1
|
Rodríguez-Tomàs E, Acosta JC, Torres-Royo L, De Febrer G, Baiges-Gaya G, Castañé H, Jiménez A, Vasco C, Araguas P, Gómez J, Malave B, Árquez M, Calderón D, Piqué B, Algara M, Montero Á, Simó JM, Gabaldó-Barrios X, Sabater S, Camps J, Joven J, Arenas M. Effect of Low-Dose Radiotherapy on the Circulating Levels of Paraoxonase-1-Related Variables and Markers of Inflammation in Patients with COVID-19 Pneumonia. Antioxidants (Basel) 2022; 11:antiox11061184. [PMID: 35740079 PMCID: PMC9220239 DOI: 10.3390/antiox11061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to investigate the changes produced by low-dose radiotherapy (LDRT) in the circulating levels of the antioxidant enzyme paraoxonase-1 (PON1) and inflammatory markers in patients with COVID-19 pneumonia treated with LDRT and their interactions with clinical and radiological changes. Data were collected from the IPACOVID prospective clinical trial (NCT04380818). The study included 30 patients treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as PON1-related variables, cytokines, and radiological parameters were analyzed before LDRT, at 24 h, and 1 week after treatment. Twenty-five patients (83.3%) survived 1 week after LDRT. Respiratory function and radiological images improved in survivors. Twenty-four hours after LDRT, PON1 concentration significantly decreased, while transforming growth factor beta 1 (TGF-β1) increased with respect to baseline. One week after LDRT, patients had increased PON1 activities and lower PON1 and TGF-β1 concentrations compared with 24 h after LDRT, PON1 specific activity increased, lactate dehydrogenase (LDH), and C-reactive protein (CRP) decreased, and CD4+ and CD8+ cells increased after one week. Our results highlight the benefit of LDRT in patients with COVID-19 pneumonia and it might be mediated, at least in part, by an increase in serum PON1 activity at one week and an increase in TGF-β1 concentrations at 24 h.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Johana C. Acosta
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Laura Torres-Royo
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Gabriel De Febrer
- Department of Geriatric and Palliative Care, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain; (G.D.F.); (C.V.)
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Andrea Jiménez
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Carlos Vasco
- Department of Geriatric and Palliative Care, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain; (G.D.F.); (C.V.)
| | - Pablo Araguas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Junior Gómez
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Bárbara Malave
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Miguel Árquez
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - David Calderón
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Berta Piqué
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
- Department of Pathology, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain
| | - Manel Algara
- Department of Radiation Oncology, Institut d’Investigacions Mèdiques, Hospital del Mar, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Ángel Montero
- Department of Radiation Oncology, HM Hospitales, 28050 Madrid, Spain;
| | - Josep M. Simó
- Laboratori de Referència Sud, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain; (J.M.S.); (X.G.-B.)
| | - Xavier Gabaldó-Barrios
- Laboratori de Referència Sud, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain; (J.M.S.); (X.G.-B.)
| | - Sebastià Sabater
- Department of Radiation Oncology, Complejo Hospitalario de Albacete, 02006 Albacete, Spain;
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
- Correspondence:
| |
Collapse
|
2
|
Arenas M, Algara M, De Febrer G, Rubio C, Sanz X, de la Casa MA, Vasco C, Marín J, Fernández-Letón P, Villar J, Torres-Royo L, Villares P, Membrive I, Acosta J, López-Cano M, Araguas P, Quera J, Rodríguez-Tomás F, Montero A. Could pulmonary low-dose radiation therapy be an alternative treatment for patients with COVID-19 pneumonia? Preliminary results of a multicenter SEOR-GICOR nonrandomized prospective trial (IPACOVID trial). Strahlenther Onkol 2021; 197:1010-1020. [PMID: 34230996 PMCID: PMC8260020 DOI: 10.1007/s00066-021-01803-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the efficacy and safety of lung low-dose radiation therapy (LD-RT) for pneumonia in patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS Inclusion criteria comprised patients with COVID-19-related moderate-severe pneumonia warranting hospitalization with supplemental O2 and not candidates for admission to the intensive care unit because of comorbidities or general status. All patients received single lung dose of 0.5 Gy. Respiratory and systemic inflammatory parameters were evaluated before irradiation, at 24 h and 1 week after LD-RT. Primary endpoint was increased in the ratio of arterial oxygen partial pressure (PaO2) or the pulse oximetry saturation (SpO2) to fractional inspired oxygen (FiO2) ratio of at least 20% at 24 h with respect to the preirradiation value. RESULTS Between June and November 2020, 36 patients with COVID-19 pneumonia and a mean age of 84 years were enrolled. Seventeen were women and 19 were men and all of them had comorbidities. All patients had bilateral pulmonary infiltrates on chest X‑ray. All patients received dexamethasone treatment. Mean SpO2 pretreatment value was 94.28% and the SpO2/FiO2 ratio varied from 255 mm Hg to 283 mm Hg at 24 h and to 381 mm Hg at 1 week, respectively. In those who survived (23/36, 64%), a significant improvement was observed in the percentage of lung involvement in the CT scan at 1 week after LD-RT. No adverse effects related to radiation treatment have been reported. CONCLUSIONS LD-RT appears to be a feasible and safe option in a population with COVID-19 bilateral interstitial pneumonia in the presence of significant comorbidities.
