1
|
Nisar H, Sanchidrián González PM, Labonté FM, Schmitz C, Roggan MD, Kronenberg J, Konda B, Chevalier F, Hellweg CE. NF-κB in the Radiation Response of A549 Non-Small Cell Lung Cancer Cells to X-rays and Carbon Ions under Hypoxia. Int J Mol Sci 2024; 25:4495. [PMID: 38674080 PMCID: PMC11050661 DOI: 10.3390/ijms25084495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Paulina Mercedes Sanchidrián González
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Frederik M. Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France;
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| |
Collapse
|
2
|
Li C, Zhang Q, Luo H, Liu R, Feng S, Geng Y, Wang L, Yang Z, Zhang Y, Wang X. Carbon Ions Suppress Angiogenesis and Lung Metastases in Melanoma by Targeting CXCL10. Radiat Res 2023; 200:307-319. [PMID: 37527364 DOI: 10.1667/rade-22-0086.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Carbon-ion radiotherapy (CIRT) enhanced local control in patients with malignant melanoma. In several in vitro studies, carbon ions (C ions) have been also shown to decrease the metastatic potential of melanoma cells. CXC motif 10 (CXCL10) has been shown to play a crucial role in regulating tumor metastasis and it significantly increase in human embryonic kidney cells after heavy ion irradiations. This study sought to explore the regulatory effect of C ions on melanoma metastasis, emphasizing the role of CXCL10 in this process. To explore the potential regulatory effect of C ions on tumor metastasis in vivo, we developed a lung metastasis mouse model by injecting B16F10 cells into the footpad and subjected all mice to treatment with X rays and C ions. Subsequently, a series of assays, including histopathological analysis, enzyme-linked immunosorbent assay, real-time PCR, and western blotting, were conducted to assess the regulatory effects of C ions on melanoma. Our results showed that mice treated with C ions exhibited significantly less tumor vascularity, enhanced tumor necrosis, alleviated lung metastasis, and experienced longer survival than X-ray irradiated mice. Moreover, VEGF expression in B16F10 cells was significantly reduced by C-ion treatment, which could be alleviated by CXCL10 knockdown in vitro. Further investigations revealed that co-culturing with HUVECs resulted in a significant inhibition of proliferation, migration, and tube formation ability in the C-ion treated group, while the opposite effect was observed in the C-ion treated with si-CXCL10 group. In conclusion, our findings demonstrate that treatment with carbon-ion radiation can suppress angiogenesis and lung metastases in melanoma by specifically targeting CXCL10. These results suggest the potential utility of carbon ions in treating melanoma.
Collapse
Affiliation(s)
- Chengcheng Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Oncology, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shuangwu Feng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lina Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhen Yang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Laboratory Animal Center of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Oncology, Lanzhou Heavy Ions Hospital, Lanzhou, China
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Wang H, Xu Q, Dong X, Guan Z, Wang Z, Hao Y, Lu R, Chen L. Gold nanoparticles enhances radiosensitivity in glioma cells by inhibiting TRAF6/NF-κB induced CCL2 expression. Heliyon 2023; 9:e14362. [PMID: 36967939 PMCID: PMC10036657 DOI: 10.1016/j.heliyon.2023.e14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Gliomas are inherently difficult to treat by radiotherapy because glioma cells become radioresistant over time. However, combining radiotherapy with a radiosensitizer could be an effective strategy to mitigate the radioresistance of glioma cells. Gold nanoparticles (AuNPs) have emerged as a promising nanomaterial for cancer therapy, but little is known about whether AuNPs and X-ray radiation have cytotoxic synergistic effects against tumors. In this study, we found that the combination of AuNPs and X-ray irradiation significantly reduced the viabilities, as well as the migration and invasion, of glioma cells. Mechanistically, we observed that the AuNPs inhibited radiation-induced CCL2 expression by inhibiting the TRAF6/NF-κB pathway, which likely manifested the synergistic therapeutic effect between the AuNPs and X-ray radiation. The AuNPs also re-sensitized radioresistant glioma cells by inhibiting CCL2 expression. These results were also observed in another tumor cell line with a different molecular pattern, indicating that the underlying mechanism may be ubiquitous through cancer cells. Lastly, using the glioma mouse model, we observed that AuNPs significantly reduced tumor growth in the presence of X-ray radiation compared to radiotherapy alone.
Collapse
|
4
|
Towards sustainable human space exploration-priorities for radiation research to quantify and mitigate radiation risks. NPJ Microgravity 2023; 9:8. [PMID: 36707520 PMCID: PMC9883222 DOI: 10.1038/s41526-023-00262-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon's orbit, return to the Moon's surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit.
Collapse
|
5
|
Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. TOXICS 2022; 10:toxics10100628. [PMID: 36287908 PMCID: PMC9609561 DOI: 10.3390/toxics10100628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
Exposure to ionizing radiation can occur during medical treatments, from naturally occurring sources in the environment, or as the result of a nuclear accident or thermonuclear war. The severity of cellular damage from ionizing radiation exposure is dependent upon a number of factors including the absorbed radiation dose of the exposure (energy absorbed per unit mass of the exposure), dose rate, area and volume of tissue exposed, type of radiation (e.g., X-rays, high-energy gamma rays, protons, or neutrons) and linear energy transfer. While the dose, the dose rate, and dose distribution in tissue are aspects of a radiation exposure that can be varied experimentally or in medical treatments, the LET and eV are inherent characteristics of the type of radiation. High-LET radiation deposits a higher concentration of energy in a shorter distance when traversing tissue compared with low-LET radiation. The different biological effects of high and low LET with similar energies have been documented in vivo in animal models and in cultured cells. High-LET results in intense macromolecular damage and more cell death. Findings indicate that while both low- and high-LET radiation activate non-homologous end-joining DNA repair activity, efficient repair of high-LET radiation requires the homologous recombination repair pathway. Low- and high-LET radiation activate p53 transcription factor activity in most cells, but high LET activates NF-kB transcription factor at lower radiation doses than low-LET radiation. Here we review the development, uses, and current understanding of the cellular effects of low- and high-LET radiation exposure.
Collapse
Affiliation(s)
- Eric Russ
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
6
|
Wang Z, Wang Q, Gong L, Liu T, Wang P, Yuan Z, Wang W. The NF-κB-regulated miR-221/222/syndecan-1 axis restores intestinal mucosal barrier function in radiation enteritis. Int J Radiat Oncol Biol Phys 2022; 113:166-176. [PMID: 35033585 DOI: 10.1016/j.ijrobp.2022.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Radiation enteritis (RE) is the most common complication of pelvic radiotherapy, but proven therapies are lacking. Barrier function defects are closely associated with numerous inflammatory disorders. In this study, we investigated whether barrier dysfunction contributes to RE and whether syndecan-1 (Sdc1) protects intestinal barrier function in RE. The mechanism was also elucidated. MATERIALS AND METHODS Blood, urine, and tissue samples were collected from 21 patients with cervical cancer who experienced RE during radiotherapy and used to detect inflammatory responses and barrier function. The role of Sdc1 in barrier function was examined in cultured fetal human colon (FHC) cells exposed to radiation and an induced mouse RE model. Barrier function was determined by zonula occludens (ZO)-1 and occludin expression, transepithelial electrical resistance (TEER), and FITC-dextran (FD4) flux. The role of the nuclear factor (NF)-κB-P65 pathway was detected by Western blotting and chromatin immunoprecipitation. The role of miR-221/222 was assessed by real-time PCR and luciferase reporter assays. RESULTS Patients with RE exhibited obvious pathological and ultra-microstructural inflammatory injury and barrier disruption in the intestinal mucosa, as well as higher serum lipopolysaccharide (LPS), LPS-binding protein, and cytokine levels and a higher urine lactulose/mannitol ratio. Sdc1 overexpression in irradiated FHC cells reversed TEER suppression, repressed FD4 flux, and upregulated ZO-1 and occludin expression. Exogenous low-molecular-weight heparin supplementation in RE mice ameliorated the activity of enteritis and barrier defects. Mechanistically, irradiation-activated P65 increased the transcription of miR-221/222 via direct binding to their promoter regions, and miR-221/222 then post-transcriptionally suppressed the Sdc1 gene by binding to its 3'-untranslated region. CONCLUSIONS Sdc1 protects barrier function and controls inflammation during RE under transcriptional regulation by the NF-κB pathway and miR-221/222. The network including NF-κB, miR-221/222, and Sdc1 is important in the pathogenesis of RE. Sdc1 might represent a therapeutic target for novel anti-RE strategies.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China.
