1
|
Tolstykh EI, Vozilova AV, Akleyev AV, Zalyapin VI. Model of age-dependent dynamics and biokinetics of T-cells as natural biodosimeters. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:405-421. [PMID: 38829435 DOI: 10.1007/s00411-024-01072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Circulating T-lymphocytes are used as "natural biodosimeters" for estimating radiation doses, since the frequency of chromosomal aberrations induced in them is proportional to the accumulated dose. Moreover, stable chromosomal aberrations (translocations) are detected years and decades after exposure. Internal incorporation of radionuclides often leads to non-uniform exposure, which resulted in difficulties in the application of retrospective biodosimetry using T-lymphocytes. Some properties of T-lymphocytes complicate retrospective biodosimetry in this case: (1) the thymic production of T-cells depends significantly on age, the maximum is observed in early childhood; (2) the "lymphocyte-dosimeter" accumulates changes (translocations) while circulating through the body. The objective of this paper is to describe the technical characteristics of the model of age dynamics and T-cell biokinetics and approaches to assessing the dose to circulating lymphocytes under various exposure scenarios. The model allows to quantify the fractions of T-lymphocytes that were formed before and after exposure. The model takes into account the time fractions that circulating lymphocytes spend in various lymphoid organs. Age-related thymic involution was also considered. The model predicts that after internal exposure to 90Sr, the doses to T-lymphocytes can differ significantly from the doses to the bone marrow and other tissues. For uniform external γ-exposure, and for internal exposure due to non-bone -seeking radionuclides (for example, 144Ce), predicted doses to T-lymphocytes are very close to bone marrow doses. The model allows to quantify the correction factors for FISH-based doses to obtain doses to organs and tissues.
Collapse
Affiliation(s)
- Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia.
| | - Alexandra V Vozilova
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
| | - Alexander V Akleyev
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
- Department of Radiation Biology, Chelyabinsk State University, Chelyabinsk, Russia
| | - Vladimir I Zalyapin
- Mathematical Analysis Department, South Ural State University, Chelyabinsk, Russia
| |
Collapse
|
2
|
Akleyev AA, Vozilova AV, Dolgushin II. Immune Status of People with an Increased Chromosomal Aberration Level at Later Time Points After Chronic Radiation Exposure. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Tolstykh EI, Vozilova AV, Degteva MO, Akleyev AV. Concept of T-Cell Genus as a Basis for Analysis of the Results of Cytogenetic Studies after Local Bone Marrow Exposure. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Giussani A, Lopez MA, Romm H, Testa A, Ainsbury EA, Degteva M, Della Monaca S, Etherington G, Fattibene P, Güclu I, Jaworska A, Lloyd DC, Malátová I, McComish S, Melo D, Osko J, Rojo A, Roch-Lefevre S, Roy L, Shishkina E, Sotnik N, Tolmachev SY, Wieser A, Woda C, Youngman M. Eurados review of retrospective dosimetry techniques for internal exposures to ionising radiation and their applications. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:357-387. [PMID: 32372284 PMCID: PMC7369133 DOI: 10.1007/s00411-020-00845-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/15/2020] [Indexed: 05/17/2023]
Abstract
This work presents an overview of the applications of retrospective dosimetry techniques in case of incorporation of radionuclides. The fact that internal exposures are characterized by a spatially inhomogeneous irradiation of the body, which is potentially prolonged over large periods and variable over time, is particularly problematic for biological and electron paramagnetic resonance (EPR) dosimetry methods when compared with external exposures. The paper gives initially specific information about internal dosimetry methods, the most common cytogenetic techniques used in biological dosimetry and EPR dosimetry applied to tooth enamel. Based on real-case scenarios, dose estimates obtained from bioassay data as well as with biological and/or EPR dosimetry are compared and critically discussed. In most of the scenarios presented, concomitant external exposures were responsible for the greater portion of the received dose. As no assay is available which can discriminate between radiation of different types and different LETs on the basis of the type of damage induced, it is not possible to infer from these studies specific conclusions valid for incorporated radionuclides alone. The biological dosimetry assays and EPR techniques proved to be most applicable in cases when the radionuclides are almost homogeneously distributed in the body. No compelling evidence was obtained in other cases of extremely inhomogeneous distribution. Retrospective dosimetry needs to be optimized and further developed in order to be able to deal with real exposure cases, where a mixture of both external and internal exposures will be encountered most of the times.
