1
|
Yurkevicz AM, Liu Y, Katz SG, Glazer PM. Tumor-Specific Antigen Delivery for T-cell Therapy via a pH-Sensitive Peptide Conjugate. Mol Cancer Ther 2025; 24:105-117. [PMID: 39382073 DOI: 10.1158/1535-7163.mct-23-0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Identifying an optimal antigen for targeted cancer therapy is challenging as the antigen landscape on cancerous tissues mimics that of healthy tissues, with few unique tumor-specific antigens identified in individual patients. pH low insertion peptide (pHLIP) acts as a unique delivery platform that can specifically target the acidic microenvironment of tumors, sparing healthy tissue in the process. We developed a pHLIP-peptide conjugate to deliver the SIINFEKL peptide, an immunogenic fragment of ovalbumin (OVA), to tumor cells in vivo. When processed intracellularly, SIINFEKL is presented for immune recognition through the major histocompatibility complex (MHC) class I pathway. We observed selective delivery of pHLIP-SIINFEKL both in vitro and in vivo using fluorescently labeled constructs. In vitro, treatment of melanoma tumor cells with pHLIP-SIINFEKL resulted in recognition by SIINFEKL-specific T cells (OT1), leading to T-cell activation and effector function. Mechanistically, we show that this recognition by OT1 T cells was abrogated by siRNA/shRNA knockdown of multiple components within the MHC class I pathway in the target tumor cells, indicating that an intact antigen processing pathway in the cancer cells is necessary to mediate the effect of pHLIP-directed SIINFEKL delivery. In vivo, pHLIP-SIINFEKL treatment of tumor-bearing mice resulted in the recruitment of OT1 T cells and suppression of tumor growth in two syngeneic tumor models in immunocompetent mice, with no effect when mutating either the pHLIP or SIINFEKL components of the conjugate. These results suggest that pHLIP-mediated peptide delivery can be used to deliver novel artificial antigens that can be targeted by cell-based therapies.
Collapse
Affiliation(s)
- Annali M Yurkevicz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Noronha KJ, Lucas KN, Paradkar S, Edmonds J, Friedman S, Murray MA, Liu S, Sajed DP, Sachs C, Spurrier J, Raponi M, Liang J, Zeng H, Sundaram RK, Shuch B, Vasquez JC, Bindra RS. NAPRT Silencing in FH-Deficient Renal Cell Carcinoma Confers Therapeutic Vulnerabilities via NAD+ Depletion. Mol Cancer Res 2024; 22:973-988. [PMID: 38949523 PMCID: PMC11445649 DOI: 10.1158/1541-7786.mcr-23-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is caused by loss of function mutations in fumarate hydratase (FH) and results in an aggressive subtype of renal cell carcinoma with limited treatment options. Loss of FH leads to accumulation of fumarate, an oncometabolite that disrupts multiple cellular processes and drives tumor progression. High levels of fumarate inhibit alpha ketoglutarate-dependent dioxygenases, including the ten-eleven translocation (TET) enzymes, and can lead to global DNA hypermethylation. Here, we report patterns of hypermethylation in FH-mutant cell lines and tumor samples are associated with the silencing of nicotinate phosphoribosyl transferase (NAPRT), a rate-limiting enzyme in the Preiss-Handler pathway of NAD+ biosynthesis, in a subset of HLRCC cases. NAPRT is hypermethylated at a CpG island in the promoter in cell line models and patient samples, resulting in loss of NAPRT expression. We find that FH-deficient RCC models with loss of NAPRT expression, as well as other oncometabolite-producing cancer models that silence NAPRT, are extremely sensitive to nicotinamide phosphoribosyl transferase inhibitors (NAMPTi). NAPRT silencing was also associated with synergistic tumor cell killing with PARP inhibitors and NAMPTis, which was associated with effects on PAR-mediated DNA repair. Overall, our findings indicate that NAPRT silencing can be targeted in oncometabolite-producing cancers and elucidates how oncometabolite-associated hypermethylation can impact diverse cellular processes and lead to therapeutically relevant vulnerabilities in cancer cells. Implications: NAPRT is a novel biomarker for targeting NAD+ metabolism in FH-deficient HLRCCs with NAMPTis alone and targeting DNA repair processes with the combination of NAMPTis and PARP inhibitors.
Collapse
Affiliation(s)
- Katelyn J. Noronha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Karlie N. Lucas
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sateja Paradkar
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Joseph Edmonds
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Sam Friedman
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Matthew A. Murray
- Department of Experimental Pathology, Yale University, New Haven, Connecticut.
| | - Samantha Liu
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Dipti P. Sajed
- Department of Pathology, University of California Los Angeles, Los Angeles, California.
| | - Chana Sachs
- Department of Pathology, University of California Los Angeles, Los Angeles, California.
| | | | | | - Jiayu Liang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Brian Shuch
- Institute of Urologic Oncology, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California.
| | - Juan C. Vasquez
- Department of Pediatric Hematology and Oncology, Yale University, New Haven, Connecticut.
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
3
|
Koirala S, Sharma H, Chew YL, Konopka A. SimplySmart_v1, a new tool for the analysis of DNA damage optimized in primary neuronal cultures. BMC Bioinformatics 2024; 25:318. [PMID: 39354410 PMCID: PMC11443846 DOI: 10.1186/s12859-024-05947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The increased interest in research on DNA damage in neurodegeneration has created a need for the development of tools dedicated to the analysis of DNA damage in neurons. Double-stranded breaks (DSBs) are among the most detrimental types of DNA damage and have become a subject of intensive research. DSBs result in DNA damage foci, which are detectable with the marker γH2AX. Manual counting of DNA damage foci is challenging and biased, and there is a lack of open-source programs optimized specifically in neurons. Thus, we developed a new, fully automated application, SimplySmart_v1, for DNA damage quantification and optimized its performance specifically in primary neurons cultured in vitro. RESULTS Compared with control neurons, SimplySmart_v1 accurately identifies the induction of DNA damage with etoposide in primary neurons. It also accurately quantifies DNA damage in the desired fraction of cells and processes a batch of images within a few seconds. SimplySmart_v1 was also capable of quantifying DNA damage effectively regardless of the cell type (neuron or NSC-34). The comparative analysis of SimplySmart_v1 with other open-source tools, such as Fiji, CellProfiler and a focinator, revealed that SimplySmart_v1 is the most 'user-friendly' and the quickest tool among others and provides highly accurate results free of variability between measurements. In the context of neurodegenerative research, SimplySmart_v1 revealed an increase in DNA damage in primary neurons expressing abnormal TAR DNA/RNA binding protein (TDP-43). CONCLUSIONS These findings showed that SimplySmart_v1 is a new and effective tool for research on DNA damage and can successfully replace other available software.
