298
| | | | - Martin K. Safo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
5
|
Desmet CM, Tran LBA, Danhier P, Gallez B. Characterization of a clinically used charcoal suspension for in vivo EPR oximetry. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:205-212. [DOI: 10.1007/s10334-018-0704-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
|
6
|
Gallez B, Neveu MA, Danhier P, Jordan BF. Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:700-711. [DOI: 10.1016/j.bbabio.2017.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/17/2022]
|
7
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
8
|
Hou HG, Khan N, Du GX, Hodge S, Swartz HM. Temporal variation in the response of tumors to hyperoxia with breathing carbogen and oxygen. Med Gas Res 2016; 6:138-146. [PMID: 27867481 PMCID: PMC5110141 DOI: 10.4103/2045-9912.191359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The effect of hyperoxygenation with carbogen (95% O2 + 5% CO2) and 100% oxygen inhalation on partial pressure of oxygen (pO2) of radiation-induced fibrosarcoma (RIF-1) tumor was investigated. RIF-1 tumors were innoculated in C3H mice, and aggregates of oximetry probe, lithium phthalocyanine (LiPc), was implanted in each tumor. A baseline tumor pO2 was measured by electron paramagnetic resonance (EPR) oximetry for 20 minutes in anesthetized mice breathing 30% O2 and then the gas was switched to carbogen or 100 % oxygen for 60 minutes. These experiments were repeated for 10 days. RIF-1 tumors were hypoxic with a baseline tissue pO2 of 6.2–8.3 mmHg in mice breathing 30% O2. Carbogen and 100% oxygen significantly increased tumor pO2 on days 1 to 5, with a maximal increase at approximately 32–45 minutes on each day. However, the extent of increase in pO2 from the baseline declined significantly on day 5 and day 10. The results provide quantitative information on the effect of hyperoxic gas inhalation on tumor pO2 over the course of 10 days. EPR oximetry can be effectively used to repeatedly monitor tumor pO2 and test hyperoxic methods for potential clinical applications.
Collapse
Affiliation(s)
- Hua-Gang Hou
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nadeem Khan
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Gai-Xin Du
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sassan Hodge
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Harold M Swartz
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
9
|
Omar AM, Mahran MA, Ghatge MS, Chowdhury N, Bamane FHA, El-Araby ME, Abdulmalik O, Safo MK. Identification of a novel class of covalent modifiers of hemoglobin as potential antisickling agents. Org Biomol Chem 2015; 13:6353-70. [PMID: 25974708 DOI: 10.1039/c5ob00367a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic aldehydes and ethacrynic acid (ECA) exhibit antipolymerization properties that are beneficial for sickle cell disease therapy. Based on the ECA pharmacophore and its atomic interaction with hemoglobin, we designed and synthesized several compounds - designated as KAUS (imidazolylacryloyl derivatives) - that we hypothesized would bind covalently to βCys93 of hemoglobin and inhibit sickling. The compounds surprisingly showed weak allosteric and antisickling properties. X-ray studies of hemoglobin in complex with representative KAUS compounds revealed an unanticipated mode of Michael addition between the β-unsaturated carbon and the N-terminal αVal1 nitrogen at the α-cleft of hemoglobin, with no observable interaction with βCys93. Interestingly, the compounds exhibited almost no reactivity with the free amino acids, L-Val, L-His and L-Lys, but showed some reactivity with both glutathione and L-Cys. Our findings provide a molecular level explanation for the compounds biological activities and an important framework for targeted modifications that would yield novel potent antisickling agents.
Collapse
Affiliation(s)
- A M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:266-81. [PMID: 25362845 DOI: 10.1002/cmmi.1630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI. Illustrative examples are presented with attempts to qualify oxygen sensitive contrast (i.e. T1 - and T2 *-based methods), redox status or melanin content in tissues. Other areas are likely to benefit from the combined EPR/MRI approach, namely cell tracking studies. Finally, the combination of EPR and MRI studies on the same models provides invaluable data regarding tissue oxygenation, hemodynamics and energetics. Our description will be illustrative rather than exhaustive to give to the readers a flavour of 'what EPR can do for MRI'.
Collapse
Affiliation(s)
- Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Abstract
The pathophysiology of sickle cell disease involves the polymerization of sickle hemoglobin in its T state, which develops under low oxygen saturation. One therapeutic strategy is to develop pharmacologic agents to stabilize the R state of hemoglobin, which has higher oxygen affinity and is expected to have slower kinetics of polymerization, potentially delaying the sickling of red cells during circulation. This strategy has stimulated the investigation of aromatic aldehydes, aspirin derivatives, thiols, and isothiocyanates that can stabilize the R state of hemoglobin in vitro. One representative aromatic aldehyde agent, 5-hydoxymethyl-2-furfural, protects sickle cell mice from the effects of hypoxia.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, P.O. Box 980540, Richmond, VA 23219-1540, USA
| | - Gregory J Kato
- Division of Hematology-Oncology, Department of Medicine, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, 200 Lothrop Street, BST E1240, Pittsburgh, PA 15261, USA.
| |
Collapse
|
12
|
Hou H, Mupparaju SP, Lariviere JP, Hodge S, Gui J, Swartz HM, Khan N. Assessment of the changes in 9L and C6 glioma pO2 by EPR oximetry as a prognostic indicator of differential response to radiotherapy. Radiat Res 2013; 179:343-51. [PMID: 23391148 DOI: 10.1667/rr2811.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor hypoxia impedes the outcome of radiotherapy. As the extent of hypoxia in solid tumors varies during the course of radiotherapy, methods that can provide repeated assessment of tumor pO2 such as EPR oximetry may enhance the efficacy of radiotherapy by scheduling irradiations when the tumors are oxygenated. The repeated measurements of tumor pO2 may also identify responders, and thereby facilitate the design of better treatment plans for nonresponding tumors. We have investigated the temporal changes in the ectopic 9L and C6 glioma pO2 irradiated with single radiation doses less than 10 Gy by EPR oximetry. The 9L and C6 tumors were hypoxic with pO2 of approximately 5-9 mmHg. The pO2 of C6 tumors increased significantly with irradiation of 4.8-9.3 Gy. However, no change in the 9L tumor pO2 was observed. The irradiation of the oxygenated C6 tumors with a second dose of 4.8 Gy resulted in a significant delay in growth compared to hypoxic and 2 Gy × 5 treatment groups. The C6 tumors with an increase in pO2 of greater than 50% from the baseline of irradiation with 4.8 Gy (responders) had a significant tumor growth delay compared to nonresponders. These results indicate that the ectopic 9L and C6 tumors responded differently to radiotherapy. We propose that the repeated measurement of the oxygen levels in the tumors during radiotherapy can be used to identify responders and to design tumor oxygen guided treatment plans to improve the outcome.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Krishna MC, Matsumoto S, Yasui H, Saito K, Devasahayam N, Subramanian S, Mitchell JB. Electron Paramagnetic Resonance Imaging of Tumor pO2. Radiat Res 2012; 177:376-86. [DOI: 10.1667/rr2622.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Hou H, Dong R, Li H, Williams B, Lariviere JP, Hekmatyar SK, Kauppinen RA, Khan N, Swartz H. Dynamic changes in oxygenation of intracranial tumor and contralateral brain during tumor growth and carbogen breathing: a multisite EPR oximetry with implantable resonators. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:22-8. [PMID: 22033225 PMCID: PMC3730127 DOI: 10.1016/j.jmr.2011.09.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Several techniques currently exist for measuring tissue oxygen; however technical difficulties have limited their usefulness and general application. We report a recently developed electron paramagnetic resonance (EPR) oximetry approach with multiple probe implantable resonators (IRs) that allow repeated measurements of oxygen in tissue at depths of greater than 10mm. METHODS The EPR signal to noise (S/N) ratio of two probe IRs was compared with that of LiPc deposits. The feasibility of intracranial tissue pO(2) measurements by EPR oximetry using IRs was tested in normal rats and rats bearing intracerebral F98 tumors. The dynamic changes in the tissue pO(2) were assessed during repeated hyperoxia with carbogen breathing. RESULTS A 6-10 times increase in the S/N ratio was observed with IRs as compared to LiPc deposits. The mean brain pO(2) of normal rats was stable and increased significantly during carbogen inhalation in experiments repeated for 3months. The pO(2) of F98 glioma declined gradually, while the pO(2) of contralateral brain essentially remained the same. Although a significant increase in the glioma pO(2) was observed during carbogen inhalation, this effect declined in experiments repeated over days. CONCLUSION EPR oximetry with IRs provides a significant increase in S/N ratio. The ability to repeatedly assess orthotopic glioma pO(2) is likely to play a vital role in understanding the dynamics of tissue pO(2) during tumor growth and therapies designed to modulate tumor hypoxia. This information could then be used to optimize chemoradiation by scheduling treatments at times of increased glioma oxygenation.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for the Study of Viable Systems, Department of Radiology, Dartmouth Medical School, Hanover, NH 03755, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mupparaju S, Hou H, Lariviere JP, Swartz H, Jounaidi Y, Khan N. Repeated tumor oximetry to identify therapeutic window during metronomic cyclophosphamide treatment of 9L gliomas. Oncol Rep 2011; 26:281-6. [PMID: 21503586 DOI: 10.3892/or.2011.1268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/17/2011] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas are aggressive and angiogenic tumors with high VEGF content. Consequently, approaches such as metronomic chemotherapy, which have an anti-angiogenic effect, are being investigated. However, a lack of an appropriate technique that can facilitate the identification of vascular changes during antiangiogenic treatments has restricted therapeutic optimization. We have investigated the potential of tumor pO2 as a marker to detect vascular changes during metronomic chemotherapy. Electron paramagnetic resonance (EPR) oximetry was used to repeatedly assess tumor pO2 during metronomic cyclophosphamide treatment of subcutaneous 9L tumors. The 9L tumors were hypoxic with a pO2 of 5.6-8 mmHg and a tumor volume of 247-300 mm3 prior to any treatment. Tumor pO2 increased significantly to 19.7 mmHg on day 10 and remained at an elevated level until day 33 during 4 weekly treatments with 140 mg/kg cyclophosphamide. A significant decrease in the tumor volume on days 21-31 occurred in the cyclophosphamide group, while the tumor volume of the control group significantly increased during measurements for two weeks. A significant tumor growth delay was achieved with two weekly treatments of cyclophosphamide plus radiotherapy (4 Gy x 5) as compared to control, cyclophosphamide and radiotherapy alone groups. The results indicate the potential of EPR oximetry to assess tumor pO2 during metronomic chemotherapy. The ability to identify the duration of an increase in tumor pO2, therapeutic window, non-invasively by EPR oximetry could have a significant impact on the optimization of antiangiogenic approaches for the treatment of gliomas. This vital information could also be used to schedule radiotherapy to enhance therapeutic outcome.
Collapse
Affiliation(s)
- Sriram Mupparaju
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
16
|
Jordan BF, Gallez B. Surrogate MR markers of response to chemo- or radiotherapy in association with co-treatments: a retrospective analysis of multi-modal studies. CONTRAST MEDIA & MOLECULAR IMAGING 2011; 5:323-32. [PMID: 20648644 DOI: 10.1002/cmmi.397] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study of magnetic resonance (MR) markers over the past decade has provided evidence that the tumor microenvironnement and hemodynamics play a major role in determining tumor response to therapy. The aim of the present work is to predict and monitor the efficacy of co-treatments to radio- and chemotherapy by noninvasive MR imaging. Ten different co-treatments were involved in this retrospective analysis of our previously published data, including NO-mediated co-treatments (insulin and isosorbide dinitrate), anti-inflammatory drugs (hydrocortisone, NS-398), anti-angiogenic agents (thalidomide, SU5416 and ZD6474), a vasoactive agent (xanthinol nicotinate), botulinum toxin and carbogen breathing. Dynamic contrast enhanced (DCE) MRI, intrinsic susceptibility-weighted (BOLD) MRI and electronic paramagnetic resonance (EPR) oximetry all reflect tumor microenvironment hemodynamic variables that are known to influence tumor response. Eight MR-derived parameters (markers) were tested for their ability to predict therapeutic outcome (factor of increase in regrowth delay) in experimental tumor models (TLT and FSaII) after radiation therapy and/or chemotherapy with cyclophosphamide, namely tumor pO₂ and O₂ consumption rate (using EPR oximetry); tumor blood flow and permeability, i.e. V(p), K(trans), K(ep) and percentage of perfused vessels (using DCE-MRI); and BOLD signal intensity and R₂* (using functional MRI). This multi-modal comparison of co-treatment efficacy points out the limitations of each MR marker and identifies in vivo pO₂ as a relevant endpoint for radiation therapy. DCE parameters (V(p) and K(ep)) were identified as a relevant endpoints for cyclophosphamide chemotherapy in our tumor models. This study helps qualify relevant imaging endpoints in the preclinical setting of cancer therapy.
Collapse
Affiliation(s)
- Bénédicte F Jordan
- Laboratory of Biomedical Magnetic Resonance, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B-1200 Brussels, Belgium
| | | |
Collapse
|
17
|
HOU H, DONG R, LARIVIERE JP, MUPPARAJU SP, SWARTZ HM, KHAN N. Synergistic combination of hyperoxygenation and radiotherapy by repeated assessments of tumor pO2 with EPR oximetry. JOURNAL OF RADIATION RESEARCH 2011; 52:568-74. [PMID: 21799293 PMCID: PMC3955714 DOI: 10.1269/jrr.11028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The effect of hyperoxygenation with carbogen (95% O(2) + 5% CO(2)) inhalation on RIF-1 tumor pO(2 )and its consequence on growth inhibition with fractionated radiotherapy is reported. The temporal changes in the tumor pO(2) were assessed by in vivo Electron Paramagnetic Resonance (EPR) oximetry in mice breathing 30% O(2) or carbogen and the tumors were irradiated with 4 Gy/day for 5 consecutive days; a protocol that emulates the clinical application of carbogen. The RIF-1 tumors were hypoxic with a tissue pO(2) of 5-9 mmHg. Carbogen (CB) breathing significantly increased tumor pO(2), with a maximum increase at 22.9-31.2 min on days 1-5, however, the magnitude of increase in pO(2) declined on day 5. Radiotherapy during carbogen inhalation (CB/RT) resulted in a significant tumor growth inhibition from day 3 to day 6 as compared to 30%O(2)/RT and carbogen (CB/Sham RT) groups. The results provide unambiguous quantitative information on the effect of carbogen inhalation on tumor pO(2) over the course of 5 days. Tumor growth inhibition in the CB/RT group confirms that the tumor oxygenation with carbogen was radiobiologically significant. Repeated tumor pO(2) measurements by EPR oximetry can provide temporal information that could be used to improve therapeutic outcomes by scheduling doses at times of improved tumor oxygenation.
Collapse
Affiliation(s)
- Huagang HOU
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Ruhong DONG
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Jean P. LARIVIERE
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Sriram P. MUPPARAJU
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Harold M. SWARTZ
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Nadeem KHAN
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
- Contact information, Phone: 1-603-6533591, Fax: 1-603-6501717,
| |
Collapse
|
18
|
Abramovic Z, Hou H, Julijana K, Sentjurc M, Lariviere JP, Swartz HM, Khan N. Modulation of tumor hypoxia by topical formulations with vasodilators for enhancing therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 701:75-82. [PMID: 21445772 DOI: 10.1007/978-1-4419-7756-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor hypoxia is a well known therapeutic problem which contributes to radioresistance and aggressive tumor characteristics. Lack of techniques for repeated measurements of tumor oxygenation (pO(2), partial pressure of oxygen) has restricted the optimization of hypoxia modifying methods and their efficacious application with radiotherapy. We have investigated a non-invasive method to enhance tissue pO(2) of peripheral tumors using topical application of formulations with BN (Benzyl Nicotinate), a vasodilator, and have used EPR (Electron Paramagnetic Resonance) oximetry to follow its effect on tumor oxygenation.We incorporated 2.5% BN in both hydrogel and microemulsions and investigated the effects on pO(2) of subcutaneous RIF-1 (Radiation Induced Fibrosarcoma) tumors in C3H mice. The experiments were repeated for five consecutive days. The topical application of BN in hydrogel led to a significant increase from a pre-treatment pO(2) of 9.3 mmHg to 11 - 16 mmHg at 30 - 50 min on day 1. However, the magnitude and the time of significant increase in pO(2) decreased with repeated topical applications. The BN in a microemulsion resulted in a significant increase from a baseline pO(2) of 8.8 mmHg to 13 - 18 mmHg at 10 - 50 min on day 1. Experiments repeated on subsequent days showed a decline in the magnitude of pO(2) increase on repeated applications. No significant change in tumor pO(2) was observed in experiments with formulations without BN (vehicle only).EPR oximetry was successfully used to follow the temporal changes in tumor pO(2) during repeated applications for five consecutive days. This approach can be potentially used to enhance radiotherapeutic outcome by scheduling radiation doses when an increase in tumor pO(2) is observed after topical applications of BN formulations.