Collapse
Affiliation(s)
- M. Arenas
- Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - M. Algara
- Department of Radiation Oncology, Hospital del Mar, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - G. De Febrer
- Universitat Rovira i Virgili, Tarragona, Spain
- Department of Geriatric and Palliative care, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - C. Rubio
- Department of Radiation Oncology, HM Hospitales., Madrid, Spain
| | - X. Sanz
- Department of Radiation Oncology, Hospital del Mar, Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Pompeu Fabra University Barcelona, Barcelona, Spain
| | | | - C. Vasco
- Universitat Rovira i Virgili, Tarragona, Spain
- Department of Geriatric and Palliative care, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - J. Marín
- Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Department of Critical Care, Hospital del Mar, Barcelona, Spain
| | | | - J. Villar
- Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Department of Infection Diseases, Hospital del Mar, Barcelona, Spain
| | - L. Torres-Royo
- Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - P. Villares
- Department of Internal Medicine, HM Hospitales, Madrid, Spain
| | - I. Membrive
- Department of Radiation Oncology, Hospital del Mar, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - J. Acosta
- Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - M. López-Cano
- Department of Internal Medicine, HM Hospitales, Madrid, Spain
| | - P. Araguas
- Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - J. Quera
- Department of Radiation Oncology, Hospital del Mar, Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Pompeu Fabra University Barcelona, Barcelona, Spain
| | - F. Rodríguez-Tomás
- Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigacions Pere Virgili, Tarragona, Spain
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - A. Montero
- Department of Radiation Oncology, HM Hospitales., Madrid, Spain
| |
Collapse
|
3
|
Kapoor R, Welsh JS, Dhawan V, Javadinia SA, Calabrese EJ, Dhawan G. Low-dose radiation therapy (LDRT) for COVID-19 and its deadlier variants. Arch Toxicol 2021; 95:3425-3432. [PMID: 34302492 PMCID: PMC8308081 DOI: 10.1007/s00204-021-03124-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Coronavirus variants are gaining strongholds throughout the globe. Despite early signals that SARS-CoV-2 coronavirus case numbers are easing up in the United States and during the middle of a (not so easy) vaccination roll out, the country has passed a grim landmark of 600,000 deaths. We contend that these numbers would have been much lower if the medical community undertook serious investigations into the potential of low doses of radiation (LDRT) as a mainstream treatment modality for COVID-19 pneumonia. LDRT has been posited to manifest anti-infectious and anti-inflammatory properties at doses of 0.3-1.0 Gy via the activation of the Nrf-2 pathway. Although some researchers are conducting well-designed clinical trials on the potential of LDRT, the deep-rooted, blind, and flawed acceptance of the Linear No-Threshold (LNT) model for ionizing radiation has led to sidelining of this promising therapy and thus unimaginable numbers of deaths in the United States.
Collapse
Affiliation(s)
- Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT USA
| | - James S. Welsh
- Edward Hines Jr VA Hospital, Hines, IL USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA
| | - Vikas Dhawan
- COVID 19 Facilities, Command Hospital (Western Command), Chandimandir, Panchkula, Haryana India
| | - Seyed Alireza Javadinia
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA USA
| | - Gaurav Dhawan
- Sri Guru Ram Das University of Health Sciences, Amritsar, India
| |
Collapse
|
4
|
Oakley PA, Betz JW, Harrison DE, Siskin LA, Hirsh DW. Radiophobia Overreaction: College of Chiropractors of British Columbia Revoke Full X-Ray Rights Based on Flawed Study and Radiation Fear-Mongering. Dose Response 2021; 19:15593258211033142. [PMID: 34421439 PMCID: PMC8375354 DOI: 10.1177/15593258211033142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
Fears over radiation have created irrational pressures to dissuade radiography use within chiropractic. Recently, the regulatory body for chiropractors practicing in British Columbia, Canada, the College of Chiropractors of British Columbia (CCBC), contracted Pierre Côté to review the clinical use of X-rays within the chiropractic profession. A "rapid review" was performed and published quickly and included only 9 papers, the most recent dating from 2005; they concluded, "Given the inherent risks of radiation, we recommend that chiropractors do not use radiographs for the routine and repeat evaluation of the structure and function of the spine." The CCBC then launched an immediate review of the use of X-rays by chiropractors in their jurisdiction. Member and public opinion were gathered but not presented to their members. On February 4, 2021, the College announced amendments to their Professional Conduct Handbook that revoked X-ray rights for routine/repeat assessment and management of patients with spine disorders. Here, we highlight current and historical evidence that substantiates that X-rays are not a public health threat. We also point out critical and insurmountable flaws in the single paper used to support irrational and unscientific policy that discriminates against chiropractors who practice certain forms of evidence-based X-ray-guided methods.
Collapse
Affiliation(s)
| | | | | | | | | | - International Chiropractors Association Rapid Response Research Review Subcommittee
- Private Practice, Newmarket, ON, Canada
- Private Practice, Boise, ID, USA
- CBP NonProfit, Inc, Eagle, ID, USA
- Private Practice, Green Brook, NJ, USA
- Private Practice, Laurel, MD, USA
| |
Collapse
|
5
|
Calabrese EJ, Kozumbo WJ, Kapoor R, Dhawan G, Lara PC, Giordano J. Nrf2 activation putatively mediates clinical benefits of low-dose radiotherapy in COVID-19 pneumonia and acute respiratory distress syndrome (ARDS): Novel mechanistic considerations. Radiother Oncol 2021; 160:125-131. [PMID: 33932453 PMCID: PMC8080499 DOI: 10.1016/j.radonc.2021.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Novel mechanistic insights are discussed herein that link a single, nontoxic, low-dose radiotherapy (LDRT) treatment (0.5-1.0 Gy) to (1) beneficial subcellular effects mediated by the activation of nuclear factor erythroid 2-related transcription factor (Nrf2) and to (2) favorable clinical outcomes for COVID-19 pneumonia patients displaying symptoms of acute respiratory distress syndrome (ARDS). We posit that the favorable clinical outcomes following LDRT result from potent Nrf2-mediated antioxidant responses that rebalance the oxidatively skewed redox states of immunological cells, driving them toward anti-inflammatory phenotypes. Activation of Nrf2 by ionizing radiation is highly dose dependent and conforms to the features of a biphasic (hormetic) dose-response. At the cellular and subcellular levels, hormetic doses of <1.0 Gy induce polarization shifts in the predominant population of lung macrophages, from an M1 pro-inflammatory to an M2 anti-inflammatory phenotype. Together, the Nrf2-mediated antioxidant responses and the subsequent shifts to anti-inflammatory phenotypes have the capacity to suppress cytokine storms, resolve inflammation, promote tissue repair, and prevent COVID-19-related mortality. Given these mechanistic considerations-and the historical clinical success of LDRT early in the 20th century-we opine that LDRT should be regarded as safe and effective for use at almost any stage of COVID-19 infection. In theory, however, optimal life-saving potential is thought to occur when LDRT is applied prior to the cytokine storms and before the patients are placed on mechanical oxygen ventilators. The administration of LDRT either as an intervention of last resort or too early in the disease progression may be far less effective in saving the lives of ARDS patients.
Collapse
Affiliation(s)
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das University of Health Sciences, Amritsar, India.
| | - Pedro C Lara
- Department of Radiation Oncology, Hospital Universitario San Roque, Universidad Fernando Pessoa Canarias, Las Palmas Gran Canaria, Spain.
| | - James Giordano
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
6
|
Miran C, Bonnet É, Allignet B, Clippe S, El Hedi Zouai M, Bosset M, Fleury B, Guy JB. [Low dose radiotherapy for COVID-19 pneumopathy: Biological rationale and literature review]. Cancer Radiother 2021; 25:494-501. [PMID: 33903009 PMCID: PMC8040522 DOI: 10.1016/j.canrad.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023]
Abstract
La pandémie de coronavirus disease 2019 (covid-19) due au severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) évolue depuis un peu plus d’un an. Si la majorité des formes est bénigne, des pneumopathies graves, voire mortelles, se développent chez certains patients plus à risque. De nombreuses pistes thérapeutiques ont été explorées avec cependant trop peu d’impact sur la mortalité. C’est dans ce contexte que Kirkby et Mackenzie ont rappelé en avril 2020 les propriétés anti-inflammatoires de la radiothérapie de faible dose (délivrant moins de 1 Gy) et son utilisation dans le traitement des pneumopathies bactériennes et virales avant l’ère des antibiotiques. En effet, de larges données in vitro et in vivo ont démontré le rationnel biologique à l’origine de la diminution de l’inflammation après une radiothérapie de faible dose dans de nombreuses pathologies. Depuis un an, trois essais cliniques de phase I/II ont été publiés ainsi qu’un essai randomisé, rapportant la faisabilité et l’amélioration clinique et biologique d’un traitement bipulmonaire par une dose 0,5 à 1 Gy. Treize autres études, dont une phase III randomisée, sont en cours dans le monde. Celles-ci pourront permettre de mieux apprécier les effets de la radiothérapie de faible dose pour la pneumonie à SARS-CoV-2. Cette revue s’attache à rappeler le rationnel biologique de l’utilisation de la radiothérapie de faible dose dans les pneumopathies, et de rapporter les résultats des essais publiés ou en cours sur son utilisation spécifique pour la pneumopathie à SARS-CoV-2.
Collapse
Affiliation(s)
- C Miran
- Centre de radiothérapie Marie-Curie, 159, boulevard Maréchal-Juin, 26000 Valence, France; Hospices civils de Lyon, 69000 Lyon, France
| | - É Bonnet
- Centre de radiothérapie Marie-Curie, 159, boulevard Maréchal-Juin, 26000 Valence, France
| | - B Allignet
- Hospices civils de Lyon, 69000 Lyon, France
| | - S Clippe
- Centre de radiothérapie Marie-Curie, 159, boulevard Maréchal-Juin, 26000 Valence, France
| | - M El Hedi Zouai
- Centre de radiothérapie Marie-Curie, 159, boulevard Maréchal-Juin, 26000 Valence, France
| | - M Bosset
- Centre de radiothérapie Marie-Curie, 159, boulevard Maréchal-Juin, 26000 Valence, France
| | - B Fleury
- Centre de radiothérapie Marie-Curie, 159, boulevard Maréchal-Juin, 26000 Valence, France
| | - J-B Guy
- Centre de radiothérapie Marie-Curie, 159, boulevard Maréchal-Juin, 26000 Valence, France.
| |
Collapse
|
7
|
Oakley PA, Harrison DE. Radiophobic Fear-Mongering, Misappropriation of Medical References and Dismissing Relevant Data Forms the False Stance for Advocating Against the Use of Routine and Repeat Radiography in Chiropractic and Manual Therapy. Dose Response 2021; 19:1559325820984626. [PMID: 33628151 PMCID: PMC7883173 DOI: 10.1177/1559325820984626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
There is a faction within the chiropractic profession passionately advocating against the routine use of X-rays in the diagnosis, treatment and management of patients with spinal disorders (aka subluxation). These activists reiterate common false statements such as "there is no evidence" for biomechanical spine assessment by X-ray, "there are no guidelines" supporting routine imaging, and also promulgate the reiterating narrative that "X-rays are dangerous." These arguments come in the form of recycled allopathic "red flag only" medical guidelines for spine care, opinion pieces and consensus statements. Herein, we review these common arguments and present compelling data refuting such claims. It quickly becomes evident that these statements are false. They are based on cherry-picked medical references and, most importantly, expansive evidence against this narrative continues to be ignored. Factually, there is considerable evidential support for routine use of radiological imaging in chiropractic and manual therapies for 3 main purposes: 1. To assess spinopelvic biomechanical parameters; 2. To screen for relative and absolute contraindications; 3. To reassess a patient's progress from some forms of spine altering treatments. Finally, and most importantly, we summarize why the long-held notion of carcinogenicity from X-rays is not a valid argument.