Collapse
Affiliation(s)
- A Giussani
- BfS-Bundesamt für Strahlenschutz, Ingolstädter Landstr. 1, 85764, Oberschleißheim, Germany.
| | - M A Lopez
- CIEMAT - Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av.da Complutense 40, 28040, Madrid, Spain
| | - H Romm
- BfS-Bundesamt für Strahlenschutz, Ingolstädter Landstr. 1, 85764, Oberschleißheim, Germany
| | - A Testa
- ENEA Casaccia Research Center, Via Anguillarese 301, Santa Maria di Galeria, 00123, Rome, Italy
| | - E A Ainsbury
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - M Degteva
- Urals Research Center for Radiation Medicine (URCRM), Vorovskt str. 68A, Chelyabinsk, 454141, Russia
| | - S Della Monaca
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - G Etherington
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - P Fattibene
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - I Güclu
- Cekmece Nuclear Research and Training Center Radiobiology Unit Yarımburgaz, Turkish Atomic Energy Authority, Istanbul, Turkey
| | - A Jaworska
- DSA-Norwegian Radiation and Nuclear Safety Authority, Skøyen, P. O. Box 329, 0213, Oslo, Norway
| | - D C Lloyd
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - I Malátová
- SURO-National Radiation Protection Institute, Bartoskova 28, 14000, Prague, Czech Republic
| | - S McComish
- US Transuranium and Uranium Registries, Washington State University, Richland, WA, USA
| | - D Melo
- Melohill Technology, 1 Research Court, Rockville, MD, 20850, USA
| | - J Osko
- National Centre for Nuclear Research, A. Soltana 7, 05400, Otwock, Poland
| | - A Rojo
- ARN-Nuclear Regulatory Authority of Argentina, Av. del Libertador 8250, Buenos Aires, Argentina
| | - S Roch-Lefevre
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - L Roy
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - E Shishkina
- Urals Research Center for Radiation Medicine (URCRM), Vorovskt str. 68A, Chelyabinsk, 454141, Russia
- Chelyabinsk State University (ChelSU), 129, Bratiev Kashirinih Street, Chelyabinsk, 454001, Russia
| | - N Sotnik
- Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, 456780, Russia
| | - S Y Tolmachev
- US Transuranium and Uranium Registries, Washington State University, Richland, WA, USA
| | - A Wieser
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - C Woda
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - M Youngman
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| |
Collapse
|
5
|
Daniels RD, Kendall GM, Thierry-Chef I, Linet MS, Cullings HM. Strengths and Weaknesses of Dosimetry Used in Studies of Low-Dose Radiation Exposure and Cancer. J Natl Cancer Inst Monogr 2020; 2020:114-132. [PMID: 32657346 PMCID: PMC7667397 DOI: 10.1093/jncimonographs/lgaa001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A monograph systematically evaluating recent evidence on the dose-response relationship between low-dose ionizing radiation exposure and cancer risk required a critical appraisal of dosimetry methods in 26 potentially informative studies. METHODS The relevant literature included studies published in 2006-2017. Studies comprised case-control and cohort designs examining populations predominantly exposed to sparsely ionizing radiation, mostly from external sources, resulting in average doses of no more than 100 mGy. At least two dosimetrists reviewed each study and appraised the strengths and weaknesses of the dosimetry systems used, including assessment of sources and effects of dose estimation error. An overarching concern was whether dose error might cause the spurious appearance of a dose-response where none was present. RESULTS The review included 8 environmental, 4 medical, and 14 occupational studies that varied in properties relative to evaluation criteria. Treatment of dose estimation error also varied among studies, although few conducted a comprehensive evaluation. Six studies appeared to have known or suspected biases in dose estimates. The potential for these biases to cause a spurious dose-response association was constrained to three case-control studies that relied extensively on information gathered in interviews conducted after case ascertainment. CONCLUSIONS The potential for spurious dose-response associations from dose information appeared limited to case-control studies vulnerable to recall errors that may be differential by case status. Otherwise, risk estimates appeared reasonably free of a substantial bias from dose estimation error. Future studies would benefit from a comprehensive evaluation of dose estimation errors, including methods accounting for their potential effects on dose-response associations.
Collapse
Affiliation(s)
- Robert D Daniels
- Division of Science Integration, National Institute for Occupational Safety and Health, Cincinnati, OH
| | - Gerald M Kendall
- Cancer Epidemiology Unit, NDPH, University of Oxford, Oxford, UK
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
6
|
Herate C, Sabatier L. Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108287. [PMID: 32192645 DOI: 10.1016/j.mrrev.2019.108287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 01/28/2023]
Abstract
In the absence of physical data, biodosimetry tools are required for fast dose and risk assessment in the event of radiological or nuclear mass accidents or attacks to triage exposed humans and take immediate medical countermeasures. Biodosimetry tools have mostly been developed for retrospective dose assessment and the follow-up of victims of irradiation. Among them, cytogenetics analyses, to reveal chromosome damage, are the most developed and allow the determination of doses from blood samples as low as 100 mGy. