1
|
Liu Y, Xu Y, Ji H, Gao F, Ge R, Zhou D, Fu H, Liu X, Ma S. AdipoRon Alleviates Liver Injury by Protecting Hepatocytes from Mitochondrial Damage Caused by Ionizing Radiation. Int J Mol Sci 2024; 25:11277. [PMID: 39457060 PMCID: PMC11508598 DOI: 10.3390/ijms252011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Radiation liver injury is a common complication of hepatocellular carcinoma radiotherapy. It is mainly caused by irreversible damage to the DNA of hepatocellular cells directly by radiation, which seriously interferes with metabolism and causes cell death. AdipoRon can maintain lipid metabolism and stabilize blood sugar by activating adiponectin receptor 1 (AdipoR1). However, the role of AdipoRon/AdipoR1 in the regulation of ionizing radiation (IR)-induced mitochondrial damage remains unclear. In this study, we aimed to elucidate the roles of AdipoRon/AdipoR1 in IR-induced mitochondrial damage in normal hepatocyte cells. We found that AdipoRon treatment rescued IR-induced liver damage in mice and mitochondrial damage in normal hepatocytes in vivo and in vitro. AdipoR1 deficiency exacerbated IR-induced oxidative stress, mitochondrial dynamics, and biogenesis disorder. Mechanistically, the absence of AdipoR1 inhibits the activity of adenosine monophosphate-activated protein kinase α (AMPKα), subsequently leading to disrupted mitochondrial dynamics by decreasing mitofusin (MFN) and increasing dynamin-related protein 1 (DRP1) protein expression. It also controls mitochondrial biogenesis by suppressing the peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) and transcription factor A (TFAM) signaling pathway, ultimately resulting in impaired mitochondrial function. To sum up, AdipoRon/AdipoR1 maintain mitochondrial function by regulating mitochondrial dynamics and biogenesis through the AdipoR1-AMPKα signaling pathway. This study reveals the significant role of AdipoR1 in regulating IR-induced mitochondrial damage in hepatocytes and offers a novel approach to protecting against damage caused by IR.
Collapse
Affiliation(s)
- Yi Liu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Yinfen Xu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Huilin Ji
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Fenfen Gao
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Ruoting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Dan Zhou
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Hengyi Fu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Y.L.); (Y.X.); (H.J.); (F.G.); (R.G.); (D.Z.); (H.F.)
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325035, China
| |
Collapse
|
2
|
Dawoud M, Attallah KM, Ibrahim IT, Karam HM, Ibrahim AA. MitoQ and its hyaluronic acid-based nanopreparation mitigating gamma radiation-induced intestinal injury in mice: alleviation of oxidative stress and apoptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5193-5205. [PMID: 38252300 DOI: 10.1007/s00210-024-02948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Perturbations produced by ionizing radiation on intestinal tissue are considered one of highly drastic challenges in radiotherapy. Animals were randomized into five groups. The first group was allocated as control, and the second was subjected to whole body γ-irradiation (10 Gy). The third was administered HA NP (17.6 mg/kg/day; i.p.) and then irradiated. The fourth one received MitoQ (2 mg/kg/day; i.p.) and then irradiated. The last group received MitoQ/HA NP (2 mg/kg/day; i.p.) for 5 days prior to irradiation. Mice were sacrificed a week post-γ-irradiation for evaluation. MitoQ/HA NP ameliorated mitochondrial oxidative stress as indicated by rising (TAC) and glutathione peroxidase and decreasing malondialdehyde, showing its distinguished antioxidant yield. That impacted the attenuation of apoptosis, which was revealed by the restoration of the anti-apoptotic marker and lessening proapoptotic caspase-3. Inflammatory parameters dwindled via treatment with MitoQ/HA NP. Moreover, this new NP exerts its therapeutic action through a distinguished radioprotective pathway (Hmgb1/TLR-4.) Subsequently, these antioxidants and their nanoparticles conferred protection to intestinal tissue as manifested by histopathological examination. These findings would be associated with its eminent antioxidant potential through high mitochondria targeting, enhanced cellular uptake, and ROS scavenging. This research underlines MitoQ/HA NP as a new treatment for the modulation of intestinal damage caused by radiotherapy modalities.
Collapse
Affiliation(s)
- Mohamed Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura, University, Makkah, Saudi Arabia
| | - Khalid M Attallah
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
3
|
Deng B, Quan Y, Chen Z, Wang H. Radiation Effects of Normal B-Lymphoblastoid Cells after Exposing Them to Low-Dose-Rate Irradiation from Tritium β-rays. BIOLOGY 2024; 13:418. [PMID: 38927298 PMCID: PMC11200481 DOI: 10.3390/biology13060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The effects of tritium at low doses and low dose rates have received increasing attention due to recent developments in fusion energy and the associated risks of tritium releases into the environment. Mitochondria have been identified as a potential candidate for studying the effects of low-dose/low-dose-rate radiation, with extensive experimental results obtained using X-ray irradiation. In this study, irradiation experiments were conducted on normal B-lymphoblastoid cells using HTO at varying doses. When compared to X-ray irradiation, no significant differences in cell viability induced by different doses were observed. However, the results of ATP levels showed a significant difference between the irradiated sample at a dose of 500 mGy by tritium beta-rays and the sham-irradiated sample, while the levels obtained with X-ray irradiation were almost identical to the sham-irradiated sample. In contrast, ATP levels for both tritium beta-rays and X-rays at a dose of 1.0 Gy showed minimal differences compared to the sham-irradiated sample. Furthermore, distinct effects at 500 mGy were also confirmed in both ROS levels and apoptosis results obtained through tritium beta-ray irradiation. This suggests that mitochondria might be a potential sensitive target for investigating the effects of tritium beta-ray irradiation.
Collapse
Affiliation(s)
- Bing Deng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; (Y.Q.); (Z.C.); (H.W.)
| | | | | | | |
Collapse
|
4
|
Chen Q, Yao L, Liu Q, Hou J, Qiu X, Chen M, Wu Z, Hu D, Cui F, Yan T. Exosome-coated polydatin nanoparticles in the treatment of radiation-induced intestinal damage. Aging (Albany NY) 2023; 15:6905-6920. [PMID: 37466428 PMCID: PMC10415572 DOI: 10.18632/aging.204882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
This study aimed to develop an exosome-coated polydatin (PD) nanoparticles (exo-PD) for improving the water solubility and bioavailability of polydatin and explore its salutary effects on intestinal radiation injury. Exosomes (exo) were extracted from the medium of human amniotic fluid stem cells (hAFSc). Mice were divided into control group, irradiation (IR) group, irradiation+PD (IR+PD) group, irradiation+exo (IR+exo) group and irradiation+exo-PD (IR+exo-PD) group. The results of characterization of protein markers, particle size, morphology and cellular uptake ability confirmed that exosomes were effectively isolated using ultracentrifugation. Compared with the IR group, exo-PD improved cell viability, prolonged survival of mice, improved leukocyte count and reduced diarrhea rate. Histological results showed that the exo-PD group had significant improvements in small intestinal villus length and crypt number and less crypt cell damage. exo-PD could reduce IL-1α and IL-6 levels, reduced γ-H2AX expression, increased mitochondrial membrane potential, enhanced oxidative phosphorylation, and delayed cellular senescence. exo-PD could alleviate intestinal injury by improving mitochondrial function through PI3K-AKT pathway. The exo-PD was able to reduce radiation damage to intestinal cells and could be a potential candidate for salvage of intestinal radiation damage.