Collapse
Affiliation(s)
- Sushma Koirala
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Harman Sharma
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Anna Konopka
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| |
Collapse
|
4
|
Rackear M, Quijano E, Ianniello Z, Colón-Ríos DA, Krysztofiak A, Abdullah R, Liu Y, Rogers FA, Ludwig DL, Dwivedi R, Bleichert F, Glazer PM. Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition. Oncotarget 2024; 15:699-713. [PMID: 39352803 PMCID: PMC11444335 DOI: 10.18632/oncotarget.28651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Monoclonal antibody therapies for cancer have demonstrated extraordinary clinical success in recent years. However, these strategies are thus far mostly limited to specific cell surface antigens, even though many disease targets are found intracellularly. Here we report studies on the humanization of a full-length, nucleic acid binding, monoclonal lupus-derived autoantibody, 3E10, which exhibits a novel mechanism of cell penetration and tumor specific targeting. Comparing humanized variants of 3E10, we demonstrate that cell uptake depends on the nucleoside transporter ENT2, and that faster cell uptake and superior in vivo tumor targeting are associated with higher affinity nucleic acid binding. We show that one human variant retains the ability of the parental 3E10 to bind RAD51, serving as a synthetically lethal inhibitor of homology-directed repair in vitro. These results provide the basis for the rational design of a novel antibody platform for therapeutic tumor targeting with high specificity following systemic administration.
Collapse
Affiliation(s)
- Madison Rackear
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elias Quijano
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zaira Ianniello
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel A Colón-Ríos
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Krysztofiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Rohini Dwivedi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Randall MP, Egolf LE, Vaksman Z, Samanta M, Tsang M, Groff D, Evans JP, Rokita JL, Layeghifard M, Shlien A, Maris JM, Diskin SJ, Bosse KR. BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma. J Natl Cancer Inst 2024; 116:138-148. [PMID: 37688570 PMCID: PMC10777668 DOI: 10.1093/jnci/djad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND High-risk neuroblastoma is a complex genetic disease that is lethal in more than 50% of patients despite intense multimodal therapy. Through genome-wide association studies (GWAS) and next-generation sequencing, we have identified common single nucleotide polymorphisms and rare, pathogenic or likely pathogenic germline loss-of-function variants in BARD1 enriched in neuroblastoma patients. The functional implications of these findings remain poorly understood. METHODS We correlated BARD1 genotype with expression in normal tissues and neuroblastomas, along with the burden of DNA damage in tumors. To validate the functional consequences of germline pathogenic or likely pathogenic BARD1 variants, we used CRISPR-Cas9 to generate isogenic neuroblastoma (IMR-5) and control (RPE1) cellular models harboring heterozygous BARD1 loss-of-function variants (R112*, R150*, E287fs, and Q564*) and quantified genomic instability in these cells via next-generation sequencing and with functional assays measuring the efficiency of DNA repair. RESULTS Both common and rare neuroblastoma-associated BARD1 germline variants were associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using isogenic heterozygous BARD1 loss-of-function variant cellular models, we functionally validated this association with inefficient DNA repair. BARD1 loss-of-function variant isogenic cells exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA double-strand break sites, and enhanced sensitivity to cisplatin and poly (ADP-ribose) polymerase (PARP) inhibition both in vitro and in vivo. CONCLUSIONS Taken together, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications.
Collapse
Affiliation(s)
- Michael P Randall
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura E Egolf
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Current affiliation: New York Genome Center, New York, NY
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Current affiliation: Genomics and Data Sciences, Spark Therapeutics, Philadelphia, PA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mehdi Layeghifard
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Zhou DP, Deng LC, Feng X, Xu HJ, Tian Y, Yang WW, Zeng PP, Zou LH, Yan XH, Zhu XY, Shu DH, Guo Q, Huang XY, Bellusci S, Lou Z, Li XK, Zhang JS. FGF10 mitigates doxorubicin-induced myocardial toxicity in mice via activation of FGFR2b/PHLDA1/AKT axis. Acta Pharmacol Sin 2023; 44:2004-2018. [PMID: 37225844 PMCID: PMC10545682 DOI: 10.1038/s41401-023-01101-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.
Collapse
Affiliation(s)
- De-Pu Zhou
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lian-Cheng Deng
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao Feng
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Hui-Jing Xu
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ye Tian
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei-Wei Yang
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ping-Ping Zeng
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Li-Hui Zou
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xi-Hua Yan
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xia-Yan Zhu
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan-Hua Shu
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Guo
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao-Ying Huang
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Saverio Bellusci
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiao-Kun Li
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jin-San Zhang
- Medical Research Center and the Department of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Moon JI, Kim WJ, Kim KT, Kim HJ, Shin HR, Yoon H, Park SG, Park MS, Cho YD, Kim PJ, Ryoo HM. Foci-Xpress: Automated and Fast Nuclear Foci Counting Tool. Int J Mol Sci 2023; 24:14465. [PMID: 37833912 PMCID: PMC10572366 DOI: 10.3390/ijms241914465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
In the nucleus, distinct, discrete spots or regions called "foci" have been identified, each harboring a specific molecular function. Accurate and efficient quantification of these foci is essential for understanding cellular dynamics and signaling pathways. In this study, we present an innovative automated image analysis method designed to precisely quantify subcellular foci within the cell nucleus. Manual foci counting methods can be tedious and time-consuming. To address these challenges, we developed an open-source software that automatically counts the number of foci from the indicated image files. We compared the foci counting efficiency, velocity, accuracy, and convenience of Foci-Xpress with those of other conventional methods in foci-induced models. We can adjust the brightness of foci to establish a threshold. The Foci-Xpress method was significantly faster than other conventional methods. Its accuracy was similar to that of conventional methods. The most significant strength of Foci-Xpress is automation, which eliminates the need for analyzing equipment while counting. This enhanced throughput facilitates comprehensive statistical analyses and supports robust conclusions from experiments. Furthermore, automation completely rules out biases caused by researchers, such as manual errors or daily variations. Thus, Foci-Xpress is a convincing, convenient, and easily accessible focus-counting tool for cell biologists.
Collapse
Affiliation(s)
- Jae-I Moon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Heein Yoon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Gwa Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Sang Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea;
| | - Pil-Jong Kim
- Department of Biomedical Knowledge Engineering Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Liu H, Xu C, Diplas BH, Brown A, Strickland LM, Yao H, Ling J, McLendon RE, Keir ST, Ashley DM, He Y, Waitkus MS. Cancer-associated SMARCAL1 loss-of-function mutations promote alternative lengthening of telomeres and tumorigenesis in telomerase-negative glioblastoma cells. Neuro Oncol 2023; 25:1563-1575. [PMID: 36689342 PMCID: PMC10484176 DOI: 10.1093/neuonc/noad022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Telomere maintenance mechanisms are required to enable the replicative immortality of malignant cells. While most cancers activate the enzyme telomerase, a subset of cancers uses telomerase-independent mechanisms termed alternative lengthening of telomeres (ALT). ALT occurs via homology-directed-repair mechanisms and is frequently associated with ATRX mutations. We previously showed that a subset of adult glioblastoma (GBM) patients with ATRX-expressing ALT-positive tumors harbored loss-of-function mutations in the SMARCAL1 gene, which encodes an annealing helicase involved in replication fork remodeling and the resolution of replication stress. However, the causative relationship between SMARCAL1 deficiency, tumorigenesis, and de novo telomere synthesis is not understood. METHODS We used a patient-derived ALT-positive GBM cell line with native SMARCAL1 deficiency to investigate the role of SMARCAL1 in ALT-mediated de novo telomere synthesis, replication stress, and gliomagenesis in vivo. RESULTS Inducible rescue of SMARCAL1 expression suppresses ALT indicators and inhibits de novo telomere synthesis in GBM and osteosarcoma cells, suggesting that SMARCAL1 deficiency plays a functional role in ALT induction in cancers that natively lack SMARCAL1 function. SMARCAL1-deficient ALT-positive cells can be serially propagated in vivo in the absence of detectable telomerase activity, demonstrating that the SMARCAL1-deficient ALT phenotype maintains telomeres in a manner that promotes tumorigenesis. CONCLUSIONS SMARCAL1 deficiency is permissive to ALT and promotes gliomagenesis. Inducible rescue of SMARCAL1 in ALT-positive cell lines permits the dynamic modulation of ALT activity, which will be valuable for future studies aimed at understanding the mechanisms of ALT and identifying novel anticancer therapeutics that target the ALT phenotype.