Collapse
Affiliation(s)
- Zrinka Abramovic
- Laboratory of Biophysics, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
19
|
Tumor pO₂ as a surrogate marker to identify therapeutic window during metronomic chemotherapy of 9L gliomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 701:107-13. [PMID: 21445776 DOI: 10.1007/978-1-4419-7756-4_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastomas are aggressive and highly vascularized primary brain tumors with a 5-year survival rate of less than 10%. Approaches targeting tumor vasculature are currently being investigated to achieve therapeutic benefits for this fatal malignancy. However, lack of suitable markers that can be used to monitor therapeutic effects during such treatments has restricted their optimization. We have focused on the development of tumor pO(2) as a surrogate marker to identify the therapeutic window during metronomic chemotherapy.We report the effect of four weekly administrations of cyclophosphamide (140 mg/Kg, i.p), a chemo drug, on tumor pO(2) and growth of subcutaneous 9L tumors in SCID mice. The repeated measurement of tumor pO(2) was carried out using in vivo EPR oximetry. The subcutaneous 9L tumors were hypoxic with a pre-treatment tumor pO(2) of 5.1 ± 1 mmHg and a tumor volume of 236 ± 45 mm3 on day 0. The tumor pO(2) increased significantly to 26.2 ± 2 mmHg on day 10, and remained at an elevated level till day 31 during weekly treatments with cyclophosphamide. The tumor pO(2) then declined to 20 ± 9 mmHg on day 43. The tumor volume of the control group increased significantly with no change in tumor pO(2)over days.Results indicate a transient increase in tumor pO(2) during metronomic chemotherapy of 9L gliomas and could be potentially used as a marker to identify vessel normalization during metronomic chemotherapy. The ability to identify therapeutic window non-invasively using EPR oximetry can have a significant impact on the optimization of clinical protocols. In vivo EPR oximetry is currently being tested for repeated pO(2) measurements in patients with superficial tumors.