Collapse
|
8
|
Ghahramani-Asl R, Porouhan P, Mehrpouyan M, Welsh JS, Calabrese EJ, Kapoor R, Dhawan G, Javadinia SA. Feasibility of Treatment Planning System in Localizing the COVID-19 Pneumonia Lesions and Evaluation of Volume Indices of Lung Involvement. Dose Response 2020; 18:1559325820962600. [PMID: 33088245 PMCID: PMC7545774 DOI: 10.1177/1559325820962600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Background and purpose To assess the feasibility of a treatment planning system in localizing, contouring, and targeting lung lesions along with an evaluation of volume indices of lung involvement in patients with COVID-19 pneumonia. Methods We evaluated 10 patients with PCR-confirmed COVID-19 pneumonia. The CT images were imported into the ISOgray® treatment planning system to anatomically define and contour the volumes of the pulmonary lesions, the lungs, and other nearby organs. Results The ratio of lung lesion volume to lung volume in this study was 0.11 ± 0.13 (11.13%). The highest mean biosynthesis ratio of lung lesions was 0.36. The ratio of lesion volume in the left lung of patients with the highest volume of involvement, was 0.44, and the ratio of lesion volume in the right lung of these patients was 0.27 (approximately 1.5 times more in the left lung than the right lung). On average, CTDIvol and DLP for all patients studied in our study were 11.22 ± 2.47 mGy and 354.20 ± 65.11 mGy.cm. Conclusion We reported the feasibility of using a treatment planning system in localizing COVID-19 pulmonary lesions and its validity in the volumetric assessment of infected lung regions.
Collapse
Affiliation(s)
- Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiation Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Pejman Porouhan
- Department of Radiation Oncology, Vasei Educational Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mehrpouyan
- Department of Medical Physics and Radiation Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - James S Welsh
- Loyola University Chicago, Edward Hines Jr., VA Hospital, Stritch School of Medicine, Department of Radiation Oncology, Maywood, IL, USA
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | | | - Seyed Alireza Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
9
|
Oakley PA, Navid Ehsani N, Harrison DE. 5 Reasons Why Scoliosis X-Rays Are Not Harmful. Dose Response 2020; 18:1559325820957797. [PMID: 32963506 PMCID: PMC7488912 DOI: 10.1177/1559325820957797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Radiographic imaging for scoliosis screening, diagnosis, treatment, and management is the gold standard assessment tool. Scoliosis patients receive many repeat radiographs, typically 10-25 and as many as 40-50, equating to a maximum 50 mGy of cumulative exposure. It is argued this amount of radiation exposure is not carcinogenic to scoliosis patients for 5 main reasons: 1. Estimated theoretical cumulative effective doses remain below the carcinogenic dose threshold; 2. Scoliosis patient x-rays are delivered in serial exposures and therefore, mitigate any potential cumulative effect; 3. Linear no-threshold cancer risk estimates from scoliosis patient cohorts are flawed due to faulty science; 4. Standardized incidence/mortality ratios demonstrating increased cancers from aged scoliosis cohorts are confounded by the effects of the disease entity itself making it impossible to claim cause and effect resulting from low-dose radiation exposures from spinal imaging; 5. Children are not more susceptible to radiation damage than adults. Radiophobia concerns from patients, parents, and doctors over repeat imaging for scoliosis treatment and management is not justified; it adds unnecessary anxiety to the patient (and their parents) and interferes with optimal medical management. X-rays taken in the evidence-based management of scoliosis should be taken without hesitation or concern about negligible radiation exposures.
Collapse
|
10
|
Oakley PA, Harrison DE. X-Ray Hesitancy: Patients' Radiophobic Concerns Over Medical X-rays. Dose Response 2020; 18:1559325820959542. [PMID: 32994755 PMCID: PMC7503016 DOI: 10.1177/1559325820959542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
All too often the family physician, orthopedic surgeon, dentist or chiropractor is met with radiophobic concerns about X-ray imaging in the clinical setting. These concerns, however, are unwarranted fears based on common but ill-informed and perpetuated ideology versus current understanding of the effects of low-dose radiation exposures. Themes of X-ray hesitancy come in 3 forms: 1. All radiation exposures are harmful (i.e. carcinogenic); 2. Radiation exposures are cumulative; 3. Children are more susceptible to radiation. Herein we address these concerns and find that low-dose radiation activates the body's adaptive responses and leads to reduced cancers. Low-dose radiation is not cumulative as long as enough time (e.g. 24 hrs) passes prior to a repeated exposure, and any damage is repaired, removed, or eliminated. Children have more active immune systems; the literature shows children are no more affected than adults by radiation exposures. Medical X-rays present a small, insignificant addition to background radiation exposure that is not likely to cause harm. Doctors and patients alike should be better informed of the lack of risks from diagnostic radiation and the decision to image should rely on the best evidence, unique needs of the patient, and the expertise of the physician-not radiophobia.