Collapse
Affiliation(s)
- Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lei Yao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Quanbin Liu
- Rocket Force Specialty Medical Center PLA, Beijing 100088, China
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinyu Qiu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Mengyuan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhuojun Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Tao Yan
- Rocket Force Specialty Medical Center PLA, Beijing 100088, China
| |
Collapse
|
5
|
Oyefeso FA, Goldberg G, Opoku NYPS, Vazquez M, Bertucci A, Chen Z, Wang C, Muotri AR, Pecaut MJ. Effects of acute low-moderate dose ionizing radiation to human brain organoids. PLoS One 2023; 18:e0282958. [PMID: 37256873 PMCID: PMC10231836 DOI: 10.1371/journal.pone.0282958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/27/2023] [Indexed: 06/02/2023] Open
Abstract
Human exposure to low-to-moderate dose ionizing radiation (LMD-IR) is increasing via environmental, medical, occupational sources. Acute exposure to LMD-IR can cause subclinical damage to cells, resulting in altered gene expression and cellular function within the human brain. It has been difficult to identify diagnostic and predictive biomarkers of exposure using traditional research models due to factors including lack of 3D structure in monolayer cell cultures, limited ability of animal models to accurately predict human responses, and technical limitations of studying functional human brain tissue. To address this gap, we generated brain/cerebral organoids from human induced pluripotent stem cells to study the radiosensitivity of human brain cells, including neurons, astrocytes, and oligodendrocytes. While organoids have become popular models for studying brain physiology and pathology, there is little evidence to confirm that exposing brain organoids to LMD-IR will recapitulate previous in vitro and in vivo observations. We hypothesized that exposing brain organoids to proton radiation would (1) cause a time- and dose-dependent increase in DNA damage, (2) induce cell type-specific differences in radiosensitivity, and (3) increase expression of oxidative stress and DNA damage response genes. Organoids were exposed to 0.5 or 2 Gy of 250 MeV protons and samples were collected at 30 minute, 24 hour, and 48 hour timepoints. Using immunofluorescence and RNA sequencing, we found time- and dose-dependent increases in DNA damage in irradiated organoids; no changes in cell populations for neurons, oligodendrocytes, and astrocytes by 24 hours; decreased expression of genes related to oligodendrocyte lineage, astrocyte lineage, mitochondrial function, and cell cycle progression by 48 hours; increased expression of genes related to neuron lineage, oxidative stress, and DNA damage checkpoint regulation by 48 hours. Our findings demonstrate the possibility of using organoids to characterize cell-specific radiosensitivity and early radiation-induced gene expression changes within the human brain, providing new avenues for further study of the mechanisms underlying acute neural cell responses to IR exposure at low-to-moderate doses.
Collapse
Affiliation(s)
- Foluwasomi A. Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Gabriela Goldberg
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nana Yaa P. S. Opoku
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Marcelo Vazquez
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Antonella Bertucci
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Zhong Chen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Charles Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Alysson R. Muotri
- Department of Radiation Medicine, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Amelioration of Radiation-Induced Cell Death in Neuro2a Cells by Neutralizing Oxidative Stress and Reducing Mitochondrial Dysfunction Using N-Acetyl-L-Tryptophan. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9124365. [PMID: 36471866 PMCID: PMC9719430 DOI: 10.1155/2022/9124365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022]
Abstract
The deleterious effects of ionizing radiation on the central nervous system (CNS) are poorly understood. Radiation exposure during an accidental nuclear explosion, nuclear war, or radiotherapy causes severe brain damage. As a result, the current work is carried out to assess the radioprotective potential of N-acetyl-L-tryptophan (L-NAT) in neuronal cells. Radiation-induced cell death and its amelioration by L-NAT pretreatment were investigated using MTT, SRB, CFU, and comet assays. Flow cytometric and microscopic fluorescence assays were used to investigate radiation-induced oxidative stress, alteration in mitochondrial redox, Ca2+ homeostasis, depolarization of mitochondrial membrane potential, and its prevention with L-NAT pretreatment. Western blot analysis of Caspase-3, γ-H2aX, p53, ERK-1/2, and p-ERK-1/2 expression was carried out to identify the effects of L-NAT pretreatment on radiation-induced apoptosis and its regulatory proteins expression. The study demonstrated (MTT, SRB, and CFU assay) significant (~80%; p <0.001%) radioprotection in irradiated (LD50 IR dose) Neuro2a cells that were pretreated with L-NAT. In comparison to irradiated cells, L-NAT pretreatment resulted in significant (p <0.001%) DNA protection. A subsequent study revealed that L-NAT pretreatment of irradiated Neuro2a cells establishes oxidative stress by increasing antioxidant enzymes and mitochondrial redox homeostasis by inhibiting Ca2+ migration from the cytoplasm to the mitochondrial matrix and thus protects the mitochondrial membrane hyperpolarization. Caspase-3 and γ-H2aX protein expression decreased, while p-ERK1/2 and p53 expression increased in L-NAT pretreated irradiated cells compared to irradiated cells. Hence, L-NAT could be a potential radioprotective that may inhibit oxidative stress and DNA damage and maintain mitochondrial health and Ca2+ levels by activating p-ERK1/2 and p53 expression in Neuronal cells.
Collapse
|
7
|
Hydrogen Peroxide Promotes the Production of Radiation-Derived EVs Containing Mitochondrial Proteins. Antioxidants (Basel) 2022; 11:antiox11112119. [PMID: 36358489 PMCID: PMC9686922 DOI: 10.3390/antiox11112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/01/2022] Open
Abstract
In spite of extensive successes, cancer recurrence after radiation treatment (RT) remains one of the significant challenges in the cure of localized prostate cancer (PCa). This study focuses on elucidating a novel adaptive response to RT that could contribute to cancer recurrence. Here, we used PC3 cell line, an adenocarcinoma from a bone metastasis and radio-resistant clone 695 cell line, which survived after total radiation dose of 66 Gy (2 Gy × 33) and subsequently regrew in nude mice after exposure to fractionated radiation at 10 Gy (2 Gy × 5). Clone 695 cells not only showed an increase in surviving fraction post-radiation but also an increase in hydrogen peroxide (H2O2) production when compared to PC3 cells. At the single cell level, confocal microscope images coupled with IMARIS rendering software demonstrate an increase in mitochondrial mass and membrane potential in clone 695 cells. Utilizing the Seahorse XF96 instrument to investigate mitochondrial respiration, clone 695 cells demonstrated a higher basal Oxygen Consumption Rate (OCR), ATP-linked OCR, and proton leak compared to PC3 cells. The elevation of mitochondrial function in clone 695 cells is accompanied by an increase in mitochondrial H2O2 production. These data suggest that H2O2 could reprogram PCa’s mitochondrial homeostasis, which allows the cancer to survive and regrow after RT. Upon exposure to RT, in addition to ROS production, we found that RT induces the release of extracellular vesicles (EVs) from PC3 cells (p < 0.05). Importantly, adding H2O2 to PC3 cells promotes EVs production in a dose-dependent manner and pre-treatment with polyethylene glycol-Catalase mitigates H2O2-mediated EV production. Both RT-derived EVs and H2O2-derived EVs carried higher levels of mitochondrial antioxidant proteins including, Peroxiredoxin 3, Glutathione Peroxidase 4 as well as mitochondrial-associated oxidative phosphorylation proteins. Significantly, adding isolated functional mitochondria 24 h prior to RT shows a significant increase in surviving fractions of PC3 cells (p < 0.05). Together, our findings reveal that H2O2 promotes the production of EVs carrying mitochondrial proteins and that functional mitochondria enhance cancer survival after RT.
Collapse
|
8
|
Chen J, Sridharan D, Cross C, Pluth J. Cellular DNA effects of radiation and cancer risk assessment in cells with mitochondrial defects. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Abdullaev SA, Glukhov SI, Gaziev AI. Radioprotective and Radiomitigative Effects of Melatonin in Tissues with Different Proliferative Activity. Antioxidants (Basel) 2021; 10:1885. [PMID: 34942988 PMCID: PMC8698738 DOI: 10.3390/antiox10121885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
We used various markers to analyze damage to mouse tissues (spleen and cerebral cortex) which have different proliferative activity and sensitivity to ionizing radiation (IR). We also assessed the degree of modulation of damages that occurs when melatonin is administered to mice prior to and after their X-ray irradiation. The data from this study showed that lesions in nuclear DNA (nDNA) were repaired more actively in the spleen than in the cerebral cortex of mice irradiated and treated with melatonin (N-acetyl-5-methoxytryptamine). Mitochondrial biogenesis involving mitochondrial DNA (mtDNA) synthesis was activated in both tissues of irradiated mice. A significant proportion of the newly synthesized mtDNA molecules were mutant copies that increase oxidative stress. Melatonin reduced the number of mutant mtDNA copies and the level of H2O2 in both tissues of the irradiated mice. Melatonin promoted the restoration of ATP levels in the tissues of irradiated mice. In the mouse tissues after exposure to X-ray, the level of malondialdehyde (MDA) increased and melatonin was able to reduce it. The MDA concentration was higher in the cerebral cortex tissue than that in the spleen tissue of the mouse. In mouse tissues following irradiation, the glutathione (GSH) level was low. The spleen GSH content was more than twice as low as that in the cerebral cortex. Melatonin helped restore the GSH levels in the mouse tissues. Although the spleen and cerebral cortex tissues of mice differ in the baseline values of the analyzed markers, the radioprotective and radiomitigative potential of melatonin was observed in both tissues.