Collapse
|
20
|
Hou H, Abramovic Z, Lariviere JP, Sentjurc M, Swartz H, Khan N. Effect of a topical vasodilator on tumor hypoxia and tumor oxygen guided radiotherapy using EPR oximetry. Radiat Res 2010; 173:651-8. [PMID: 20426665 DOI: 10.1667/rr1947.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We sought to reduce tumor hypoxia by topical application of a vasodilator, benzyl nicotinate (BN), and investigated its effect on the growth of tumors irradiated at times when tumor pO(2) increased. EPR oximetry was used to follow the changes in the tissue pO(2) of subcutaneous radiation-induced fibrosarcoma (RIF-1) tumors during topical applications of 1.25-8% BN formulations for 5 consecutive days. The RIF-1 tumors were hypoxic with a tissue pO(2) of 4.6-7.0 mmHg. A significant increase in tumor pO(2) occurred 10-30 min after BN application. The formulation with the minimal BN concentration that produced a significant increase in tumor pO(2) was used for the radiation study. The tumors were irradiated (4 Gy x 5) at the time of the maximum increase in pO(2) observed with the 2.5% BN formulation. The tumors with an increase in pO(2) of greater than 2 mmHg from the baseline after application of BN on day 1 had a significant growth inhibition compared to the tumors with an increase in pO(2) of less than 2 mmHg. The results indicate that the irradiation of tumors at the time of an increase in pO(2) after the topical application of the 2.5% BN formulation led to a significant growth inhibition. EPR oximetry provided dynamic information on the changes in tumor pO(2), which could be used to identify responders and non-responders and schedule therapy during the experiments.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Diagnostic Radiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE To review the existing endpoints of tumour growth delay assays in experimental radiobiology with an emphasis on their efficient estimation for statistically significant identification of the treatment effect. To mathematically define doubling time (DT), tumour-growth delay (TGD) and cancer-cell surviving fraction (SF) in vivo using exponential growth and regrowth models with tumour volume measurements obtained from animal experiments. MATERIALS AND METHODS A statistical model-based approach is used to define and efficiently estimate the three endpoints of tumour therapy in experimental cancer research. RESULTS The log scale is advocated for plotting the tumour volume data and the respective analysis. Therefore, the geometric mean should be used to display the mean tumour volume data, and the group comparison should be a t-test for the log volume to comply with the Gaussian-distribution assumption. The relationship between cancer-cell SF, TGD and rate of growth is rigorously established. The widespread formula for cell kill is corrected; it has been rigorously shown that TGD is the difference between DTs. The software for the tumour growth delay analysis based on the mixed modeling approach with a complete set of instructions and example can be found on the author's webpage. CONCLUSIONS The existing practice for TGD data analysis from animal experiments suffers from imprecision and large standard errors that yield low power and statistically insignificant treatment effect. This practice should be replaced with a model-based statistical analysis on the log scale.
Collapse
Affiliation(s)
- Eugene Demidenko
- Section of Biostatistics and Epidemiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
22
|
Doloff JC, Khan N, Ma J, Demidenko E, Swartz HM, Jounaidi Y. Increased tumor oxygenation and drug uptake during anti-angiogenic weekly low dose cyclophosphamide enhances the anti-tumor effect of weekly tirapazamine. Curr Cancer Drug Targets 2009; 9:777-88. [PMID: 19754361 DOI: 10.2174/156800909789271503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2(nd) CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO(2), starting at 48 hr, which further increased after the 3(rd) CPA injection. pO(2) levels were, however, stable in growing untreated tumors. A strong negative correlation (-0.81) between tumor pO(2) and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO(2) with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs.
Collapse
Affiliation(s)
- J C Doloff
- Department of Biology, Boston University, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
23
|
Khan N, Mupparaju SP, Hou H, Lariviere JP, Demidenko E, Swartz HM, Eastman A. Radiotherapy in conjunction with 7-hydroxystaurosporine: a multimodal approach with tumor pO2 as a potential marker of therapeutic response. Radiat Res 2009; 172:592-7. [PMID: 19883227 DOI: 10.1667/rr1781.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Checkpoint inhibitors potentially could be used to enhance cell killing by DNA-targeted therapeutic modalities such as radiotherapy. UCN-01 (7-hydroxystaurosporine) inhibits S and G2 checkpoint arrest in the cells of various malignant cell lines and has been investigated in combination with chemotherapy. However, little is known about its potential use in combination with radiotherapy. We report the effect of 20 Gy radiation given in conjunction with UCN-01 on the pO2 and growth of subcutaneous RIF-1 tumors. Multisite EPR oximetry was used for repeated, non-invasive tumor pO2 measurements. The effect of UCN-01 and/or 20 Gy on tumor pO2 and tumor volume was investigated to determine therapeutic outcomes. Untreated RIF-1 tumors were hypoxic with a tissue pO2 of 5-7 mmHg. Treatment with 20 Gy or UCN-01 significantly reduced tumor growth, and a modest increase in tumor pO2 was observed in tumors treated with 20 Gy. However, irradiation with 20 Gy 12 h after UCN-01 treatment resulted in a significant inhibition of tumor growth and a significant increase in tumor pO2 to 16-28 mmHg from day 1 onward compared to the control, UCN-01 or 20-Gy groups. Treatment with UCN-01 12 h after 20 Gy also led to a similar growth inhibition of the tumors and a similar increase in tumor pO2. The changes in tumor pO2 observed after the treatment correlated inversely with the tumor volume in the groups receiving UCN-01 with 20 Gy. This multimodal approach could be used to enhance the outcome of radiotherapy. Furthermore, tumor pO2 could be a potential marker of therapeutic response.