Collapse
|
11
|
Hanekamp YN, Giordano J, Hanekamp JC, Khan MK, Limper M, Venema CS, Vergunst SD, Verhoeff JJC, Calabrese EJ. Immunomodulation Through Low-Dose Radiation for Severe COVID-19: Lessons From the Past and New Developments. Dose Response 2020; 18:1559325820956800. [PMID: 33013251 PMCID: PMC7513398 DOI: 10.1177/1559325820956800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Low-dose radiation therapy (LD-RT) has historically been a successful treatment for pneumonia and is clinically established as an immunomodulating therapy for inflammatory diseases. The ongoing COVID-19 pandemic has elicited renewed scientific interest in LD-RT and multiple small clinical trials have recently corroborated the historical LD-RT findings and demonstrated preliminary efficacy and immunomodulation for the treatment of severe COVID-19 pneumonia. The present review explicates archival medical research data of LD-RT and attempts to translate this into modernized evidence, relevant for the COVID-19 crisis. Additionally, we explore the putative mechanisms of LD-RT immunomodulation, revealing specific downregulation of proinflammatory cytokines that are integral to the development of the COVID-19 cytokine storm induced hyperinflammatory state. Radiation exposure in LD-RT is minimal compared to radiotherapy dosing standards in oncology care and direct toxicity and long-term risk for secondary disease are expected to be low. The recent clinical trials investigating LD-RT for COVID-19 confirm initial treatment safety. Based on our findings we conclude that LD-RT could be an important treatment option for COVID-19 patients that are likely to progress to severity. We advocate the further use of LD-RT in carefully monitored experimental environments to validate its effectiveness, risks and mechanisms of LD-RT.
Collapse
Affiliation(s)
- Yannic N. Hanekamp
- University Medical Centre Groningen, University of Groningen, the
Netherlands
| | - James Giordano
- Departments of Neurology and Biochemistry, and Pellegrino Center for
Clinical Bioethics, Georgetown University Medical Center, Washington, DC, USA
| | - Jaap C. Hanekamp
- University College Roosevelt, Middelburg, the Netherlands
- Department of Environmental Health Sciences, University of
Massachusetts, Amherst, MA, USA
| | - Mohammad K. Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory
University School of Medicine, Atlanta, GA, USA
| | - Maarten Limper
- Department of Rheumatology and Clinical Immunology, University
Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Samuel D. Vergunst
- University Medical Centre Groningen, University of Groningen, the
Netherlands
| | - Joost J. C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht,
Utrecht University, Utrecht, the Netherlands
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, University of
Massachusetts, Amherst, MA, USA
| |
Collapse
|
12
|
Dhawan G, Kapoor R, Dhawan R, Singh R, Monga B, Giordano J, Calabrese EJ. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother Oncol 2020; 147:212-216. [PMID: 32437820 PMCID: PMC7206445 DOI: 10.1016/j.radonc.2020.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 01/22/2023]
Abstract
The new coronavirus COVID-19 disease caused by SARS-CoV-2 was declared a global public health emergency by WHO on Jan 30, 2020. Despite massive efforts from various governmental, health and medical organizations, the disease continues to spread globally with increasing fatality rates. Several experimental drugs have been approved by FDA with unknown efficacy and potential adverse effects. The exponentially spreading pandemic of COVID-19 deserves prime public health attention to evaluate yet unexplored arenas of management. We opine that one of these treatment options is low dose radiation therapy for severe and most critical cases. There is evidence in literature that low dose radiation induces an anti-inflammatory phenotype that can potentially afford therapeutic benefit against COVID-19-related complications that are associated with significant morbidity and mortality. Herein, we review the effects and putative mechanisms of low dose radiation that may be viable, useful and of value in counter-acting the acute inflammatory state induced by critical stage COVID-19.
Collapse
Affiliation(s)
- Gaurav Dhawan
- Human Research Protection Office, University of Massachusetts, Amherst, United States.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, United States
| | - Rajiv Dhawan
- Radiotherapy Department, Government Medical College, Amritsar, India
| | - Ravinder Singh
- MedSurg Urgent Care, Gilbertsville, Pennsylvania, United States
| | - Bharat Monga
- Division of Hospital Medicine, Mount Sinai Morningside Hospital, New York, United States
| | - James Giordano
- Department of Neurology and Biochemistry and Chief, Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States; Program in Biosecurity, Technology, and Ethics, US Naval War College, Newport, United States
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, United States
| |
Collapse
|
13
|
Lara PC, Nguyen NP, Macias-Verde D, Burgos-Burgos J, Arenas M, Zamagni A, Vinh-Hung V, Baumert BG, Motta M, Myint AS, Bonet M, Popescu T, Vuong T, Appalanaido GK, Trigo L, Karlsson U, Thariat J. Whole-lung Low Dose Irradiation for SARS-Cov2 Induced Pneumonia in the Geriatric Population: An Old Effective Treatment for a New Disease? Recommendation of the International Geriatric Radiotherapy Group. Aging Dis 2020; 11:489-493. [PMID: 32489696 PMCID: PMC7220282 DOI: 10.14336/ad.2020.0506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
A cytokine storm induced by SARS-Cov2 may produce pneumonitis which may be fatal for older patients with underlying lung disease. Hyper-elevation of Interleukin1 (IL-1), Tumor necrosis factor-1alfa (TNF-1 alfa), and Interleukin 6 (IL-6) produced by inflammatory macrophage M1 may damage the lung alveoli leading to severe pneumonitis, decreased oxygenation, and potential death despite artificial ventilation. Older patients may not be suitable candidates for pharmaceutical intervention targeting IL-1/6 blockade or artificial ventilation. Low dose total lung (LDTL) irradiation at a single dose of 50 cGy may stop this cytokine cascade, thus preventing, and/or reversing normal organs damage. This therapy has been proven in the past to be effective against pneumonitis of diverse etiology and could be used to prevent death of older infected patients. Thus, LDRT radiotherapy may be a cost-effective treatment for this frail patient population whom radiation -induced malignancy is not a concern because of their advanced age. This hypothesis should be tested in future prospective trials.
Collapse
Affiliation(s)
- Pedro C Lara
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Nam P Nguyen
- Department of Radiation Oncology, Howard University, Washington D.C., USA.
| | - David Macias-Verde
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Javier Burgos-Burgos
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University, University Rovira I Virgili, Tarragona, Spain.
| | - Alice Zamagni
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, University Hospital of Martinique, Martinique, France.
| | - Brigitta G Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland.
| | - Micaela Motta
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Arthur Sun Myint
- Department of Radiation Oncology, Clatterbridge Cancer Center, Liverpool, United Kingdom.
| | - Marta Bonet
- Department of Radiation Oncology, Arnau de Vilanova University Hospital, Lleida, Spain.
| | - Tiberiu Popescu
- Department of Radiation Oncology, Prof. Dr. Ion Chricuta Oncology Institute, Cluj-Napoca, Romania.
| | - Te Vuong
- Department Of Radiation Oncology, McGill University, Montreal, Canada.
| | | | - Lurdes Trigo
- Department of Radiation Oncology, Instituto Portuges de Oncologia Porto Francisco Gentil E.P.E, Porto, Portugal.
| | - Ulf Karlsson
- Department of Radiation Oncology, International Geriatric Group, Washington D.C., USA.
| | - Juliette Thariat
- Department of Radiation Oncology, Baclesse Cancer Center, Caen, France.
| |
Collapse
|
14
|
Oakley PA, Harrison DE. Are Restrictive Medical Radiation Imaging Campaigns Misguided? It Seems So: A Case Example of the American Chiropractic Association's Adoption of "Choosing Wisely". Dose Response 2020; 18:1559325820919321. [PMID: 32425722 PMCID: PMC7218311 DOI: 10.1177/1559325820919321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Since the 1980s, increased utilization of medical radiology, primarily computed tomography, has doubled medically sourced radiation exposures. Ensuing fear-mongering media headlines of iatrogenic cancers from these essential medical diagnostic tools has led the public and medical professionals alike to display escalating radiophobia. Problematically, several campaigns including Image Gently, Image Wisely, and facets of Choosing Wisely propagate fears of all medical radiation, which is necessary for the delivery of effective and efficient health care. Since there are no sound data supporting the alleged risks from low-dose radiation and since there is abundant evidence of health benefits from low-doses, these imaging campaigns seem misguided. Further, thresholds for cancer are 100 to 1000-fold greater than X-rays, which are within the realm of natural background radiation where no harm has ever been validated. Here, we focus on radiographic imaging for use in spinal rehabilitation by manual therapists, chiropractors, and physiotherapists as spinal X-rays represent the lowest levels of radiation imaging and are critical in the diagnosis and management of spine-related disorders. Using a case example of a chiropractic association adopting "Choosing Wisely," we argue that these campaigns only fuel the pervasive radiophobia and continue to constrain medical professionals, attempting to deliver quality care to patients.
Collapse
|
15
|
Oakley PA, Harrison DE. Death of the ALARA Radiation Protection Principle as Used in the Medical Sector. Dose Response 2020; 18:1559325820921641. [PMID: 32425724 PMCID: PMC7218317 DOI: 10.1177/1559325820921641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
ALARA is the acronym for "As Low As Reasonably Achievable." It is a radiation protection concept borne from the linear no-threshold (LNT) hypothesis. There are no valid data today supporting the use of LNT in the low-dose range, so dose as a surrogate for risk in radiological imaging is not appropriate, and therefore, the use of the ALARA concept is obsolete. Continued use of an outdated and erroneous principle unnecessarily constrains medical professionals attempting to deliver high-quality care to patients by leading to a reluctance by doctors to order images, a resistance from patients/parents to receive images, subquality images, repeated imaging, increased radiation exposures, the stifling of low-dose radiation research and treatment, and the propagation of radiophobia and continued endorsement of ALARA by regulatory bodies. All these factors result from the fear of radiogenic cancer, many years in the future, that will not occur. It has been established that the dose threshold for leukemia is higher than previously thought. A low-dose radiation exposure from medical imaging will likely upregulate the body's adaptive protection systems leading to the prevention of future cancers. The ALARA principle, as used as a radiation protection principle throughout medicine, is scientifically defunct and should be abandoned.
Collapse
|
16
|
Cuttler JM. Application of Low Doses of Ionizing Radiation in Medical Therapies. Dose Response 2020; 18:1559325819895739. [PMID: 31933547 PMCID: PMC6945458 DOI: 10.1177/1559325819895739] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
The discovery of X-rays and radioactivity in 1895/1896 triggered a flood of studies and applications of radiation in medicine that continues to this day. They started with imaging fractures/organs and progressed to treating diseases by exposing areas to radiation from external and internal sources. By definition, low-dose treatments stimulate damage control (or adaptive protection) systems that remedy diseases. Publications are identified on low-dose ionizing radiation (LDIR) therapies for different cancers, infections, inflammations, and autoimmune and neurodegenerative diseases. The high rate of endogenous DNA damage, due to leakage of oxygen from aerobic metabolism, and the damage control systems that deal with this are discussed. Their stimulation and inhibition by radiation are described. The radium dial painter studies revealed the radium ingestion threshold for malignancy and the dose threshold for bone sarcoma. The radiation scare that misled the medical profession and the public is a barrier to LDIR therapies. Many studies on nasal radium irradiation demonstrated that children are not unduly radiation sensitive. Omissions in the medical textbooks misinform physicians about the effects of LDIR therapy, which blocks clinical trials to determine optimal doses, efficacy, and thresholds for onset of harm. Information from many recent case reports on LDIR therapies, including successes with radon therapy, is provided.
Collapse
|
17
|
Oakley PA, Ehsani NN, Harrison DE. Repeat Radiography in Monitoring Structural Changes in the Treatment of Spinal Disorders in Chiropractic and Manual Medicine Practice: Evidence and Safety. Dose Response 2019; 17:1559325819891043. [PMID: 31839759 PMCID: PMC6900628 DOI: 10.1177/1559325819891043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
There is substantial evidence for normal relationships between spine and postural parameters, as measured from radiographs of standing patients. Sagittal balance, cervical lordosis, thoracic kyphosis, lumbar lordosis, pelvic tilt, and the more complex understanding of the interrelations between these essential components of normal stance have evolved to where there are known, established thresholds for normalcy. These spinal parameters are reliably measured from X-ray images and serve as goals of care in the treatment of spine and postural disorders. Initial and follow-up spinal imaging by X-ray is thus crucial for the practice of contemporary and evidence-based structural rehabilitation. Recent studies have demonstrated that improvement in the spine and posture by nonsurgical methods offers superior long-term patient outcomes versus conventional methods that only temporarily treat pain/dysfunction. Low-dose radiation from repeated X-ray imaging in treating subluxated patients is substantially below the known threshold for harm and is within background radiation exposures. Since alternative imaging methods are not clinically practical at this time, plain radiography remains the standard for spinal imaging. It is safe when used in a repeated fashion for quantifying pre-post spine and postural subluxation and deformity patterns in the practice of structural correction methods by chiropractic and other manual medicine practices.
Collapse
|
18
|
Dhawan G, Kapoor R, Dhamija A, Singh R, Monga B, Calabrese EJ. Necrotizing Fasciitis: Low-Dose Radiotherapy as a Potential Adjunct Treatment. Dose Response 2019; 17:1559325819871757. [PMID: 31496924 PMCID: PMC6716184 DOI: 10.1177/1559325819871757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022] Open
Abstract
Necrotizing fasciitis (NF) is a rapidly spreading bacterial infection causing extensive tissue necrosis and destruction. Despite appropriate therapy, the disease results in significant morbidity/mortality and substantial treatment costs. Several studies published in the early 1900s demonstrated the effective use of low-dose X-ray radiotherapy (RT) for the treatment of many diverse inflammatory conditions and diseases (eg, gas gangrene, sinus infections, arthritis, tendonitis, and serious inflammatory lung conditions). The mechanism by which therapeutic RT doses produce positive patient outcomes is related at least in part to its capacity to induce tissue-based anti-inflammatory responses. This action is due to the polarization of macrophages to an anti-inflammatory or M2 phenotype via optimized low-dose RT. Low-dose RT has the potential to significantly reduce debilitating surgeries and aggressive treatments required for NF, providing a 3-prong benefit in terms of patient mortality, length of hospitalization stays, and cost of health care (both short term and long term). Low cost and easy availability of low-dose RT makes it a potentially useful option for patients of every age-group. In addition, low-dose RT may be a particularly useful option in countries treating many patients who are unable to afford surgeries, antibiotics, and hyperbaric oxygen.
Collapse
Affiliation(s)
- Gaurav Dhawan
- Human Research Protection Office, University of Massachusetts, Amherst, MA, USA
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | | | | | - Bharat Monga
- Division of Hospital Medicine, Mount Sinai St Luke's Hospital, New York, NY, USA
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
19
|
Calabrese EJ, Dhawan G, Kapoor R, Kozumbo WJ. Radiotherapy treatment of human inflammatory diseases and conditions: Optimal dose. Hum Exp Toxicol 2019; 38:888-898. [DOI: 10.1177/0960327119846925] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the early part of the past century, hundreds of clinical studies involving more than 37,000 patients were conducted that showed radiotherapy (RT) to be a successful and safe alternative to drug therapy for the treatment of many diverse inflammatory conditions and diseases (e.g. tendonitis, bursitis, arthritis, and serious inflammatory lung conditions). Data from these studies were collected and analyzed with the intent of estimating an optimal dosing range for RT that would induce an efficacious treatment response. RT was reported to be frequently effective after only a single treatment, with a rapid (within 24 h) and often long-lasting (from months to years) relief from symptoms. Over a two-decade span from the 1920s to the 1940s, the therapeutic responses to a single RT treatment consistently improved as the dosing for multiple ailments decreased over time to between 30 roentgen (r) and 100 r. These findings are significant and in agreement with a number of contemporary reports from Germany where RT has been commonly and successfully employed in treating ailments with an inflammatory origin. A proposed mechanism by which RT mitigates inflammation and facilitates healing is via the polarization of macrophages to an anti-inflammatory or M2 phenotype.
Collapse
Affiliation(s)
- EJ Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - G Dhawan
- Mass Venture Center, Research Compliance, University of Massachusetts, Hadley, MA, USA
| | - R Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | | |
Collapse
|
20
|
Dvořák P, Doležalová J, Suchý P, Straková E, Zapletal D, Rulík V. Fatting parameters after duck egg exposure to γ-radiation. Poult Sci 2019; 98:820-827. [PMID: 30169731 DOI: 10.3382/ps/pey391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/06/2018] [Indexed: 11/20/2022] Open
Abstract
In our experiment, we deal with the phenomenon of radiation hormesis and improvements based on this phenomenon to different growing characteristics of the fast-growing, very feed-efficient, and with a high-yielding carcass hybrid of the Peking duck (Cherry Valley SM3 medium). In the first phase of the project, we exposed hatching duck eggs to low and middle doses of gamma radiation 60Co (0.06-2.00 Gy) before placing them into a setter in the hatchery. We then followed the standards of artificial incubation. The treatment of our chosen doses of gamma radiation has no significant influence on the history and results of hatching (from 85.5% to 92.6%); it was influenced only by the basic management and husbandry of the parent stock. From our observations we confirm that the Peking duck, despite genetic progress, retained its vitality and robustness. Its embryos are not damaged even with a dose of 2 Gy, which is over the deterministic effect of ionizing radiation for vertebrates. At the end of the fatting period a significant drop in plasma phosphorus levels was measured in the ducks; however, it was dependent on the radiation dose to which the hatching eggs were exposed (r = -0.965). A positive effect of radiation hormesis may be expected in the case of 1 Gy dose where the highest values of mean corpuscular hemoglobin, mean corpuscular hemoglobin, combined hemoglobin, and drake weight were measured. Lower and higher doses of ionizing radiation used did not display these effects.
Collapse
Affiliation(s)
- P Dvořák
- Centre for Ionizing Radiation Application and Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - J Doležalová
- Centre for Ionizing Radiation Application and Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - P Suchý
- Department of Animal Husbandry and Animal Hygiene, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - E Straková
- Department of Animal Nutrition, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - D Zapletal
- Department of Animal Husbandry and Animal Hygiene, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - V Rulík
- Centre for Ionizing Radiation Application and Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
21
|
Calabrese EJ, Giordano JJ, Kozumbo WJ, Leak RK, Bhatia TN. Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacol Res 2018; 137:236-249. [DOI: 10.1016/j.phrs.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
22
|
Raynor S, Giordano J. Treating Alzheimer's Dementia With CT-Induced Low-Dose Ionizing Radiation: Problematic, Yet Potential for More Precise Inquiry. Dose Response 2017; 15:1559325817729247. [PMID: 28932177 PMCID: PMC5598803 DOI: 10.1177/1559325817729247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022] Open
Abstract
This commentary evaluates a recent single-case study by Cuttler et al that posits that a series of computerized tomographic (CT) scans ameliorated symptoms and signs of advanced Alzheimer's dementia in an elderly female patient. The report proposes that CT scanning delivered low-dose ionizing radiation (LDIR) that activated adaptive mechanisms in the brain to induce the effects observed and reported. However, the report evidenced methodologic problems that threaten the validity and value of its approach, stated results, and conclusions. We provide discussion of these issues, with view and intent toward developing more precise investigations of the potential mechanisms and utility of LDIR in treating Alzheimer's dementia and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie Raynor
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC, USA
| | - James Giordano
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC, USA
- Department of Neurology and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
23
|
Abstract
X-ray therapy was used to treat pertussis/whooping cough during a 13-year period from 1923 to 1936 in North America and Europe. Twenty studies from clinicians in the United States reported that approximately 1500 cases of pertussis were treated by X-ray therapy usually with less than 0.5 erythema dose. Young children (<3 years) comprised about 70% to 80% of the cases, with the age of cases ranging from as young as 1 month to 50 years. In general, symptoms of severe coughing, vomiting episodes, and spasms were significantly relieved in about 85% of cases following up to 3 treatments, while about 15% of the cases showed nearly full relief after only 1 treatment. The X-ray therapy was also associated with a marked reduction in mortality of young (<3 years) children by over 90%. Despite such reported clinical success from a wide range of experienced researchers, the use of X-rays for the treatment of pertussis in young children was controversial, principally due to concerns of exposure to the thymus and thyroid even with the availability of lead shielding. By the mid-1930s, the treatment of pertussis cases via vaccine therapy came to dominate the therapeutic arena, and the brief era of a radiotherapy option for the treatment of pertussis ended.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Gaurav Dhawan
- Research Compliance, University of Massachusetts, Mass Venture Center, Hadley, MA, USA
| | | |
Collapse
|
24
|
Cuttler JM, Moore ER, Hosfeld VD, Nadolski DL. Treatment of Alzheimer Disease With CT Scans: A Case Report. Dose Response 2016; 14:1559325816640073. [PMID: 27103883 PMCID: PMC4826954 DOI: 10.1177/1559325816640073] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer disease (AD) primarily affects older adults. This neurodegenerative disorder is the most common cause of dementia and is a leading source of their morbidity and mortality. Patient care costs in the United States are about 200 billion dollars and will more than double by 2040. This case report describes the remarkable improvement in a patient with advanced AD in hospice who received 5 computed tomography scans of the brain, about 40 mGy each, over a period of 3 months. The mechanism appears to be radiation-induced upregulation of the patient's adaptive protection systems against AD, which partially restored cognition, memory, speech, movement, and appetite.
Collapse
|