Collapse
Affiliation(s)
- Serazhutdin A. Abdullaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (S.I.G.); (A.I.G.)
| | | | | |
Collapse
|
10
|
Wu Q, Fang L, Yang Y, Wang A, Chen X, Sun J, Wan J, Hong C, Tong J, Tao S, Tian H. Protection of melatonin against long-term radon exposure-caused lung injury. ENVIRONMENTAL TOXICOLOGY 2021; 36:472-483. [PMID: 33107683 DOI: 10.1002/tox.23052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/04/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Radon is one of the major pathogenic factors worldwide. Recently, epidemiological studies have suggested that radon exposure plays an important role in lung injury, which could further cause cancer. However, the toxic effects and underlying mechanism on lung injury are still not clear. Here, we identified the detailed toxic effects of long-term radon exposure. Specifically, the manifestations were inflammatory response and cell apoptosis in dose- and time-dependent manners. In detail, it caused the mitochondrial dysfunction and oxidative stress as determined by the abnormal levels of mitochondrial DNA copy number, adenosine triphosphate, mitochondrial membrane potential, superoxide dismutase, and cycloxygenase-2. Furthermore, we found that melatonin treatment ameliorated mitochondrial dysfunction and attenuated the levels of oxidative stress caused by long-term radon exposure, which could further inhibit the lung tissue apoptosis as determined by the decreased levels of cleaved caspase 3. Our study would provide potential therapeutic application of melatonin on lung tissue injury caused by long-term radon exposure.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lijun Fang
- Shanghai Minhang District Center for Disease Prevention and Control, Shanghai, China
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aiqing Wang
- Medical College, Soochow University, Suzhou, China
| | - Xiaoyu Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jiaojiao Sun
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jianmei Wan
- Medical College, Soochow University, Suzhou, China
| | | | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Shimura T. Roles of Fibroblasts in Microenvironment Formation Associated with Radiation-Induced Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:239-251. [PMID: 34664243 DOI: 10.1007/978-3-030-73119-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In tumor tissues, activated stromal fibroblasts, termed cancer-associated fibroblasts (CAFs), exhibit similar characteristics to myofibroblasts. CAFs promote cancer cell differentiation and invasion by releasing various factors, such as growth factors, chemokines, and matrix-degrading proteases, into neighboring tumor cells. However, the roles of tumor microenvironment in case of radiation-induced carcinogenesis remain poorly understood. We recently revealed that mitochondrial oxidative stress causes tumor microenvironment formation associated with radiation-induced cancer. Repeated low-dose fractionated radiation progressively damages fibroblast mitochondria and elevates mitochondrial reactive oxygen species (ROS) levels. Excessive mitochondrial ROS activate transforming growth factor-beta (TGF-β) signaling, thereby inducing fibroblasts activation and facilitating tumor microenvironment formation. Consequently, radiation affects malignant cancer cells directly and indirectly via molecular alterations in stromal fibroblasts, such as the activation of TGF-β and angiogenic signaling. This review summarizes for the first time the roles of mitochondrial oxidative stress in microenvironment formation associated with radiation-induced cancer. This review may help us understand the risks of exposure to low-dose radiation. The cross talk between cancer cells and stromal fibroblasts contributes to the development and progression of radiation-induced cancer.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan.
| |
Collapse
|
12
|
Lee HJ, Lee SH, Lee JH, Kim Y, Seong KM, Jin YW, Min KJ. Role of Commensal Microbes in the γ-Ray Irradiation-Induced Physiological Changes in Drosophila melanogaster. Microorganisms 2020; 9:microorganisms9010031. [PMID: 33374132 PMCID: PMC7824294 DOI: 10.3390/microorganisms9010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Ionizing radiation induces biological/physiological changes and affects commensal microbes, but few studies have examined the relationship between the physiological changes induced by irradiation and commensal microbes. This study investigated the role of commensal microbes in the γ-ray irradiation-induced physiological changes in Drosophila melanogaster. The bacterial load was increased in 5 Gy irradiated flies, but irradiation decreased the number of operational taxonomic units. The mean lifespan of conventional flies showed no significant change by irradiation, whereas that of axenic flies was negatively correlated with the radiation dose. γ-Ray irradiation did not change the average number of eggs in both conventional and axenic flies. Locomotion of conventional flies was decreased after 5 Gy radiation exposure, whereas no significant change in locomotion activity was detected in axenic flies after irradiation. γ-Ray irradiation increased the generation of reactive oxygen species in both conventional and axenic flies, but the increase was higher in axenic flies. Similarly, the amounts of mitochondria were increased in irradiated axenic flies but not in conventional flies. These results suggest that axenic flies are more sensitive in their mitochondrial responses to radiation than conventional flies, and increased sensitivity leads to a reduced lifespan and other physiological changes in axenic flies.
Collapse
Affiliation(s)
- Hwa-Jin Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Yongjoong Kim
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
- Correspondence:
| |
Collapse
|
13
|
Hutson KH, Willis K, Nwokwu CD, Maynard M, Nestorova GG. Photon versus proton neurotoxicity: Impact on mitochondrial function and 8-OHdG base-excision repair mechanism in human astrocytes. Neurotoxicology 2020; 82:158-166. [PMID: 33347902 DOI: 10.1016/j.neuro.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
This study assesses and compares the neurotoxic effects of proton and photon radiation on mitochondrial function and DNA repair capabilities of human astrocytes. Human astrocytes received either proton (0.5 Gy and 3 Gy), photon (0.5 Gy and 3 Gy), or sham-radiation treatment. The mRNA expression level of the DNA repair protein OGG1 was determined via RT-qPCR. The levels of 8-OHdG in the cell media were measured via ELISA. Real-time kinetic analysis of extracellular oxygen consumption rates was performed to assess mitochondrial function. Radiation-induced changes in mitochondrial mass and oxidative activity were assessed using fluorescent imaging with MitoTracker™ Green FM and MitoTracker™ Orange CM-H2TMRos dyes respectively. PCR was used to quantify the alteration in the mitochondrial DNA content, measured as the mitochondrial to nuclear DNA ratio. A significant increase in mitochondrial mass and levels of reactive oxygen species was observed after radiation treatment. Additionally, real-time PCR analysis indicated a significant depletion of mitochondrial DNA content in the irradiated cells when compared to the control. This was accompanied by a decreased gene expression of the DNA base-excision repair protein OGG1 and reduced clearance of 8-OHdG adducts from the genome. Photon radiation treatment was associated with a more detrimental cellular impact when compared to the same dose of proton radiation. These results are indicative of a radiation-induced dose-dependent decrease in mitochondrial function, an increase in senescence and astrogliosis, and impairment of the DNA repair capabilities in healthy glial cells. Photon irradiation was associated with a more significant disruption in mitochondrial function and base-excision repair mechanisms in vitro in comparison to proton treatment.
Collapse
Affiliation(s)
- Kristen H Hutson
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, USA
| | - Kaitlynn Willis
- School of Biological Sciences, Louisiana Tech University, Ruston, USA
| | | | | | | |
Collapse
|
14
|
Kaminaga K, Hamada R, Usami N, Suzuki K, Yokoya A. Targeted Nuclear Irradiation with an X-Ray Microbeam Enhances Total JC-1 Fluorescence from Mitochondria. Radiat Res 2020; 194:511-518. [PMID: 33045074 DOI: 10.1667/rr15110.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/02/2020] [Indexed: 11/03/2022]
Abstract
Several studies have demonstrated that mitochondria are critically involved in the pleiotropic manifestation of radiation effects. While conventional whole-cell irradiation compromises the function of mitochondria, the effects of subcellular targeted radiation are not yet fully understood. In this study, normal human diploid cells with cell-cycle indicators were irradiated using a synchrotron X-ray microbeam, and mitochondrial membrane potential was quantified by JC-1 over the 72-h period postirradiation. Cytoplasmic irradiation was observed to temporarily enlarge the mitochondrial area with high membrane potential, while the total mitochondrial area did not change significantly. Unexpectedly, cell-nucleus irradiation promoted a similar increase not only in the mitochondrial areas with high membrane potential, but also in those with low membrane potential, which gave rise to the apparent increase in the total mitochondrial area. Augmentation of the mitochondrial area with low membrane potential was predominantly observed among G1 cells, suggesting that nucleus irradiation during the G1 phase regulated the mitochondrial dynamics of the cytoplasm, presumably through DNA damage in the nucleus.