| | - Qingxin Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China; School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Nankai District, Tianjin, 300073, China
| | - Linlin Gong
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China
| | - Tao Liu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Peiguo Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China
| | - Wei Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China.
| |
Collapse
|
7
|
Chishti AA, Baumstark-Khan C, Nisar H, Hu Y, Konda B, Henschenmacher B, Spitta LF, Schmitz C, Feles S, Hellweg CE. The Use of ProteoTuner Technology to Study Nuclear Factor κB Activation by Heavy Ions. Int J Mol Sci 2021; 22:ijms222413530. [PMID: 34948324 PMCID: PMC8703744 DOI: 10.3390/ijms222413530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear factor κB (NF-κB) activation might be central to heavy ion-induced detrimental processes such as cancer promotion and progression and sustained inflammatory responses. A sensitive detection system is crucial to better understand its involvement in these processes. Therefore, a DD-tdTomato fluorescent protein-based reporter system was previously constructed with human embryonic kidney (HEK) cells expressing DD-tdTomato as a reporter under the control of a promoter containing NF-κB binding sites (HEK-pNFκB-DD-tdTomato-C8). Using this reporter cell line, NF-κB activation after exposure to different energetic heavy ions (16O, 95 MeV/n, linear energy transfer—LET 51 keV/µm; 12C, 95 MeV/n, LET 73 keV/μm; 36Ar, 95 MeV/n, LET 272 keV/µm) was quantified considering the dose and number of heavy ions hits per cell nucleus that double NF-κB-dependent DD-tdTomato expression. Approximately 44 hits of 16O ions and ≈45 hits of 12C ions per cell nucleus were required to double the NF-κB-dependent DD-tdTomato expression, whereas only ≈3 hits of 36Ar ions were sufficient. In the presence of Shield-1, a synthetic molecule that stabilizes DD-tdTomato, even a single particle hit of 36Ar ions doubled NF-κB-dependent DD-tdTomato expression. In conclusion, stabilization of the reporter protein can increase the sensitivity for NF-κB activation detection by a factor of three, allowing the detection of single particle hits’ effects.
Collapse
Affiliation(s)
- Arif Ali Chishti
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518055, China
| | - Christa Baumstark-Khan
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
| | - Hasan Nisar
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Lehtrar Road, Nilore, Islamabad 45650, Pakistan
| | - Yueyuan Hu
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
- Institute of Cardiovascular Immunology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Bikash Konda
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
| | - Bernd Henschenmacher
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
- Competence Center for Electromagnetic Fields (KEMF), Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Oberschleißheim, Germany
| | - Luis F. Spitta
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
| | - Claudia Schmitz
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
| | - Sebastian Feles
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany
| | - Christine E. Hellweg
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Höhe, D-51147 Köln, Germany; (A.A.C.); (C.B.-K.); (H.N.); (Y.H.); (B.K.); (B.H.); (L.F.S.); (C.S.); (S.F.)
- Correspondence: ; Tel.: +49-2203-601-3243
| |
Collapse
|
8
|
Mikhailov VF, Saleeva DV, Rozhdestvensky LM, Shulenina LV, Raeva NF, Zasukhina GD. Activity of Genes and Noncoding RNAs as an Approach to Determination of Early Biomarkers of Radiation-Induced Cancer in Mice. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kim DS, Weber T, Straube U, Hellweg CE, Nasser M, Green DA, Fogtman A. The Potential of Physical Exercise to Mitigate Radiation Damage-A Systematic Review. Front Med (Lausanne) 2021; 8:585483. [PMID: 33996841 PMCID: PMC8117229 DOI: 10.3389/fmed.2021.585483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
There is a need to investigate new countermeasures against the detrimental effects of ionizing radiation as deep space exploration missions are on the horizon. Objective: In this systematic review, the effects of physical exercise upon ionizing radiation-induced damage were evaluated. Methods: Systematic searches were performed in Medline, Embase, Cochrane library, and the databases from space agencies. Of 2,798 publications that were screened, 22 studies contained relevant data that were further extracted and analyzed. Risk of bias of included studies was assessed. Due to the high level of heterogeneity, meta-analysis was not performed. Five outcome groups were assessed by calculating Hedges' g effect sizes and visualized using effect size plots. Results: Exercise decreased radiation-induced DNA damage, oxidative stress, and inflammation, while increasing antioxidant activity. Although the results were highly heterogeneous, there was evidence for a beneficial effect of exercise in cellular, clinical, and functional outcomes. Conclusions: Out of 72 outcomes, 68 showed a beneficial effect of physical training when exposed to ionizing radiation. As the first study to investigate a potential protective mechanism of physical exercise against radiation effects in a systematic review, the current findings may help inform medical capabilities of human spaceflight and may also be relevant for terrestrial clinical care such as radiation oncology.
Collapse
Affiliation(s)
- David S. Kim
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Ulrich Straube
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| | - Christine E. Hellweg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Mona Nasser
- Peninsula Dental School, Plymouth University, Plymouth, United Kingdom
| | - David A. Green
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
- Centre of Human & Applied Physiological Sciences (CHAPS), King's College London, London, United Kingdom
| | - Anna Fogtman
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| |
Collapse
|
10
|
Jagetia GC. Antioxidant activity of curcumin protects against the radiation-induced micronuclei formation in cultured human peripheral blood lymphocytes exposed to various doses of γ-Radiation. Int J Radiat Biol 2021; 97:485-493. [PMID: 33464136 DOI: 10.1080/09553002.2021.1876948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Ionizing radiations trigger the formation of free radicals that damage DNA and cause cell death. DNA damage may be simply evaluated by micronucleus assay and the pharmacophores that impede free radicals could effectively reduce the DNA damage initiated by irradiation. Therefore, it was desired to determine the capacity of curcumin to alleviate micronuclei formation in human peripheral blood lymphocytes (HPBLs) exposed to 0-4 Gy of γ-radiation. MATERIALS AND METHODS HPBLs were exposed to 3 Gy after 30 minutes of 0.125, 0.25, 0.5, 1, 2, 5, 10, 20 or 50 µg/mL curcumin treatment or with 0.5 μg/mL curcumin 30 minutes early to 0, 0.5, 1, 2, 3 or 4 Gy 60Co γ-irradiation. Cytokinesis of HPBLs was blocked by cytochalasin B and micronuclei scored. The ability of curcumin to suppress free radical induction in vitro was determined by standard methods. RESULTS HPBLs treated with different concentrations of curcumin before 3 Gy irradiation alleviated the micronuclei formation depending on curcumin concentration and the lowest micronuclei were detected at 0.5 µg/mL curcumin when compared to 3 Gy irradiation alone. Increasing curcumin concentration caused a gradual rise in micronuclei, and the significant increases were detected at 10-50 µg/mL curcumin than 3 Gy irradiation alone. Irradiation of HPBLs to different doses of γ-rays caused a significant rise in micronuclei depending on radiation dose, whereas HPBLs treated with 0.5 µg/mL curcumin 30 minutes before irradiation to different doses of γ-rays significantly reduced frequencies of HPBLs with one, two, or more micronuclei. Curcumin treatment inhibited the formation of hydroxyl (OH), 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2'-diphenyl-1-picrylhydrazyl (DPPH), and (nitric oxide) NO free radicals in a concentration-related way. CONCLUSIONS Curcumin when treated at a dose of 0.5 μg/mL attenuated micronuclei formation after γ-irradiation by inhibiting the formation of radiation-induced free radicals.