Collapse
Affiliation(s)
- Nadeem Khan
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Haney CR, Parasca AD, Fan X, Bell RM, Zamora MA, Karczmar GS, Mauceri HJ, Halpern HJ, Weichselbaum RR, Pelizzari CA. Characterization of response to radiation mediated gene therapy by means of multimodality imaging. Magn Reson Med 2009; 62:348-56. [PMID: 19449382 DOI: 10.1002/mrm.22008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Imaging techniques are under development to facilitate early analysis of spatial patterns of tumor response to combined radiation and antivascular gene therapy. A genetically modified, replication defective adenoviral vector (Ad.EGR-TNFalpha), injected intratumorally, mediates infected cells to express tumor necrosis factor alpha (TNFalpha), which is increased after exposure to radiation. The goal of this study was to characterize an image based "signature" for response to this combined radiation and gene therapy in mice with human prostate xenografts. This study is part of an imaged guided therapy project where such a signature would be useful in guiding subsequent treatments. Changes in the tumor micro-environment were assessed using MRI registered with electron paramagnetic resonance imaging which provides images of tissue oxygenation. Dynamic contrast-enhanced MRI was used to assess tissue perfusion. When compared with null vector (control) treatment, the ratio of contrast agent (Gd-DTPA-BMA) washout rate to uptake rate was lower (P = 0.001) after treatment, suggesting a more balanced perfusion. Concomitantly, oxygenation significantly increased in the treated animals and decreased or did not change in the control animals (P < 0.025). This is the first report of minimally invasive, quantitative, absolute oxygen measurements correlated with tissue perfusion in vivo.
Collapse
Affiliation(s)
- Chad R Haney
- University of Chicago, Department of Radiology, Chicago, IL 60637-1463, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Repeated tumor pO(2) measurements by multi-site EPR oximetry as a prognostic marker for enhanced therapeutic efficacy of fractionated radiotherapy. Radiother Oncol 2008; 91:126-31. [PMID: 19013657 DOI: 10.1016/j.radonc.2008.10.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 10/03/2008] [Accepted: 10/17/2008] [Indexed: 11/21/2022]
Abstract
PURPOSE To investigate the temporal effects of single or fractionated radiotherapy on subcutaneous RIF-1 tumor pO(2) and to determine the therapeutic outcomes when the timing of fractionations is guided by tumor pO(2). METHODS The time-course of the tumor pO(2) changes was followed by multi-site electron paramagnetic resonance (EPR) oximetry. The tumors were treated with single 10, 20, and 10 Gy x 2 doses, and the tumor pO(2) was measured repeatedly for six consecutive days. In the 10 Gy x 2 group, the second dose of 10 Gy was delivered at a time when the tumors were either relatively oxygenated or hypoxic. The changes in tumor volumes were followed for nine days to determine the therapeutic outcomes. RESULTS A significant increase in tumor pO(2) was observed at 24h post 10 Gy, while 20 Gy resulted in a significant increase in tumor pO(2) at 72-120 h post irradiation. The tumors irradiated with a second dose of 10 Gy at 24h, when the tumors were oxygenated, had a significant increase in tumor doubling times (DTs), as compared to tumors treated at 48 h when they were hypoxic (p<0.01). CONCLUSION Results indicate that the time of tumor oxygenation depends on the irradiation doses, and radiotherapeutic efficacy could be optimized if irradiations are scheduled at times of increased tumor oxygenation. In vivo multi-site EPR oximetry could be potentially used to monitor tumor pO(2) repeatedly during fractionated schemes to optimize radiotherapeutic outcome. This technique could also be used to identify responsive and non-responsive tumors, which will facilitate the design of other therapeutic approaches for non-responsive tumors at early time points during the course of therapy.
Collapse
|