Collapse
Affiliation(s)
- Kiichi Kaminaga
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Ryo Hamada
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Noriko Usami
- Photon Factory, Institute of Material Structure Sciences, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Akinari Yokoya
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
15
|
Sepulveda-Villegas M, Rojo R, Garza-Hernandez D, de la Rosa-Garza M, Treviño V. A systematic review of genes affecting mitochondrial processes in cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165846. [PMID: 32473387 DOI: 10.1016/j.bbadis.2020.165846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Malignant conversion of cancer cells requires efficient mitochondria reprogramming orchestrated by hundreds of genes. The transformation includes increased energy demand, biosynthesis of precursors, and reactive oxygen species needed to accelerate cell growth, proliferation, and survival. Reprogramming involves complex gene alterations that have not been methodically curated. Therefore, we systematically analyzed the literature of cancer-related genes in mitochondria. Through the analysis of >2500 PubMed abstracts and >1600 human genes, we identified 228 genes showing clear roles in cancer. Each gene was classified according to their homeostatic function, together with the pathological transitions that contribute to specific cancer hallmarks. The potential clinical relevance of these hallmarks and genes is discussed by representative examples and validated by detecting differences in gene expression levels across 16 different types of cancer. A compendium, including the gene functions and alterations underpinning cancer progression, can be explored at http://bioinformatica.mty.itesm.mx/MitoCancer.
Collapse
Affiliation(s)
- Maricruz Sepulveda-Villegas
- Tecnologico de Monterrey, Escuela de Medicina, Cátedra de Bioinformática, Av. Morones Prieto No. 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico
| | - Rocio Rojo
- Tecnologico de Monterrey, Escuela de Medicina, Cátedra de Bioinformática, Av. Morones Prieto No. 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico
| | - Debora Garza-Hernandez
- Tecnologico de Monterrey, Escuela de Medicina, Cátedra de Bioinformática, Av. Morones Prieto No. 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico
| | - Mauricio de la Rosa-Garza
- Tecnologico de Monterrey, Escuela de Medicina, Cátedra de Bioinformática, Av. Morones Prieto No. 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico
| | - Victor Treviño
- Tecnologico de Monterrey, Escuela de Medicina, Cátedra de Bioinformática, Av. Morones Prieto No. 3000, Colonia Los Doctores, Monterrey, Nuevo León 64710, Mexico.
| |
Collapse
|
16
|
Miranda S, Correia M, Dias AG, Pestana A, Soares P, Nunes J, Lima J, Máximo V, Boaventura P. Evaluation of the role of mitochondria in the non-targeted effects of ionizing radiation using cybrid cellular models. Sci Rep 2020; 10:6131. [PMID: 32273537 PMCID: PMC7145863 DOI: 10.1038/s41598-020-63011-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 01/21/2023] Open
Abstract
Radiobiology is moving towards a better understanding of the intercellular signaling that occurs upon radiation and how its effects relate to the dose applied. The mitochondrial role in orchestrating this biological response needs to be further explored. Cybrids (cytoplasmic hybrids) are useful cell models for studying the involvement of mitochondria in cellular processes. In the present study we used cybrid cell lines to investigate the role of mitochondria in the response to radiation exposure. Cybrid cell lines, derived from the osteosarcoma human cell line 143B, harboring, either wild-type mitochondrial DNA (Cy143Bwt), cells with mitochondria with mutated DNA that causes mitochondrial dysfunction (Cy143Bmut), as well as cells without mitochondrial DNA (mtDNA) (143B-Rho0), were irradiated with 0.2 Gy and 2.0 Gy. Evaluation of the non-targeted (or bystander) effects in non-irradiated cells were assessed by using conditioned media from the irradiated cells. DNA double stranded breaks were assessed with the γH2AX assay. Both directly irradiated cells and cells treated with the conditioned media, showed increased DNA damage. The effect of the irradiated cells media was different according to the cell line it derived from: from Cy143Bwt cells irradiated with 0.2 Gy (low dose) and from Cy143Bmut irradiated with 2.0 Gy (high dose) induced highest DNA damage. Notably, media obtained from cells without mtDNA, the143B-Rho0 cell line, produced no effect in DNA damage. These results point to a possible role of mitochondria in the radiation-induced non-targeted effects. Furthermore, it indicates that cybrid models are valuable tools for radiobiological studies.
Collapse
Affiliation(s)
- Silvana Miranda
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marcelo Correia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal
| | - Anabela G Dias
- Medical Physics Department, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Medical Physics, Radiobiology and Radiation Protection Group. Research Center, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Ana Pestana
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Joana Nunes
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jorge Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Valdemar Máximo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Paula Boaventura
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal. .,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.
| |
Collapse
|
17
|
McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020; 12:E381. [PMID: 32045996 PMCID: PMC7072278 DOI: 10.3390/cancers12020381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Ionizing radiation from galactic cosmic rays (GCR) is one of the major risk factors that will impact the health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. The NASA GeneLab project has detailed information on radiation exposure using animal models with curated dosimetry information for spaceflight experiments. Methods: We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight radiation studies that included in vivo and in vitro approaches. A range of ions from protons to iron particles with doses from 0.1 to 1.0 Gy for ground studies, as well as samples flown in low Earth orbit (LEO) with total doses of 1.0 mGy to 30 mGy, were utilized. Results: From this analysis, we were able to identify distinct biological signatures associating specific ions with specific biological responses due to radiation exposure in space. For example, we discovered changes in mitochondrial function, ribosomal assembly, and immune pathways as a function of dose. Conclusions: We provided a summary of how the GeneLab's rich database of omics experiments with animal models can be used to generate novel hypotheses to better understand human health risks from GCR exposures.
Collapse
Affiliation(s)
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Jack Miller
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Willian A. da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Komal S. Rathi
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Deanne Taylor
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA;
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Robert Meller
- Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| |
Collapse
|
18
|
Kim EJ, Lee M, Kim DY, Kim KI, Yi JY. Mechanisms of Energy Metabolism in Skeletal Muscle Mitochondria Following Radiation Exposure. Cells 2019; 8:E950. [PMID: 31438652 PMCID: PMC6770322 DOI: 10.3390/cells8090950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/30/2022] Open
Abstract
An understanding of cellular processes that determine the response to ionizing radiation exposure is essential for improving radiotherapy and assessing risks to human health after accidental radiation exposure. Radiation exposure leads to many biological effects, but the mechanisms underlying the metabolic effects of radiation are not well known. Here, we investigated the effects of radiation exposure on the metabolic rate and mitochondrial bioenergetics in skeletal muscle. We show that ionizing radiation increased mitochondrial protein and mass and enhanced proton leak and mitochondrial maximal respiratory capacity, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, mice and cells treated with radiation became energetically efficient and displayed increased fatty acid and amino acid oxidation metabolism through the citric acid cycle. Finally, we demonstrate that radiation-induced alterations in mitochondrial energy metabolism involved adenosine monophosphate-activated kinase signaling in skeletal muscle. Together, these results demonstrate that alterations in mitochondrial mass and function are important adaptive responses of skeletal muscle to radiation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea.
| | - Minyoung Lee
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea
- Division of Radiation Research Infrastructure Operation, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Da Yeon Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea
| | - Kwang Il Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Jae Youn Yi
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| |
Collapse
|
19
|
MitoQ ameliorates testicular damage induced by gamma irradiation in rats: Modulation of mitochondrial apoptosis and steroidogenesis. Life Sci 2019; 232:116655. [PMID: 31306659 DOI: 10.1016/j.lfs.2019.116655] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022]
Abstract
AIMS The deleterious effect of gamma radiation on testicular tissue is a challenging problem in nuclear medicine. This study investigated the potential radioprotective effect of mitoquinol (MitoQ), a mitochondria-targeted antioxidant, against testicular damage induced by gamma irradiation in rats. MAIN METHODS Rats were allocated into four groups. The first group served as the control, the second group received MitoQ (2 mg / kg / day; i.p.) for seven days, the third group was exposed to gamma radiation (5 Gy as a single dose) and the last group received MitoQ prior to irradiation. Rats were sacrificed. Then, sperm analyses and the serum testosterone were determined. Moreover, evaluation of mitochondrial oxidative stress parameters (SOD, GSH and GPx) as well as apoptosis indicators (cytochrome-c, Bax, Bcl-2 and caspase-3) was performed. Additionally, analysis of steroidogensis biomarkers (StAR, 3β-HSD and 17β-HSD) and histopathological investigations were carried out. KEY FINDINGS MitoQ replenished mitochondrial SOD, GPx and GSH indicating its strong antioxidant effect in addition to its energy preservation manifested by the elevated ATP. MitoQ inhibited the intrinsic apoptosis via diminution of Bax, cytochrome-c and caspase-3 and alleviation of Bcl-2. This antioxidant conferred protection to steroidogenesis as verified by the increase in testosterone and the up-regulation of StAR, 3β-HSD and 17β-HSD expression; these effects might be correlated with its antioxidant/anti-apoptotic potential. Histopathological and sperm analyses corroborated the biochemical findings. SIGNIFICANCE This study identifies MitoQ as a novel agent for the management of testicular toxicity induced by gamma irradiation.