Collapse
|
11
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
12
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
13
|
Xu Y, Liao C, Liu R, Liu J, Chen Z, Zhao H, Li Z, Chen L, Wu C, Tan H, Liu W, Li W. IRGM promotes glioma M2 macrophage polarization through p62/TRAF6/NF-κB pathway mediated IL-8 production. Cell Biol Int 2019; 43:125-135. [PMID: 30288851 DOI: 10.1002/cbin.11061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
Abstract
Alternatively activated (M2) macrophage promotes glioma progression and immune escape as the most immunocyte in glioma microenvironment. Finding out the key protein regulating M2 macrophage polarization is necessary for improving treatment. Whether immunity related GTPase M (IRGM) is involved in glioma development and M2 macrophage polarization is unknown. IRGM and M2 macrophage marker CD206 expression were examined using immunohistochemistry among 35 glioma and 11 non-cancerous brain specimens. We found IRGM scores were positively correlated with CD206 scores in glioma specimens and monocyte proportion in blood samples. A172 glioma cells transfected with either IRGM knock-down lentivirus (Lenti-IRGM) or control lentivirus (Lenti-HK) were subcutaneously injected into nude mice. In vivo, xenografted glioma size of the Lenti-IRGM group was smaller and had weaker fluorescence signal than Lenti-HK control group. Immunofluorescence results showed that there was obviously decreased IRGM, CD206, and IL-8 expression in the mice glioma of Lenti-IRGM group than Lenti-HK control group. In vitro, flow cytometry results showed that M2 polarization from THP-1 cocultured with Lenti-IRGM glioma cells decreased in contrast to that with Lenti-HK glioma cells; there were less interleukin-8 (IL-8) and macrophage inflammation protein 3-α (MIP-3α), but more interleukin-6 (IL-6) in the supernatant of Lenti-IRGM glioma cells than matched control. Western blot and immunofluorescence displayed that IRGM strongly promoted sequestosome-1 (p62/SQSTM1), necrosis factor receptor-activating factor 6 (TRAF6) expression and NF-κB transportation to the nucleus. Realtime PCR results demonstrated IRGM also promoted NF-κB downstream cytokines IL-8 and MIP-3α mRNA expression. These data suggested that IRGM could promote glioma development and M2 macrophage polarization by regulating p62/TRAF6/NF-κB pathway-mediated IL-8 production.
Collapse
Affiliation(s)
- Yanwen Xu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Chuanpeng Liao
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Renli Liu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China
| | - Jing Liu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Zhongping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Huafu Zhao
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Zongyang Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Lei Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Changpeng Wu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Hui Tan
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Wenlan Liu
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Weiping Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Sungang West Road, Shenzhen 518035, Guangdong Province, China.,Health Science Center, Shenzhen University, Shenzhen, Guangdong Province, China
| |
Collapse
|
14
|
Liu X, Chen H, Hou Y, Ma X, Ye M, Huang R, Hu B, Cao H, Xu L, Liu M, Li L, Gao J, Bai Y. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/P53/PARP pathway. Int J Oncol 2019; 54:1466-1480. [PMID: 30968148 DOI: 10.3892/ijo.2019.4719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/02/2019] [Indexed: 11/05/2022] Open
Abstract
It is well-known that the activation status of the P53, signal transducer and activator of transcription (Stat)3 and nuclear factor (NF)‑κB signaling pathways determines the radiosensitivity of cancer cells. However, the function of these pathways in radiosensitive vs radioresistant cancer cells remains elusive. The present study demonstrated that adaptive expression of epidermal growth factor (EGF) following exposure to ionizing radiation (IR) may induce radiosensitization of pancreatic cancer (PC) cells through induction of the cyclin D1/P53/poly(ADP‑ribose) polymerase pathway. By contrast, adaptively expressed interleukin (IL)‑6 and insulin‑like growth factor (IGF)‑1 may promote radioresistance of PC cells, likely through activation of the Stat3 and NF‑κB pathways. In addition, cyclin D1 and survivin, which are specifically expressed in the G1/S and G2/M phase of the cell cycle, respectively, are mutually exclusive in radiosensitive and radioresistant PC cells, while Bcl‑2 and Bcl‑xL expression does not differ between radiosensitive and radioresistant PC cells. Therefore, adaptively expressed EGF and IL‑6/IGF‑1 may alter these pathways to promote the radiosensitivity of PC cancers. The findings of the present study highlight potential makers for the evaluation of radiosensitivity and enable the development of effective regimens for cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Haiyan Chen
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yanli Hou
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Xiumei Ma
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Ming Ye
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Renhua Huang
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Bin Hu
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Hongbin Cao