Collapse
Affiliation(s)
- Heng Liu
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Cheng Xu
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Bill H Diplas
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexandrea Brown
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura M Strickland
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Haipei Yao
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jinjie Ling
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Roger E McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stephen T Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
9
|
Randall MP, Egolf LE, Vaksman Z, Samanta M, Tsang M, Groff D, Evans JP, Rokita JL, Layeghifard M, Shlien A, Maris JM, Diskin SJ, Bosse KR. BARD1 germline variants induce haploinsufficiency and DNA repair defects in neuroblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.525066. [PMID: 36778420 PMCID: PMC9915690 DOI: 10.1101/2023.01.31.525066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Importance High-risk neuroblastoma is a complex genetic disease that is lethal in 50% of patients despite intense multimodal therapy. Our genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) within the BARD1 gene showing the most significant enrichment in neuroblastoma patients, and also discovered pathogenic (P) or likely pathogenic (LP) rare germline loss-of-function variants in this gene. The functional implications of these findings remain poorly understood. Objective To define the functional relevance of BARD1 germline variation in children with neuroblastoma. Design We correlated BARD1 genotype with BARD1 expression in normal and tumor cells and the cellular burden of DNA damage in tumors. To validate the functional consequences of rare germline P-LP BARD1 variants, we generated isogenic cellular models harboring heterozygous BARD1 loss-of-function (LOF) variants and conducted multiple complementary assays to measure the efficiency of DNA repair. Setting (N/A). Participants (N/A). Interventions/Exposures (N/A). Main Outcomes and Measures BARD1 expression, efficiency of DNA repair, and genome-wide burden of DNA damage in neuroblastoma tumors and cellular models harboring disease-associated BARD1 germline variants. Results Both common and rare neuroblastoma associated BARD1 germline variants were significantly associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using neuroblastoma cellular models engineered to harbor disease-associated heterozygous BARD1 LOF variants, we functionally validated this association with inefficient DNA repair. These BARD1 LOF variant isogenic models exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA doublestrand break sites, and enhanced sensitivity to cisplatin and poly-ADP ribose polymerase (PARP) inhibition. Conclusions and Relevance Considering that at least 1 in 10 children diagnosed with cancer carry a predicted pathogenic mutation in a cancer predisposition gene, it is critically important to understand their functional relevance. Here, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications, and these findings may also extend to other cancers harboring germline variants in genes essential for DNA damage repair. Key Points Question: How do neuroblastoma patient BRCA1-associated RING domain 1 ( BARD1 ) germline variants impact DNA repair? Findings: Neuroblastoma-associated germline BARD1 variants disrupt DNA repair fidelity. Common risk variants correlate with decreased BARD1 expression and increased DNA double-strand breaks in neuroblastoma tumors and rare heterozygous loss-of-function variants induce BARD1 haploinsufficiency, resulting in defective DNA repair and genomic instability in neuroblastoma cellular models. Meaning: Germline variation in BARD1 contributes to neuroblastoma pathogenesis via dysregulation of critical cellular DNA repair functions, with implications for neuroblastoma treatment, risk stratification, and cancer predisposition.
Collapse
Affiliation(s)
- Michael P. Randall
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. Egolf
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - J. Perry Evans
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, PA 19104, USA
| | - Mehdi Layeghifard
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Kitzinger R, Fritz G, Henninger C. Nuclear RAC1 is a modulator of the doxorubicin-induced DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119320. [PMID: 35817175 DOI: 10.1016/j.bbamcr.2022.119320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rho GTPases like RAC1 are localized on the inner side of the outer cell membrane where they act as molecular switches that can trigger signal transduction pathways in response to various extracellular stimuli. Nuclear functions of RAC1 were identified that are related to mitosis, cell cycle arrest and apoptosis. Previously, we showed that RAC1 plays a role in the doxorubicin (Dox)-induced DNA damage response (DDR). In this context it is still unknown whether cytosolic RAC1 modulates the Dox-induced DDR or if a nuclear fraction of RAC1 is involved. Here, we silenced RAC1 in mouse embryonic fibroblasts (MEF) pharmacologically with EHT1864 or by using siRNA against Rac1. Additionally, we transfected MEF with RAC1 mutants (wild-type, dominant-negative, constitutively active) containing a nuclear localization sequence (NLS). Afterwards, we analysed the Dox-induced DDR by evaluation of fluorescent nuclear γH2AX and 53BP1 foci formation, as well as by detection of activated proteins of the DDR by western blot to elucidate the role of nuclear RAC1 in the DDR. Treatment with EHT1864 as well as Rac1 knock-down reduced the Dox-induced DSB-formation to a similar extent. Enhanced nuclear localization of dominant-negative as well as constitutively active RAC1 mimicked these effects. Expression of the RAC1 mutants altered the Dox-induced amount of pP53 and pKAP1 protein. The observed effects were independent of S1981 ATM phosphorylation. We conclude that RAC1 is required for a substantial activation of the Dox-induced DDR and balanced levels of active/inactive RAC1 inside the nucleus are a prerequisite for this response.
Collapse
Affiliation(s)
- Rebekka Kitzinger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christian Henninger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Lin K, Gueble SE, Sundaram RK, Huseman ED, Bindra RS, Herzon SB. Mechanism-based design of agents that selectively target drug-resistant glioma. Science 2022; 377:502-511. [PMID: 35901163 PMCID: PMC9502022 DOI: 10.1126/science.abn7570] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.
Collapse
Affiliation(s)
- Kingson Lin
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan E. Gueble
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ranjini K. Sundaram
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eric D. Huseman
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Corresponding author. (S.B.H.); (R.S.B.)
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
- Corresponding author. (S.B.H.); (R.S.B.)
| |
Collapse
|
12
|
Goetting I, Larafa S, Eul K, Kunin M, Jakob B, Matschke J, Jendrossek V. Targeting AKT-Dependent Regulation of Antioxidant Defense Sensitizes AKT-E17K Expressing Cancer Cells to Ionizing Radiation. Front Oncol 2022; 12:920017. [PMID: 35875130 PMCID: PMC9304891 DOI: 10.3389/fonc.2022.920017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance.We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation.TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K.We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione de novo synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision.
Collapse
Affiliation(s)
- Isabell Goetting
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Safa Larafa
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Katharina Eul
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Mikhail Kunin
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
- *Correspondence: Verena Jendrossek, ; Johann Matschke,
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
- *Correspondence: Verena Jendrossek, ; Johann Matschke,
| |
Collapse
|
13
|
Syntaxin 18 regulates the DNA damage response and epithelial-to-mesenchymal transition to promote radiation resistance of lung cancer. Cell Death Dis 2022; 13:529. [PMID: 35668077 PMCID: PMC9170725 DOI: 10.1038/s41419-022-04978-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Radiotherapy is an important modality in lung cancer treatment. Despite advances in treatment planning and dose delivery, patient benefit is still limited by in-field relapse and metastatic recurrence. Simultaneous application of cisplatinum-based chemotherapy leads to moderately improved outcomes, thus providing proof-of-concept for radiosensitization strategies in lung cancer. In an unbiased functional genetic screen for radiosensitization targets in lung cancer, we identified syntaxin 18, a protein involved in retrograde vesicular transport between the Golgi apparatus and endoplasmic reticulum, as mediator of radioresistance. Downregulation of endogenous syntaxin 18 specifically reduced clonogenic survival of radioresistant and radiosensitive lung cancer cells following X-radiation. Gene expression programs regulating DNA repair, mitotic checkpoints and mitosis were altered in isogenic cells with reduced syntaxin 18 expression. Functionally, this translated into impaired DNA damage-induced cell cycle checkpoints leading to cell death by mitotic catastrophe. Interestingly, downregulation of syntaxin 18 in lung cancer cells also impaired expression of markers of epithelial-mesenchymal-transition, and reduced migration and invasion capacity. These findings suggest that syntaxin 18 is a key player regulating genes responsible for controlling the growth of the primary tumor as well as metastases upon radiotherapy of lung cancer. They provide a promising lead for biologically rational radiosensitization strategies impacting on radiation-induced cell death as well as metastasis.
Collapse
|
14
|
Jimenez-Sainz J, Krysztofiak A, Garbarino J, Rogers F, Jensen RB. The Pathogenic R3052W BRCA2 Variant Disrupts Homology-Directed Repair by Failing to Localize to the Nucleus. Front Genet 2022; 13:884210. [PMID: 35711920 PMCID: PMC9197106 DOI: 10.3389/fgene.2022.884210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The BRCA2 germline missense variant, R3052W, resides in the DNA binding domain and has been previously classified as a pathogenic allele. In this study, we sought to determine how R3052W alters the cellular functions of BRCA2 in the DNA damage response. The BRCA2 R3052W mutated protein exacerbates genome instability, is unable to rescue homology-directed repair, and fails to complement cell survival following exposure to PARP inhibitors and crosslinking drugs. Surprisingly, despite anticipated defects in DNA binding or RAD51-mediated DNA strand exchange, the BRCA2 R3052W protein mislocalizes to the cytoplasm precluding its ability to perform any DNA repair functions. Rather than acting as a simple loss-of-function mutation, R3052W behaves as a dominant negative allele, likely by sequestering RAD51 in the cytoplasm.
Collapse
Affiliation(s)
| | | | | | | | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Ganesa S, Sule A, Sundaram RK, Bindra RS. Mismatch repair proteins play a role in ATR activation upon temozolomide treatment in MGMT-methylated glioblastoma. Sci Rep 2022; 12:5827. [PMID: 35388070 PMCID: PMC8987098 DOI: 10.1038/s41598-022-09614-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation status of the O6-methylguanine methyltransferase (MGMT) gene promoter has been widely accepted as a prognostic biomarker for treatment with the alkylator, temozolomide (TMZ). In the absence of promoter methylation, the MGMT enzyme removes O6-methylguanine (O6-meG) lesions. In the setting of MGMT-promoter methylation (MGMT-), the O6-meG lesion activates the mismatch repair (MMR) pathway which functions to remove the damage. Our group reported that loss of MGMT expression via MGMT promoter silencing modulates activation of ataxia telangiectasia and RAD3 related protein (ATR) in response to TMZ treatment, which is associated with synergistic tumor-cell killing. Whether or not MMR proteins are involved in ATR activation in MGMT-cells upon alkylation damage remains poorly understood. To investigate the function of MMR in ATR activation, we created isogenic cell lines with knockdowns of the individual human MMR proteins MutS homolog 2 (MSH2), MutS homolog 6 (MSH6), MutS homolog 3 (MSH3), MutL homolog 1 (MLH1), and PMS1 homolog 2 (PMS2). Here, we demonstrate that MSH2, MSH6, MLH1 and PMS2, specifically, are involved in the activation of the ATR axis after TMZ exposure, whereas MSH3 is likely not. This study elucidates a potential mechanistic understanding of how the MMR system is involved in ATR activation by TMZ in glioblastoma cells, which is important for targeting MMR-mutated cancers.
Collapse
Affiliation(s)
- Sachita Ganesa
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Amrita Sule
- Department of Therapeutic Radiology, Yale University, 333 Cedar Street, New Haven, CT, 06511, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University, 333 Cedar Street, New Haven, CT, 06511, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, 333 Cedar Street, New Haven, CT, 06511, USA.
| |
Collapse
|
16
|
A deep learning model (FociRad) for automated detection of γ-H2AX foci and radiation dose estimation. Sci Rep 2022; 12:5527. [PMID: 35365702 PMCID: PMC8975967 DOI: 10.1038/s41598-022-09180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal form of damage to cells from irradiation. γ-H2AX (phosphorylated form of H2AX histone variant) has become one of the most reliable and sensitive biomarkers of DNA DSBs. However, the γ-H2AX foci assay still has limitations in the time consumed for manual scoring and possible variability between scorers. This study proposed a novel automated foci scoring method using a deep convolutional neural network based on a You-Only-Look-Once (YOLO) algorithm to quantify γ-H2AX foci in peripheral blood samples. FociRad, a two-stage deep learning approach, consisted of mononuclear cell (MNC) and γ-H2AX foci detections. Whole blood samples were irradiated with X-rays from a 6 MV linear accelerator at 1, 2, 4 or 6 Gy. Images were captured using confocal microscopy. Then, dose-response calibration curves were established and implemented with unseen dataset. The results of the FociRad model were comparable with manual scoring. MNC detection yielded 96.6% accuracy, 96.7% sensitivity and 96.5% specificity. γ-H2AX foci detection showed very good F1 scores (> 0.9). Implementation of calibration curve in the range of 0-4 Gy gave mean absolute difference of estimated doses less than 1 Gy compared to actual doses. In addition, the evaluation times of FociRad were very short (< 0.5 min per 100 images), while the time for manual scoring increased with the number of foci. In conclusion, FociRad was the first automated foci scoring method to use a YOLO algorithm with high detection performance and fast evaluation time, which opens the door for large-scale applications in radiation triage.
Collapse
|
17
|
Kaushik Tiwari M, Colon-Rios DA, Tumu HCR, Liu Y, Quijano E, Krysztofiak A, Chan C, Song E, Braddock DT, Suh HW, Saltzman WM, Rogers FA. Direct targeting of amplified gene loci for proapoptotic anticancer therapy. Nat Biotechnol 2022; 40:325-334. [PMID: 34711990 PMCID: PMC8930417 DOI: 10.1038/s41587-021-01057-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/05/2021] [Indexed: 12/16/2022]
Abstract
Gene amplification drives oncogenesis in a broad spectrum of cancers. A number of drugs have been developed to inhibit the protein products of amplified driver genes, but their clinical efficacy is often hampered by drug resistance. Here, we introduce a therapeutic strategy for targeting cancer-associated gene amplifications by activating the DNA damage response with triplex-forming oligonucleotides (TFOs), which drive the induction of apoptosis in tumors, whereas cells without amplifications process lower levels of DNA damage. Focusing on cancers driven by HER2 amplification, we find that TFOs targeting HER2 induce copy number-dependent DNA double-strand breaks (DSBs) and activate p53-independent apoptosis in HER2-positive cancer cells and human tumor xenografts via a mechanism that is independent of HER2 cellular function. This strategy has demonstrated in vivo efficacy comparable to that of current precision medicines and provided a feasible alternative to combat drug resistance in HER2-positive breast and ovarian cancer models. These findings offer a general strategy for targeting tumors with amplified genomic loci.
Collapse
Affiliation(s)
- Meetu Kaushik Tiwari
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel A Colon-Rios
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Hemanta C Rao Tumu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Elias Quijano
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Adam Krysztofiak
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Cynthia Chan
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | | | - Hee-Won Suh
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Vicar T, Gumulec J, Kolar R, Kopecna O, Pagacova E, Falkova I, Falk M. DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci. Comput Struct Biotechnol J 2022; 19:6465-6480. [PMID: 34976305 PMCID: PMC8668444 DOI: 10.1016/j.csbj.2021.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
Abstract
DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal microscopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis. DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and γH2AX) and uses U-Net for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF segmentation. The proposed method was trained and tested on challenging datasets consisting of mixtures of nonirradiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer patients. The cells were dosed with 0.5-8 Gy γ-rays and fixed at multiple (0-24 h) postirradiation times. Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among current advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the variability between two experienced experts, the software maintained its sensitivity and fidelity across dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morphometric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and classification of patient tumors, with the potential to identify specific cell subclones. The developed software improves IRIF quantification for various practical applications (radiotherapy monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better understanding of (radiation-induced) DNA damage and repair.
Collapse
Key Words
- 53BP1, P53-binding protein 1
- Biodosimetry
- CNN, convolutional neural network
- Confocal Microscopy
- Convolutional Neural Network
- DNA Damage and Repair
- DSB, DNA double-strand break
- Deep Learning
- FOV, field of view
- GUI, graphical user interface
- IRIF, ionizing radiation-induced (repair) foci
- Image Analysis
- Ionizing Radiation-Induced Foci (IRIFs)
- MSER, maximally stable extremal region (algorithm)
- Morphometry
- NHDFs, normal human dermal fibroblasts
- RAD51, DNA repair protein RAD51 homolog 1
- U-87, U-87 glioblastoma cell line
- γH2AX, histone H2AX phosphorylated at serine 139
Collapse
Affiliation(s)
- Tomas Vicar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic.,Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Radim Kolar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic
| | - Olga Kopecna
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Eva Pagacova
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Iva Falkova
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Martin Falk
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| |
Collapse
|
19
|
Dorsch M, Kowalczyk M, Planque M, Heilmann G, Urban S, Dujardin P, Forster J, Ueffing K, Nothdurft S, Oeck S, Paul A, Liffers ST, Kaschani F, Kaiser M, Schramm A, Siveke JT, Winslow MM, Fendt SM, Nalbant P, Grüner BM. Statins affect cancer cell plasticity with distinct consequences for tumor progression and metastasis. Cell Rep 2021; 37:110056. [PMID: 34818551 PMCID: PMC8640221 DOI: 10.1016/j.celrep.2021.110056] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Statins are among the most commonly prescribed drugs, and around every fourth person above the age of 40 is on statin medication. Therefore, it is of utmost clinical importance to understand the effect of statins on cancer cell plasticity and its consequences to not only patients with cancer but also patients who are on statins. Here, we find that statins induce a partial epithelial-to-mesenchymal transition (EMT) phenotype in cancer cells of solid tumors. Using a comprehensive STRING network analysis of transcriptome, proteome, and phosphoproteome data combined with multiple mechanistic in vitro and functional in vivo analyses, we demonstrate that statins reduce cellular plasticity by enforcing a mesenchymal-like cell state that increases metastatic seeding ability on one side but reduces the formation of (secondary) tumors on the other due to heterogeneous treatment responses. Taken together, we provide a thorough mechanistic overview of the consequences of statin use for each step of cancer development, progression, and metastasis.
Collapse
Affiliation(s)
- Madeleine Dorsch
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Manuela Kowalczyk
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Geronimo Heilmann
- Department of Chemical Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Sebastian Urban
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Philip Dujardin
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Jan Forster
- Department of Genome Informatics, Institute for Human Genetics, University of Duisburg-Essen, Duisburg, Germany; German Cancer Consortium (DKTK) partner site Essen, Essen, Germany
| | - Kristina Ueffing
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Silke Nothdurft
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Sebastian Oeck
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Annika Paul
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Sven T Liffers
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Markus Kaiser
- Department of Chemical Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Alexander Schramm
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany; Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Barbara M Grüner
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany; German Cancer Consortium (DKTK) partner site Essen, Essen, Germany.
| |
Collapse
|
20
|
Krysztofiak A, Szymonowicz K, Hlouschek J, Xiang K, Waterkamp C, Larafa S, Goetting I, Vega-Rubin-de-Celis S, Theiss C, Matschke V, Hoffmann D, Jendrossek V, Matschke J. Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown. iScience 2021; 24:103366. [PMID: 34825138 PMCID: PMC8603201 DOI: 10.1016/j.isci.2021.103366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance.
Collapse
Affiliation(s)
- Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kexu Xiang
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christoph Waterkamp
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, 45117 Essen, Germany
| | - Safa Larafa
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Isabell Goetting
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Silvia Vega-Rubin-de-Celis
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, 45117 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
21
|
Ho CSL, Tüns AI, Schildhaus HU, Wiesweg M, Grüner BM, Hegedus B, Schuler M, Schramm A, Oeck S. HER2 mediates clinical resistance to the KRAS G12C inhibitor sotorasib, which is overcome by co-targeting SHP2. Eur J Cancer 2021; 159:16-23. [PMID: 34715459 DOI: 10.1016/j.ejca.2021.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Mutant RAS guanosine triphosphate hydrolases (GTPases) are key oncogenic drivers in many cancers. The KRASG12C variant has recently become targetable by a new drug class specifically locking KRASG12C in its inactive guanosine diphosphate (GDP)-bound state. Clinical activity was demonstrated in patients with advanced lung cancers harbouring KRASG12C mutations but was limited by the development of resistance. METHODS A biopsy from progressing lung cancer of a patient treated with the KRASG12C inhibitor sotorasib was obtained, and the underlying resistance factors were analysed. Mechanistic studies were performed in vitro and in vivo to uncover strategies to overcome resistance to KRASG12C inhibition. RESULTS We demonstrated acquisition of HER2 copy number gain and KRASG12C mutation retention in the post-progression biopsy. To explore HER2 gain as the relevant resistance mechanism, we generated KRASG12C lung cancer models overexpressing HER2. MAPK pathway signalling remained active despite KRASG12C inhibitor treatment. Combined pharmacological inhibition of KRASG12C and SHP2 synergistically overcame HER2-mediated resistance in vitro and in vivo. CONCLUSIONS These findings establish HER2 copy number gain as a clinically relevant mechanism of resistance to pharmacological KRASG12C inhibition that can be overcome by co-targeting SHP2.
Collapse
Affiliation(s)
- Cassandra S L Ho
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Alicia I Tüns
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Marcel Wiesweg
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Barbara M Grüner
- Laboratory of Molecular Tumor Pathology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Balazs Hegedus
- Department of Thoracic Surgery, West German Cancer Center, University Medicine Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Alexander Schramm
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Sebastian Oeck
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| |
Collapse
|
22
|
NTRK1/TrkA Signaling in Neuroblastoma Cells Induces Nuclear Reorganization and Intra-Nuclear Aggregation of Lamin A/C. Cancers (Basel) 2021; 13:cancers13215293. [PMID: 34771457 PMCID: PMC8582546 DOI: 10.3390/cancers13215293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neuroblastoma (NB) accounts for 15% of all cancer-related deaths of children. While the amplification of the Myc-N proto-oncogene (MYCN) is a major driver of aggressive NB, the expression of the neurotrophin receptor, NTRK1/TrkA, has been shown to be associated with an excellent outcome. MYCN downregulates NTRK1 expression, but it is unknown if the molecular effects of NTRK1 signaling also affect MYCN-induced networks. The aim of this study was to decipher NTRK1 signaling using an unbiased proteome and phosphoproteome approach. To this end, we realized inducible ectopic NTRK1 expression in a NB cell line with MYCN amplification and analyzed the proteomic changes upon NTRK1 activation in a time-dependent manner. In line with the phenotypes observed, NTRK1 activation induced markers of neuronal differentiation and cell cycle arrest. Most prominently, NTRK1 upregulated the expression and phosphorylation of the nuclear lamina component Lamin A/C. Moreover, NTRK1 signaling also induced the aggregation of LMNA within nucleic foci, which accompanies differentiation in other cell types. Abstract (1) Background: Neuroblastomas (NBs) are the most common extracranial solid tumors of children. The amplification of the Myc-N proto-oncogene (MYCN) is a major driver of NB aggressiveness, while high expression of the neurotrophin receptor NTRK1/TrkA is associated with mild disease courses. The molecular effects of NTRK1 signaling in MYCN-amplified NB, however, are still poorly understood and require elucidation. (2) Methods: Inducible NTRK1 expression was realized in four NB cell lines with (IMR5, NGP) or without MYCN amplification (SKNAS, SH-SY5Y). Proteome and phosphoproteome dynamics upon NTRK1 activation by its ligand, NGF, were analyzed in a time-dependent manner in IMR5 cells. Target validation by immunofluorescence staining and automated image processing was performed using the three other NB cell lines. (3) Results: In total, 230 proteins and 134 single phosphorylated class I phosphosites were found to be significantly regulated upon NTRK1 activation. Among known NTRK1 targets, Stathmin and the neurosecretory protein VGF were recovered. Additionally, we observed the upregulation and phosphorylation of Lamin A/C (LMNA) that accumulated inside nuclear foci. (4) Conclusions: We provide a comprehensive picture of NTRK1-induced proteome and phosphoproteome dynamics. The phosphorylation of LMNA within nucleic aggregates was identified as a prominent feature of NTRK1 signaling independent of the MYCN status of NB cells.
Collapse
|
23
|
Garbarino J, Eckroate J, Sundaram RK, Jensen RB, Bindra RS. Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity. Transl Oncol 2021; 14:101147. [PMID: 34118569 PMCID: PMC8203843 DOI: 10.1016/j.tranon.2021.101147] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
Drug screen shows that ATRX KO leads to PARP inhibitor sensitivity in glioma cells. PARPi leads to greater levels of replication stress in ATRX KO cells than WT. IDH1 R132H and ATRX KO have similar levels of PARP inhibitor sensitivity. ATRi and PARPi have greater synergy in ATRX KO cells.
Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Garbarino
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06511, USA
| | - Jillian Eckroate
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Sule A, Van Doorn J, Sundaram RK, Ganesa S, Vasquez J, Bindra R. Targeting IDH1/2 mutant cancers with combinations of ATR and PARP inhibitors. NAR Cancer 2021; 3:zcab018. [PMID: 34027408 PMCID: PMC8127964 DOI: 10.1093/narcan/zcab018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/17/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations in the isocitrate dehydrogenase-1 and -2 (IDH1/2) genes were first identified in glioma and acute myeloid leukemia (AML), and subsequently found in multiple other tumor types. These neomorphic mutations convert the normal product of enzyme, α-ketoglutarate (αKG), to the oncometabolite 2-hydroxyglutarate (2HG). Our group recently demonstrated that 2HG suppresses the high-fidelity homologous recombination (HR) DNA repair pathway, resulting in a state referred to as 'BRCAness', which confers exquisite sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. In this study, we sought to elucidate sensitivity of IDH1/2-mutant cells to DNA damage response (DDR) inhibitors and, whether combination therapies could enhance described synthetic lethal interactions. Here, we report that ATR (ataxia telangiectasia and Rad3-related protein kinase) inhibitors are active against IDH1/2-mutant cells, and that this activity is further potentiated in combination with PARP inhibitors. We demonstrate this interaction across multiple cell line models with engineered and endogenous IDH1/2 mutations, with robust anti-tumor activity in vitro and in vivo. Mechanistically, we found ATR and PARP inhibitor treatment induces premature mitotic entry, which is significantly elevated in the setting of IDH1/2-mutations. These data highlight the potential efficacy of targeting HR defects in IDH1/2-mutant cancers and support the development of this combination in future clinical trials.
Collapse
Affiliation(s)
- Amrita Sule
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jinny Van Doorn
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Sachita Ganesa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06511, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
25
|
Oeck S, Tüns AI, Hurst S, Schramm A. Streamlining Quantitative Analysis of Long RNA Sequencing Reads. Int J Mol Sci 2020; 21:ijms21197259. [PMID: 33019615 PMCID: PMC7584020 DOI: 10.3390/ijms21197259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Transcriptome analyses allow for linking RNA expression profiles to cellular pathways and phenotypes. Despite improvements in sequencing methodology, whole transcriptome analyses are still tedious, especially for methodologies producing long reads. Currently, available data analysis software often lacks cost- and time-efficient workflows. Although kit-based workflows and benchtop platforms for RNA sequencing provide software options, e.g., cloud-based tools to analyze basecalled reads, quantitative, and easy-to-use solutions for transcriptome analysis, especially for non-human data, are missing. We therefore developed a user-friendly tool, termed Alignator, for rapid analysis of long RNA reads requiring only FASTQ files and an Ensembl cDNA database reference. After successful mapping, Alignator generates quantitative information for each transcript and provides a table in which sequenced and aligned RNA are stored for further comparative analyses.
Collapse
Affiliation(s)
- Sebastian Oeck
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Correspondence: (S.O.); (A.S.)
| | - Alicia I. Tüns
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Sebastian Hurst
- Institute of Cell Biology, University of Münster, 48149 Münster, Germany;
| | - Alexander Schramm
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Correspondence: (S.O.); (A.S.)
| |
Collapse
|
26
|
Szymonowicz K, Krysztofiak A, van der Linden J, Kern A, Deycmar S, Oeck S, Squire A, Koska B, Hlouschek J, Vüllings M, Neander C, Siveke JT, Matschke J, Pruschy M, Timmermann B, Jendrossek V. Proton Irradiation Increases the Necessity for Homologous Recombination Repair Along with the Indispensability of Non-Homologous End Joining. Cells 2020; 9:E889. [PMID: 32260562 PMCID: PMC7226794 DOI: 10.3390/cells9040889] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Jansje van der Linden
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Ajvar Kern
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Simon Deycmar
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anthony Squire
- Institute of Experimental Immunology and Imaging, Imaging Center Essen, University Hospital Essen, 45122 Essen, Germany;
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Melanie Vüllings
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Christian Neander
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Jens T. Siveke
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Martin Pruschy
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
- Department of Particle Therapy, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| |
Collapse
|
27
|
Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, Newman LE, Zhang XO, Wu L, Yan Q, Bosenberg M, Liu Y, Sulkowski PL, Tripple V, Kaech SM, Glazer PM, Shadel GS. Mitochondrial DNA Stress Signalling Protects the Nuclear Genome. Nat Metab 2019; 1:1209-1218. [PMID: 32395698 PMCID: PMC7213273 DOI: 10.1038/s42255-019-0150-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
Abstract
The mammalian genome comprises nuclear DNA (nDNA) derived from both parents and mitochondrial DNA (mtDNA) that is maternally inherited and encodes essential proteins required for oxidative phosphorylation. Thousands of copies of the circular mtDNA are present in most cell types that are packaged by TFAM into higher-order structures called nucleoids1. Mitochondria are also platforms for antiviral signalling2 and, due to their bacterial origin, mtDNA and other mitochondrial components trigger innate immune responses and inflammatory pathology2,3. We showed previously that instability and cytoplasmic release of mtDNA activates the cGAS-STING-TBK1 pathway resulting in interferon stimulated gene (ISG) expression that promotes antiviral immunity4. Here, we find that persistent mtDNA stress is not associated with basally activated NF-κB signalling or interferon gene expression typical of an acute antiviral response. Instead, a specific subset of ISGs, that includes Parp9, remains activated by the unphosphorylated form of ISGF3 (U-ISGF3) that enhances nDNA damage and repair responses. In cultured primary fibroblasts and cancer cells, the chemotherapeutic drug doxorubicin causes mtDNA damage and release, which leads to cGAS-STING-dependent ISG activation. In addition, mtDNA stress in TFAM-deficient mouse melanoma cells produces tumours that are more resistant to doxorubicin in vivo. Finally, Tfam +/- mice exposed to ionizing radiation exhibit enhanced nDNA repair responses in spleen. Therefore, we propose that damage to and subsequent release of mtDNA elicits a protective signalling response that enhances nDNA repair in cells and tissues, suggesting mtDNA is a genotoxic stress sentinel.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sebastian Oeck
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, Bryan, TX, USA
| | | | - Alva G Sainz
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Newman
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lizhen Wu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Marcus Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Parker L Sulkowski
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Susan M Kaech
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Peter M Glazer
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
28
|
Oeck S, Malewicz NM, Krysztofiak A, Turchick A, Jendrossek V, Glazer PM. High-throughput Evaluation of Protein Migration and Localization after Laser Micro-Irradiation. Sci Rep 2019; 9:3148. [PMID: 30816253 PMCID: PMC6395640 DOI: 10.1038/s41598-019-39760-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
DNA- and histone-related research frequently comprises the quantitative analysis of protein modifications, such as histone phosphorylation. Analysis of accumulation and disappearance of protein foci are used to monitor DNA damage and repair kinetics. If the protein of interest doesn't accumulate in foci, laser micro-irradiation of single nuclei provides an alternative method to monitor DNA repair proteins and histone dynamics at the DNA damage site. We have developed an automated evaluation tool for standardized, high-throughput analysis of micro-irradiated cells featuring single cell background subtraction and detection across multiple fluorescence channels, allowing for robust statistics.
Collapse
Affiliation(s)
- Sebastian Oeck
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany.
| | - Nathalie M Malewicz
- Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Audrey Turchick
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
29
|
Oeck S, Szymonowicz K, Wiel G, Krysztofiak A, Lambert J, Koska B, Iliakis G, Timmermann B, Jendrossek V. Relating Linear Energy Transfer to the Formation and Resolution of DNA Repair Foci After Irradiation with Equal Doses of X-ray Photons, Plateau, or Bragg-Peak Protons. Int J Mol Sci 2018; 19:ijms19123779. [PMID: 30486506 PMCID: PMC6320817 DOI: 10.3390/ijms19123779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
Proton beam therapy is increasingly applied for the treatment of human cancer, as it promises to reduce normal tissue damage. However, little is known about the relationship between linear energy transfer (LET), the type of DNA damage, and cellular repair mechanisms, particularly for cells irradiated with protons. We irradiated cultured cells delivering equal doses of X-ray photons, Bragg-peak protons, or plateau protons and used this set-up to quantitate initial DNA damage (mainly DNA double strand breaks (DSBs)), and to analyze kinetics of repair by detecting γH2A.X or 53BP1 using immunofluorescence. The results obtained validate the reliability of our set-up in delivering equal radiation doses under all conditions employed. Although the initial numbers of γH2A.X and 53BP1 foci scored were similar under the different irradiation conditions, it was notable that the maximum foci level was reached at 60 min after irradiation with Bragg-peak protons, as compared to 30 min for plateau protons and photons. Interestingly, Bragg-peak protons induced larger and irregularly shaped γH2A.X and 53BP1 foci. Additionally, the resolution of these foci was delayed. These results suggest that Bragg-peak protons induce DNA damage of increased complexity which is difficult to process by the cellular repair apparatus.
Collapse
Affiliation(s)
- Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, New Haven, CT 06520, USA.
| | - Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Gesa Wiel
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Jamil Lambert
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - Benjamin Koska
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - George Iliakis
- Institute of Medical Radiation Biology; University of Duisburg-Essen; Medical School; Hufelandstr. 55, 45122 Essen, Germany.
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| |
Collapse
|
30
|
Sulkowski PL, Sundaram RK, Oeck S, Corso CD, Liu Y, Noorbakhsh S, Niger M, Boeke M, Ueno D, Kalathil AN, Bao X, Li J, Shuch B, Bindra RS, Glazer PM. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet 2018; 50:1086-1092. [PMID: 30013182 PMCID: PMC6072579 DOI: 10.1038/s41588-018-0170-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/01/2018] [Indexed: 01/27/2023]
Abstract
The hereditary cancer syndromes hereditary leiomyomatosis and renal cell cancer (HLRCC) and succinate dehydrogenase-related hereditary paraganglioma and pheochromocytoma (SDH PGL/PCC) are linked to germline loss-of-function mutations in genes encoding the Krebs cycle enzymes fumarate hydratase and succinate dehydrogenase, thus leading to elevated levels of fumarate and succinate, respectively1-3. Here, we report that fumarate and succinate both suppress the homologous recombination (HR) DNA-repair pathway required for the resolution of DNA double-strand breaks (DSBs) and for the maintenance of genomic integrity, thus rendering tumor cells vulnerable to synthetic-lethal targeting with poly(ADP)-ribose polymerase (PARP) inhibitors. These results identify HLRCC and SDH PGL/PCC as familial DNA-repair deficiency syndromes, providing a mechanistic basis to explain their cancer predisposition and suggesting a potentially therapeutic approach for advanced HLRCC and SDH PGL/PCC, both of which are incurable when metastatic.
Collapse
Affiliation(s)
- Parker L Sulkowski
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sebastian Oeck
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Christopher D Corso
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Southeast Radiation Oncology and Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Seth Noorbakhsh
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Monica Niger
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Boeke
- Department of Urology, Yale University School of Medicine, New Haven, CT, USA
| | - Daiki Ueno
- Department of Urology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Xun Bao
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Jing Li
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Brian Shuch
- Department of Urology, Yale University School of Medicine, New Haven, CT, USA.
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Szymonowicz K, Oeck S, Krysztofiak A, van der Linden J, Iliakis G, Jendrossek V. Restraining Akt1 Phosphorylation Attenuates the Repair of Radiation-Induced DNA Double-Strand Breaks and Reduces the Survival of Irradiated Cancer Cells. Int J Mol Sci 2018; 19:ijms19082233. [PMID: 30065170 PMCID: PMC6121313 DOI: 10.3390/ijms19082233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023] Open
Abstract
The survival kinase protein kinase B (Akt) participates in the regulation of essential subcellular processes, e.g., proliferation, growth, survival, and apoptosis, and has a documented role in promoting resistance against genotoxic stress including radiotherapy, presumably by influencing the DNA damage response and DNA double-strand break (DSB) repair. However, its exact role in DSB repair requires further elucidation. We used a genetic approach to explore the consequences of impaired phosphorylation of Akt1 at one or both of its key phosphorylation sites, Threonine 308 (T308) or Serine 473 (S473), on DSB repair and radiosensitivity to killing. Therefore, we overexpressed either the respective single or the double phosphorylation-deficient mutants (Akt1-T308A, Akt1-S473A, or Akt1-T308A/S473A) in TRAMPC1 murine prostate cancer cells (TrC1) and measured the DSB repair kinetics and clonogenic cell survival upon irradiation. Only the expression of the Akt1-T308A/S473A induced a significant delay in the kinetics of DSB repair in irradiated TrC1 as determined by the γH2A.X (H2A histone family, member X) assay and the neutral comet assay, respectively. Moreover, Akt1-T308A/S473A-expressing cells were characterized by increased radiosensitivity compared to Akt1-WT (wild type)-expressing cells in long-term colony formation assays. Our data reveal that Akt1’s activation state is important for the cellular radiation response, presumably by modulating the phosphorylation of effector proteins involved in the regulation of DSB repair.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen Virchowstrasse 173, 45147 Essen, Germany.
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen Virchowstrasse 173, 45147 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, New Haven, CT 06520, USA.
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen Virchowstrasse 173, 45147 Essen, Germany.
| | - Jansje van der Linden
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen Virchowstrasse 173, 45147 Essen, Germany.
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 171, 45147 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen Virchowstrasse 173, 45147 Essen, Germany.
| |
Collapse
|
32
|
Hlouschek J, Hansel C, Jendrossek V, Matschke J. The Mitochondrial Citrate Carrier (SLC25A1) Sustains Redox Homeostasis and Mitochondrial Metabolism Supporting Radioresistance of Cancer Cells With Tolerance to Cycling Severe Hypoxia. Front Oncol 2018; 8:170. [PMID: 29888201 PMCID: PMC5980958 DOI: 10.3389/fonc.2018.00170] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022] Open
Abstract
Pronounced resistance of lung cancer cells to radiotherapy and chemotherapy is a major barrier to successful treatment. Herein, both tumor hypoxia and the upregulation of the cellular antioxidant defense systems observed during malignant progression can contribute to radioresistance. We recently found that exposure to chronic cycling severe hypoxia/reoxygenation stress results in glutamine-dependent upregulation of cellular glutathione (GSH) levels and associated radiation resistance opening novel routes for tumor cell-specific radiosensitization. Here, we explored the role of the mitochondrial citrate carrier (SLC25A1) for the improved antioxidant defense of cancer cells with tolerance to acute and chronic severe hypoxia/reoxygenation stress and the use of pharmacologic SLC25A1 inhibition for tumor cell radiosensitization. Exposure to acute or chronic cycling severe hypoxia/reoxygenation stress triggered upregulated expression of SLC25A1 in lung cancer, prostate cancer, and glioblastoma cells in vitro. Interestingly, exposure to ionizing radiation (IR) further promoted SLC25A1 expression. Inhibition of SLC25A1 by 1,2,3-benzene-tricarboxylic acid (BTA) disturbed cellular and mitochondrial redox homeostasis, lowered mitochondrial metabolism, and reduced metabolic flexibility of cancer cells. Even more important, combining IR with BTA was able to overcome increased radioresistance induced by adaptation to chronic cycling severe hypoxia/reoxygenation stress. This radiosensitizing effect of BTA-treated cells was linked to increased reactive oxygen species and reduced DNA repair capacity. Of note, key findings could be reproduced when using the SLC25A1-inhibitor 4-Chloro-3-[[(3-nitrophenyl)amino]sulfonyl]-benzoic acid (CNASB). Moreover, in silico analysis of publically available databases applying the Kaplan–Meier plotter tool (kmplot.com) revealed that overexpression of SLC25A1 was associated with reduced survival of lung cancer patients suggesting a potential link to aggressive cancers. We show that SLC25A1 can contribute to the increased antioxidant defense of cancer cells allowing them to escape the cytotoxic effects of IR. Since upregulation of SLC25A1 is induced by adverse conditions in the tumor environment, exposure to IR, or both pharmacologic inhibition of SLC25A1 might be an effective strategy for radiosensitization of cancer cells particularly in chronically hypoxic tumor fractions.
Collapse
Affiliation(s)
- Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christine Hansel
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
33
|
Santos JC, Gambeloni RZ, Roque AT, Oeck S, Ribeiro ML. Epigenetic Mechanisms of ATM Activation after Helicobacter pylori Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:329-335. [DOI: 10.1016/j.ajpath.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/12/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
|