Collapse
|
20
|
Yin Z, Yang G, Deng S, Wang Q. Oxidative stress levels and dynamic changes in mitochondrial gene expression in a radiation-induced lung injury model. JOURNAL OF RADIATION RESEARCH 2019; 60:204-214. [PMID: 30590649 PMCID: PMC6430248 DOI: 10.1093/jrr/rry105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/21/2018] [Indexed: 05/09/2023]
Abstract
The purpose of this study was to set up a beagle dog model, for radiation-induced lung injury, that would be able to supply fresh lung tissues in the different injury phases for research into oxidative stress levels and mitochondrial gene expression. Blood serum and tissues were collected via CT-guided core needle biopsies from dogs in the various phases of the radiation response over a 40-week period. Levels of reactive oxygen species (ROS) and manganese superoxide dismutase 2 (MnSOD) protein expression in radiation-induced lung injury were determined by in situ immunocytochemistry; malondialdehyde (MDA) content and reductase activity in the peripheral blood were also tested; in addition, the copy number of the mitochondrial DNA and the level of function of the respiratory chain in the lung tissues were assessed. ROS showed dynamic changes and peaked at 4 weeks; MnSOD was mainly expressed in the Type II alveolar epithelium at 8 weeks; the MDA content and reductase activity in the peripheral blood presented no changes; the copy numbers of most mitochondrial genes peaked at 8 weeks, similarly to the level of function of the corresponding respiratory chain complexes; the level of function of the respiratory chain complex III did not peak until 24 weeks, similarly to the level of function of the corresponding gene Cytb. Radiation-induced lung injury was found to be a dynamically changing process, mainly related to interactions between local ROS, and it was not associated with the levels of oxidative stress in the peripheral blood. Mitochondrial genes and their corresponding respiratory chain complexes were found to be involved in the overall process.
Collapse
Affiliation(s)
- Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Corresponding author: Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Tel: +86-159-2739-5672; Fax: +86-27-6565-0733;
| |
Collapse
|
21
|
Xu Q, Fang L, Chen B, Zhang H, Wu Q, Zhang H, Wang A, Tong J, Tao S, Tian H. Radon induced mitochondrial dysfunction in human bronchial epithelial cells and epithelial-mesenchymal transition with long-term exposure. Toxicol Res (Camb) 2019; 8:90-100. [PMID: 30746122 PMCID: PMC6334652 DOI: 10.1039/c8tx00181b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023] Open
Abstract
Radon is a naturally occurring radionuclide, which has a wide environmental distributed. It emits multiple high linear energy transfer (LET) alpha particles during radiative decay, and has been regarded as a human carcinogen by the International Agency for Research on Cancer. Currently, residential radon exposure is considered as the second highest cause of lung cancer and the leading cause among nonsmokers. Radon exposure leads to genomic instability, which causes the accumulation of multiple genetic changes and leads to cancer development. However, the molecular basis underlying carcinogenesis, especially the radon-induced changes to mitochondria, has not been fully elucidated. The aim of this study was to explore the dynamic changes in mitochondria along with the cell transformations induced by long-term radon exposure. A malignant transformation model of BEAS-2B cells was established with upto 40 times the usual radon exposure (20 000 Bq m-3, 30 min each time every 3 days). Long-term radon exposure induced EMT-like transformation of epithelial cells in our study, evidenced by decrease in epithelial markers and increase in mesenchymal markers, as well as the loss of cell-cell adhesion and alterations to the morphology of cells from compact shape to a spindle shaped, fibroblast-like morphology. Additionally, the proliferation and migration of cells were increased and apoptosis was decreased with long-term radon exposure. Furthermore, mitochondrial function was up-regulated and the levels of oxidative stress were repressed with long-term radon exposure. Our work explored the dynamic changes of mitochondrial in radon induced malignant transformation of lung bronchial epithelial cells, which could partially elucidate the role of mitochondria in radon induced cell malignancy.
Collapse
Affiliation(s)
- Qian Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Lijun Fang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Bin Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Suzhou Gusu District Center For Disease Prevention And Control , Jiangsu , China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Qianqian Wu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Hongbo Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Suzhou Xiangcheng District For Maternal And Child Care Service Centre , Jiangsu , China
| | - Aiqing Wang
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Jian Tong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| | - Hailin Tian
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China . ; Fax: +86-512-65880070 ; Tel: +86-512-65698540 ; Tel: +86-512-65880070 ; ;
- Experimental Center of Medical College , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China
| |
Collapse
|
22
|
Shimura T, Sasatani M, Kawai H, Kamiya K, Kobayashi J, Komatsu K, Kunugita N. ATM-mediated mitochondrial damage response triggered by nuclear DNA damage in normal human lung fibroblasts. Cell Cycle 2017; 16:2345-2354. [PMID: 29099268 DOI: 10.1080/15384101.2017.1387697] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ionizing radiation (IR) elevates mitochondrial oxidative phosphorylation (OXPHOS) in response to the energy requirement for DNA damage responses. Reactive oxygen species (ROS) released during mitochondrial OXPHOS may cause oxidative damage to mitochondria in irradiated cells. In this paper, we investigated the association between nuclear DNA damage and mitochondrial damage following IR in normal human lung fibroblasts. In contrast to low-doses of acute single radiation, continuous exposure of chronic radiation or long-term exposure of fractionated radiation (FR) induced persistent Rad51 and γ-H2AX foci at least 24 hours after IR in irradiated cells. Additionally, long-term FR increased mitochondrial ROS accompanied with enhanced mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity. Mitochondrial ROS released from the respiratory chain complex I caused oxidative damage to mitochondria. Inhibition of ATM kinase or ATM loss eliminated nuclear DNA damage recognition and mitochondrial radiation responses. Consequently, nuclear DNA damage activates ATM which in turn increases ROS level and subsequently induces mitochondrial damage in irradiated cells. In conclusion, we demonstrated that ATM is essential in the mitochondrial radiation responses in irradiated cells. We further demonstrated that ATM is involved in signal transduction from nucleus to the mitochondria in response to IR.
Collapse
Affiliation(s)
- Tsutomu Shimura
- a Department of Environmental Health ; National Institute of Public Health 2-3-6 Minami ; Wako , Saitama , Japan
| | - Megumi Sasatani
- b Department of Experimental Oncology ; Research Center for Radiation Genome Medicine ; Research Institute for Radiation Biology and Medicine (RIRBM) ; Hiroshima University , Hiroshima , Japan
| | - Hidehiko Kawai
- b Department of Experimental Oncology ; Research Center for Radiation Genome Medicine ; Research Institute for Radiation Biology and Medicine (RIRBM) ; Hiroshima University , Hiroshima , Japan
| | - Kenji Kamiya
- b Department of Experimental Oncology ; Research Center for Radiation Genome Medicine ; Research Institute for Radiation Biology and Medicine (RIRBM) ; Hiroshima University , Hiroshima , Japan
| | - Junya Kobayashi
- c Department of Genome Dynamics , Radiation Biology Center ; Kyoto University ; Kyoto , Japan
| | - Kenshi Komatsu
- c Department of Genome Dynamics , Radiation Biology Center ; Kyoto University ; Kyoto , Japan
| | - Naoki Kunugita
- a Department of Environmental Health ; National Institute of Public Health 2-3-6 Minami ; Wako , Saitama , Japan
| |
Collapse
|
23
|
Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum. Sci Rep 2017; 7:46181. [PMID: 28382975 PMCID: PMC5382769 DOI: 10.1038/srep46181] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/10/2017] [Indexed: 02/03/2023] Open
Abstract
Posterior fossa tumors are the most common childhood intracranial tumors, and radiotherapy is one of the most effective treatments. However, irradiation induces long-term adverse effects that can have significant negative impacts on the patient’s quality of life. The purpose of this study was to characterize irradiation-induced cellular and molecular changes in the cerebellum. We found that irradiation-induced cell death occurred mainly in the external germinal layer (EGL) of the juvenile rat cerebellum. The number of proliferating cells in the EGL decreased, and 82.9% of them died within 24 h after irradiation. Furthermore, irradiation induced oxidative stress, microglia accumulation, and inflammation in the cerebellum. Interestingly, blood-brain barrier damage and blood flow reduction was considerably more pronounced in the cerebellum compared to other brain regions. The cerebellar volume decreased by 39% and the migration of proliferating cells to the internal granule layer decreased by 87.5% at 16 weeks after irradiation. In the light of recent studies demonstrating that the cerebellum is important not only for motor functions, but also for cognition, and since treatment of posterior fossa tumors in children typically results in debilitating cognitive deficits, this differential susceptibility of the cerebellum to irradiation should be taken into consideration for future protective strategies.