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Lei Xu
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Mengyao Liu
- Laboratory of Tumorigenesis and Immunity, Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Linfeng Li
- Laboratory of Tumorigenesis and Immunity, Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jianxin Gao
- Laboratory of Tumorigenesis and Immunity, Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
15
|
Liu F, Wang Z, Li W, Wei Y. Transcriptional response of murine bone marrow cells to total-body carbon-ion irradiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 839:49-58. [PMID: 30744812 DOI: 10.1016/j.mrgentox.2019.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022]
Abstract
The need to understand the health effects of heavy ion irradiation is motivated by the use of this modality in radiotherapy and by the potential for exposure during space missions. We have studied the effects of carbon-ion total-body irradiation on the hematopoietic system of the mouse and, in particular, the transcriptional response of bone marrow (BM) cells. Carbon-ion irradiation caused BM cell DNA damage, apoptosis, elevated ROS, and myelosuppression. Transcriptomic analysis showed that overall gene expression in irradiated BM cells differed significantly from the controls. Of 253 genes that were modulated, 192 were up-regulated and 61 down-regulated. Gene ontology analysis showed that the modulated genes are involved in DNA damage response signaling, DNA repair, apoptosis, and the immune response. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these functions are regulated by the p38 MAPK, TNF, and apoptosis pathways. These findings indicate pathways that may be involved in protection against carbon ion radiation injury.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuanzi Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanting Wei
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, China
| |
Collapse
|
16
|
Hellweg CE, Chishti AA, Diegeler S, Spitta LF, Henschenmacher B, Baumstark-Khan C. Molecular Signaling in Response to Charged Particle Exposures and its Importance in Particle Therapy. Int J Part Ther 2018; 5:60-73. [PMID: 31773020 PMCID: PMC6871585 DOI: 10.14338/ijpt-18-00016.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Energetic, charged particles elicit an orchestrated DNA damage response (DDR) during their traversal through healthy tissues and tumors. Complex DNA damage formation, after exposure to high linear energy transfer (LET) charged particles, results in DNA repair foci formation, which begins within seconds. More protein modifications occur after high-LET, compared with low-LET, irradiation. Charged-particle exposure activates several transcription factors that are cytoprotective or cytodestructive, or that upregulate cytokine and chemokine expression, and are involved in bystander signaling. Molecular signaling for a survival or death decision in different tumor types and healthy tissues should be studied as prerequisite for shaping sensitizing and protective strategies. Long-term signaling and gene expression changes were found in various tissues of animals exposed to charged particles, and elucidation of their role in chronic and late effects of charged-particle therapy will help to develop effective preventive measures.
Collapse
Affiliation(s)
- Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Arif Ali Chishti
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Luis F. Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Bernd Henschenmacher
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| |
Collapse
|
17
|
The Role of the Nuclear Factor κB Pathway in the Cellular Response to Low and High Linear Energy Transfer Radiation. Int J Mol Sci 2018; 19:ijms19082220. [PMID: 30061500 PMCID: PMC6121395 DOI: 10.3390/ijms19082220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Astronauts are exposed to considerable doses of space radiation during long-term space missions. As complete shielding of the highly energetic particles is impracticable, the cellular response to space-relevant radiation qualities has to be understood in order to develop countermeasures and to reduce radiation risk uncertainties. The transcription factor Nuclear Factor κB (NF-κB) plays a fundamental role in the immune response and in the pathogenesis of many diseases. We have previously shown that heavy ions with a linear energy transfer (LET) of 100–300 keV/µm have a nine times higher potential to activate NF-κB compared to low-LET X-rays. Here, chemical inhibitor studies using human embryonic kidney cells (HEK) showed that the DNA damage sensor Ataxia telangiectasia mutated (ATM) and the proteasome were essential for NF-κB activation in response to X-rays and heavy ions. NF-κB’s role in cellular radiation response was determined by stable knock-down of the NF-κB subunit RelA. Transfection of a RelA short-hairpin RNA plasmid resulted in higher sensitivity towards X-rays, but not towards heavy ions. Reverse Transcriptase real-time quantitative PCR (RT-qPCR) showed that after exposure to X-rays and heavy ions, NF-κB predominantly upregulates genes involved in intercellular communication processes. This process is strictly NF-κB dependent as the response is completely absent in RelA knock-down cells. NF-κB’s role in the cellular radiation response depends on the radiation quality.
Collapse
|