Collapse
|
24
|
Shimura T, Sasatani M, Kawai H, Kamiya K, Kobayashi J, Komatsu K, Kunugita N. A comparison of radiation-induced mitochondrial damage between neural progenitor stem cells and differentiated cells. Cell Cycle 2017; 16:565-573. [PMID: 28118061 DOI: 10.1080/15384101.2017.1284716] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Mitochondria play a key role in maintaining cellular homeostasis during stress responses, and mitochondrial dysfunction contributes to carcinogenesis, aging, and neurologic disease. We here investigated ionizing radiation (IR)-induced mitochondrial damage in human neural progenitor stem cells (NSCs), their differentiated counterparts and human normal fibroblasts. Long-term fractionated radiation (FR) with low doses of X-rays for 31 d enhanced mitochondrial activity as evident by elevated mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity to fill the energy demands for the chronic DNA damage response in differentiated cells. Subsequent reduction of the antioxidant glutathione via continuous activation of mitochondrial oxidative phosphorylation caused oxidative stress and genomic instability in differentiated cells exposed to long-term FR. In contrast, long-term FR had no effect on the mitochondrial activity in NSCs. This cell type showed efficient DNA repair, no mitochondrial damage, and resistance to long-term FR. After high doses of acute single radiation (SR) (> 5 Gy), cell cycle arrest at the G2 phase was observed in NSCs and human fibroblasts. Under this condition, increase in mitochondria mass, mitochondrial DNA, and intracellular reactive oxygen species (ROS) levels were observed in the absence of enhanced mitochondrial activity. Consequently, cellular senescence was induced by high doses of SR in differentiated cells. In conclusion, we demonstrated that mitochondrial radiation responses differ according to the extent of DNA damage, duration of radiation exposure, and cell differentiation.
Collapse
Affiliation(s)
- Tsutomu Shimura
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| | - Megumi Sasatani
- b Department of Experimental Oncology , Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima , Japan
| | - Hidehiko Kawai
- b Department of Experimental Oncology , Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima , Japan
| | - Kenji Kamiya
- b Department of Experimental Oncology , Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima , Japan
| | - Junya Kobayashi
- c Department of Genome Dynamics , Radiation Biology Center, Kyoto University , Kyoto , Japan
| | - Kenshi Komatsu
- c Department of Genome Dynamics , Radiation Biology Center, Kyoto University , Kyoto , Japan
| | - Naoki Kunugita
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| |
Collapse
|
25
|
Banerjee S, Aykin-Burns N, Krager KJ, Shah SK, Melnyk SB, Hauer-Jensen M, Pawar SA. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2016; 99:296-307. [PMID: 27554969 PMCID: PMC5673253 DOI: 10.1016/j.freeradbiomed.2016.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
Exposure of cells to ionizing radiation (IR) generates reactive oxygen species (ROS). This results in increased oxidative stress and DNA double strand breaks (DSBs) which are the two underlying mechanisms by which IR causes cell/tissue injury. Cells that are deficient or impaired in the cellular antioxidant response are susceptible to IR-induced apoptosis. The transcription factor CCAAT enhancer binding protein delta (Cebpd, C/EBPδ) has been implicated in the regulation of oxidative stress, DNA damage response, genomic stability and inflammation. We previously reported that Cebpd-deficient mice are sensitive to IR and display intestinal and hematopoietic injury, however the underlying mechanism is not known. In this study, we investigated whether an impaired ability to detoxify IR-induced ROS was the underlying cause of the increased radiosensitivity of Cebpd-deficient cells. We found that Cebpd-knockout (KO) mouse embryonic fibroblasts (MEFs) expressed elevated levels of ROS, both at basal levels and after exposure to gamma radiation which correlated with increased apoptosis, and decreased clonogenic survival. Pre-treatment of wild type (WT) and KO MEFs with polyethylene glycol-conjugated Cu-Zn superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) combination prior to irradiation showed a partial rescue of clonogenic survival, thus demonstrating a role for increased intracellular oxidants in promoting IR-induced cell death. Analysis of mitochondrial bioenergetics revealed that irradiated KO MEFs showed significant reductions in basal, adenosine triphosphate (ATP)-linked, maximal respiration and reserved respiratory capacity and decrease in intracellular ATP levels compared to WT MEFs indicating they display mitochondrial dysfunction. KO MEFs expressed significantly lower levels of the cellular antioxidant glutathione (GSH) and its precursor- cysteine as well as methionine. In addition to its antioxidant function, GSH plays an important role in detoxification of lipid peroxidation products such as 4-hydroxynonenal (4-HNE). The reduced GSH levels observed in KO MEFs correlated with elevated levels of 4-HNE protein adducts in irradiated KO MEFs compared to respective WT MEFs. We further showed that pre-treatment with the GSH precursor, N-acetyl L-cysteine (NAC) prior to irradiation showed a significant reduction of IR-induced cell death and increases in GSH levels, which contributed to the overall increase in clonogenic survival of KO MEFs. In contrast, pre-treatment with the GSH synthesis inhibitor- buthionine sulfoximine (BSO) further reduced the clonogenic survival of irradiated KO MEFs. This study demonstrates a novel role for C/EBPδ in protection from basal as well as IR-induced oxidative stress and mitochondrial dysfunction thus promoting post-radiation survival.
Collapse
Affiliation(s)
- Sudip Banerjee
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Kimberly J Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sumit K Shah
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Stepan B Melnyk
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72205, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Surgical Services, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Snehalata A Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
26
|
Shimura T, Kunugita N. Mitochondrial reactive oxygen species-mediated genomic instability in low-dose irradiated human cells through nuclear retention of cyclin D1. Cell Cycle 2016; 15:1410-4. [PMID: 27078622 DOI: 10.1080/15384101.2016.1170271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy, the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR). Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 induces genomic instability in low-dose irradiated cells.
Collapse
Affiliation(s)
- Tsutomu Shimura
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| | - Naoki Kunugita
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| |
Collapse
|
27
|
Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol 2016; 58:14-25. [PMID: 26849909 DOI: 10.1016/j.semcdb.2016.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.
Collapse
Affiliation(s)
- Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
28
|
Shimura T, Kobayashi J, Komatsu K, Kunugita N. Severe mitochondrial damage associated with low-dose radiation sensitivity in ATM- and NBS1-deficient cells. Cell Cycle 2016; 15:1099-107. [PMID: 26940879 PMCID: PMC4889229 DOI: 10.1080/15384101.2016.1156276] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022] Open
Abstract
Low-dose radiation risks remain unclear owing to a lack of sufficient studies. We previously reported that low-dose, long-term fractionated radiation (FR) with 0.01 or 0.05 Gy/fraction for 31 d inflicts oxidative stress in human fibroblasts due to excess levels of mitochondrial reactive oxygen species (ROS). To identify the small effects of low-dose radiation, we investigated how mitochondria respond to low-dose radiation in radiosensitive human ataxia telangiectasia mutated (ATM)- and Nijmegen breakage syndrome (NBS)1-deficient cell lines compared with corresponding cell lines expressing ATM and NBS1. Consistent with previous results in normal fibroblasts, low-dose, long-term FR increased mitochondrial mass and caused accumulation of mitochondrial ROS in ATM- and NBS1-complemented cell lines. Excess mitochondrial ROS resulted in mitochondrial damage that was in turn recognized by Parkin, leading to mitochondrial autophagy (mitophagy). In contrast, ATM- and NBS1-deficient cells showed defective induction of mitophagy after low-dose, long-term FR, leading to accumulation of abnormal mitochondria; this was determined by mitochondrial fragmentation and decreased mitochondrial membrane potential. Consequently, apoptosis was induced in ATM- and NBS1-deficient cells after low-dose, long-term FR. Antioxidant N-acetyl-L-cysteine was effective as a radioprotective agent against mitochondrial damage induced by low-dose, long-term FR among all cell lines, including radiosensitive cell lines. In conclusion, we demonstrated that mitochondria are target organelles of low-dose radiation. Mitochondrial response influences radiation sensitivity in human cells. Our findings provide new insights into cancer risk estimation associated with low-dose radiation exposure.
Collapse
Affiliation(s)
- Tsutomu Shimura
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| | - Junya Kobayashi
- b Department of Genome Dynamics , Radiation Biology Center, Kyoto University , Kyoto , Japan
| | - Kenshi Komatsu
- b Department of Genome Dynamics , Radiation Biology Center, Kyoto University , Kyoto , Japan
| | - Naoki Kunugita
- a Department of Environmental Health , National Institute of Public Health , Wako , Saitama , Japan
| |
Collapse
|
29
|
Yamamori T, Ike S, Bo T, Sasagawa T, Sakai Y, Suzuki M, Yamamoto K, Nagane M, Yasui H, Inanami O. Inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) impairs mitochondrial fission and mitotic catastrophe after x-irradiation. Mol Biol Cell 2015; 26:4607-17. [PMID: 26466676 PMCID: PMC4678018 DOI: 10.1091/mbc.e15-03-0181] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023] Open
Abstract
The role of mitochondrial dynamics in cellular responses to ionizing radiation (IR) is still largely unknown. This study demonstrates that IR triggers Drp1-dependent mitochondrial fission and that Drp1 inhibition attenuates radiation-induced mitotic catastrophe, suggesting that Drp1 is involved in determining the fate of cells after irradiation. Accumulating evidence suggests that mitochondrial dynamics is crucial for the maintenance of cellular quality control and function in response to various stresses. However, the role of mitochondrial dynamics in cellular responses to ionizing radiation (IR) is still largely unknown. In this study, we provide evidence that IR triggers mitochondrial fission mediated by the mitochondrial fission protein dynamin-related protein 1 (Drp1). We also show IR-induced mitotic catastrophe (MC), which is a type of cell death associated with defective mitosis, and aberrant centrosome amplification in mouse embryonic fibroblasts (MEFs). These are attenuated by genetic or pharmacological inhibition of Drp1. Whereas radiation-induced aberrant centrosome amplification and MC are suppressed by the inhibition of Plk1 and CDK2 in wild-type MEFs, the inhibition of these kinases is ineffective in Drp1-deficient MEFs. Furthermore, the cyclin B1 level after irradiation is significantly higher throughout the time course in Drp1-deficient MEFs than in wild-type MEFs, implying that Drp1 is involved in the regulation of cyclin B1 level. These findings strongly suggest that Drp1 plays an important role in determining the fate of cells after irradiation via the regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Tohru Yamamori
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Satoshi Ike
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tomoki Bo
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tomoya Sasagawa
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuri Sakai
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Motofumi Suzuki
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kumiko Yamamoto
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masaki Nagane
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
30
|
How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:16-30. [DOI: 10.1016/j.mrrev.2015.01.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/28/2022]
|
31
|
Martin NT, Nakamura K, Paila U, Woo J, Brown C, Wright JA, Teraoka SN, Haghayegh S, McCurdy D, Schneider M, Hu H, Quinlan AR, Gatti RA, Concannon P. Homozygous mutation of MTPAP causes cellular radiosensitivity and persistent DNA double-strand breaks. Cell Death Dis 2014; 5:e1130. [PMID: 24651433 PMCID: PMC3973239 DOI: 10.1038/cddis.2014.99] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 02/03/2023]
Abstract
The study of rare human syndromes characterized by radiosensitivity has been instrumental in identifying novel proteins and pathways involved in DNA damage responses to ionizing radiation. In the present study, a mutation in mitochondrial poly-A-polymerase (MTPAP), not previously recognized for its role in the DNA damage response, was identified by exome sequencing and subsequently associated with cellular radiosensitivity. Cell lines derived from two patients with the homozygous MTPAP missense mutation were radiosensitive, and this radiosensitivity could be abrogated by transfection of wild-type mtPAP cDNA into mtPAP-deficient cell lines. Further analysis of the cellular phenotype revealed delayed DNA repair, increased levels of DNA double-strand breaks, increased reactive oxygen species (ROS), and increased cell death after irradiation (IR). Pre-IR treatment of cells with the potent anti-oxidants, α-lipoic acid and n-acetylcysteine, was sufficient to abrogate the DNA repair and clonogenic survival defects. Our results firmly establish that mutation of the MTPAP gene results in a cellular phenotype of increased DNA damage, reduced repair kinetics, increased cell death by apoptosis, and reduced clonogenic survival after exposure to ionizing radiation, suggesting a pathogenesis that involves the disruption of ROS homeostasis.
Collapse
Affiliation(s)
- N T Martin
- 1] UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA [2] UCLA Biomedical Physics Interdepartmental Graduate Program, Los Angeles, CA, USA
| | - K Nakamura
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - U Paila
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - J Woo
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - C Brown
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - J A Wright
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - S N Teraoka
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - S Haghayegh
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - D McCurdy
- UCLA Department of Pediatrics, Los Angeles, CA, USA
| | | | - H Hu
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - A R Quinlan
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R A Gatti
- 1] UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA [2] UCLA Biomedical Physics Interdepartmental Graduate Program, Los Angeles, CA, USA [3] UCLA Department of Human Genetics, Los Angeles, CA, USA
| | - P Concannon
- 1] Genetics Institute, University of Florida, Gainesville, FL, USA [2] Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Kam WWY, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013; 65:607-619. [PMID: 23892359 DOI: 10.1016/j.freeradbiomed.2013.07.024] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/08/2023]
Abstract
The current concept of radiobiology posits that damage to the DNA in the cell nucleus is the primary cause for the detrimental effects of radiation. However, emerging experimental evidence suggests that this theoretical framework is insufficient for describing extranuclear radiation effects, particularly the response of the mitochondria, an important site of extranuclear, coding DNA. Here, we discuss experimental observations of the effects of ionizing radiation on the mitochondria at (1) the DNA and (2) functional levels. The roles of mitochondria in (3) oxidative stress and (4) late radiation effects are discussed. In this review, we summarize the current understanding of targets for ionizing radiation outside the cell nucleus. Available experimental data suggest that an increase in the tumoricidal efficacy of radiation therapy might be achievable by targeting mitochondria. Likewise, more specific protection of mitochondria and its coding DNA should reduce damage to healthy cells exposed to ionizing radiation.
Collapse
Affiliation(s)
- Winnie Wai-Ying Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia.
| | - Richard B Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia; National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
33
|
Kam WWY, McNamara AL, Lake V, Banos C, Davies JB, Kuncic Z, Banati RB. Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: A Monte Carlo simulation and quantitative PCR study. Mitochondrion 2013; 13:736-42. [DOI: 10.1016/j.mito.2013.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/14/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
34
|
Kam WWY, Lake V, Banos C, Davies J, Banati R. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers. Int J Mol Sci 2013; 14:11544-59. [PMID: 23722662 PMCID: PMC3709747 DOI: 10.3390/ijms140611544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/18/2013] [Accepted: 05/16/2013] [Indexed: 12/12/2022] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.
Collapse
Affiliation(s)
- Winnie W. Y. Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +61-2-9717-7241; Fax: +61-2-9717-9262
| | - Vanessa Lake
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
| | - Connie Banos
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- School of Physics, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
- National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
35
|
Green fluorescent protein alters the transcriptional regulation of human mitochondrial genes after gamma irradiation. J Fluoresc 2013; 23:613-9. [PMID: 23475276 DOI: 10.1007/s10895-013-1206-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/24/2013] [Indexed: 12/21/2022]
Abstract
Green fluorescent proteins (GFP), extensively used as reporters in biological and imaging studies, are assumed to be mostly biologically inert. Here, we test the assumption in regard to the transcriptional regulation of 18 mitochondrially encoded genes in GFP expressing human T-cell line (JURKAT cells) exposed to gamma radiation. Using quantitative polymerase chain reaction, we demonstrate that wild type and GFP expressing JURKAT cells have different baseline mitochondrial transcript expression (10 out of the 18 tested genes) and after a single dose of radiation (100 Gy) show a significantly different transcriptional regulation of their mitochondrial genes. While in wild type cells, ten of the tested genes are up-regulated in response to radiation exposure, GFP expressing cells show less transcriptional regulation with a small down-regulation in five genes. Our results indicate that the presence of GFP in the cytoplasm can alter the cellular response to ionizing radiation.
Collapse
|
36
|
Goldschmidt R, Arce PM, Khdour OM, Collin VC, Dey S, Jaruvangsanti J, Fash DM, Hecht SM. Effects of cytoprotective antioxidants on lymphocytes from representative mitochondrial neurodegenerative diseases. Bioorg Med Chem 2012; 21:969-78. [PMID: 23313093 DOI: 10.1016/j.bmc.2012.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 01/03/2023]
Abstract
Two new aza analogues of the neuroprotective agent idebenone have been synthesized and characterized. Their antioxidant activity, and ability to augment ATP levels have been evaluated in several different cell lines having suboptimal mitochondrial function. Both compounds were found to be good ROS scavengers, and to protect the cells from oxidative stress induced by glutathione depletion. The compounds were more effective than idebenone in neurodegenerative disease cells. These novel pyrimidinol derivatives were also shown to augment ATP levels in coenzyme Q(10)-deficient human lymphocytes. The more lipophilic side chains attached to the pyrimidinol redox core in these compounds resulted in less inhibition of the electron transport chain and improved antioxidant activity.
Collapse
Affiliation(s)
- Ruth Goldschmidt
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chaudhry MA, Omaruddin RA. Transcriptional changes of mitochondrial genes in irradiated cells proficient or deficient in p53. J Genet 2012; 91:105-10. [PMID: 22546833 DOI: 10.1007/s12041-012-0138-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
38
|
Hasegawa S, Morokoshi Y, Kanda H, Tsukamoto S, Zheng J, Tsuji AB, Furukawa T, Kakinuma S, Shimada Y, Saga T. H-ferritin overexpression promotes radiation-induced leukemia/lymphoma in mice. Carcinogenesis 2012; 33:2269-75. [DOI: 10.1093/carcin/bgs251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Carrillo-Cázares TA, Torres-García E. Monte Carlo mitochondrial dosimetry and microdosimetry of 131I. RADIATION PROTECTION DOSIMETRY 2012; 153:411-416. [PMID: 22826354 DOI: 10.1093/rpd/ncs132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A mitochondrion is an organelle found in most eukaryotic cells, which produces most of the energy needed by a living cell. It has been shown that ionising radiation causes mitochondrial damage leading to apoptosis or cell death. The aim of this work was to calculate, by Monte Carlo simulation, the specific energy (z) into the mitochondria, due to Auger electrons, conversion electrons and beta emission from (131)I, where the radionuclide was carried by a vector to the cell surface and the surrounding environment. A concentric spherical geometry represents a cell and its nucleus. Three different volumes were used to represent the mitochondria; they were placed in random positions within the cytoplasm. The z produced by a single event is due to low-energy electrons (76 %) and beta particles (24 %) and the mitochondria receive a total mean z two orders of magnitude higher than that of the cell nucleus.
Collapse
Affiliation(s)
- Tomás A Carrillo-Cázares
- Laboratorio de Simulación Monte Carlo, Coordinación de Posgrado, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan s/n, esquina Jesús Carranza, Colonia Moderna de la Cruz, Toluca, Estado de México, México
| | | |
Collapse
|
40
|
Voets AM, Lindsey PJ, Vanherle SJ, Timmer ED, Esseling JJ, Koopman WJH, Willems PHGM, Schoonderwoerd GC, De Groote D, Poll-The BT, de Coo IFM, Smeets HJM. Patient-derived fibroblasts indicate oxidative stress status and may justify antioxidant therapy in OXPHOS disorders. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1971-8. [PMID: 22796146 DOI: 10.1016/j.bbabio.2012.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/12/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Oxidative phosphorylation disorders are often associated with increased oxidative stress and antioxidant therapy is frequently given as treatment. However, the role of oxidative stress in oxidative phosphorylation disorders or patients is far from clear and consequently the preventive or therapeutic effect of antioxidants is highly anecdotic. Therefore, we performed a systematic study of a panel of oxidative stress parameters (reactive oxygen species levels, damage and defense) in fibroblasts of twelve well-characterized oxidative phosphorylation patients with a defect in the POLG1 gene, in the mitochondrial DNA-encoded tRNA-Leu gene (m.3243A>G or m.3302A>G) and in one of the mitochondrial DNA-encoded NADH dehydrogenase complex I (CI) subunits. All except two cell lines (one POLG1 and one tRNA-Leu) showed increased reactive oxygen species levels compared with controls, but only four (two CI and two tRNA-Leu) cell lines provided evidence for increased oxidative protein damage. The absence of a correlation between reactive oxygen species levels and oxidative protein damage implies differences in damage prevention or correction. This was investigated by gene expression studies, which showed adaptive and compensating changes involving antioxidants and the unfolded protein response, especially in the POLG1 group. This study indicated that patients display individual responses and that detailed analysis of fibroblasts enables the identification of patients that potentially benefit from antioxidant therapy. Furthermore, the fibroblast model can also be used to search for and test novel, more specific antioxidants or explore ways to stimulate compensatory mechanisms.
Collapse
Affiliation(s)
- A M Voets
- Department of Genetics and Cell Biology, Maastricht University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhou X, Li N, Wang Y, Wang Y, Zhang X, Zhang H. Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change. Mitochondrion 2011; 11:886-92. [DOI: 10.1016/j.mito.2011.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 05/04/2011] [Accepted: 07/22/2011] [Indexed: 01/18/2023]
|
42
|
Kulkarni R, Thomas RA, Tucker JD. Expression of DNA repair and apoptosis genes in mitochondrial mutant and normal cells following exposure to ionizing radiation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:229-237. [PMID: 20740641 DOI: 10.1002/em.20605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
In double-strand DNA damage repair, nonhomologous end joining (NHEJ) is more error-prone than homologous recombination repair (HRR), indicating that the relative prevalence of NHEJ may lead to more incorrect repair and thus to increases in chromosome damage. If DNA damage is extensive and cells are unable to repair that damage they typically undergo apoptosis. The mechanism(s) by which cells decide to switch from DNA repair to apoptosis is unknown. Since DNA repair and apoptosis are both energy-demanding processes, the answer may involve ATP utilization. We used human mitochondrial mutant cell lines obtained from people with phenotypic manifestations of compromised ATP generation. We hypothesized that these cells may not have adequate capacity for dealing with the additional demands for ATP required for repairing DNA damage after genotoxic exposure, perhaps making the cells more prone to undergo apoptosis instead of initiating repair. This study describes changes in the expression of genes involved in NHEJ or HRR, as well as genes involved in apoptosis, in one normal and two mitochondrial mutant human cell lines following ionizing radiation exposure. Compared to normal cells, both mutant cell lines showed reduced expression of genes involved in NHEJ and HRR. Analysis of expression changes in genes involved in apoptosis revealed marked increases in expression in the mutants compared to normal cells. These results indicate that following ionizing radiation exposure, mitochondrial mutant cells have decreased levels of mRNA expression of DNA repair genes and increased expression levels of genes involved in apoptosis compared to normal cells. This study provides information that might be useful in characterizing energy dependent processes following exposure to stress or genotoxic agents.
Collapse
Affiliation(s)
- Rohan Kulkarni
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
43
|
Rajendran S, Harrison SH, Thomas RA, Tucker JD. The role of mitochondria in the radiation-induced bystander effect in human lymphoblastoid cells. Radiat Res 2010; 175:159-71. [PMID: 21268709 DOI: 10.1667/rr2296.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cells without intact mitochondrial DNA have been shown to lack the bystander effect, which is an energy-dependent process. We hypothesized that cells harboring mutations in mitochondrial genes responsible for ATP synthesis would show a decreased bystander effect compared to normal cells. Radiation-induced bystander effects were analyzed in two normal and four mitochondrial mutant human lymphoblastoid cells. Medium from previously irradiated cells (conditioned medium) was transferred to unirradiated cells from the respective cell lines and evaluated for the bystander effect using the cytokinesis-block micronucleus assay. Unlike normal cells that were used as a control, mitochondrial mutant cells neither generated nor responded to the bystander signals. The bystander effect was inhibited in normal cells by adding the mitochondrial inhibitors rotenone and oligomycin to the culture medium. Time-controlled blocking of the bystander effect by inhibitors was found to occur either for prolonged exposure to the inhibitor prior to irradiation with an immediate and subsequent removal of the inhibitors or immediate post-application of the inhibitor. Adding the inhibitors just prior to irradiation and removing them immediately after irradiation was uneventful. Fully functional mitochondrial metabolic capability may therefore be essential for the bystander effect.
Collapse
Affiliation(s)
- Sountharia Rajendran
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|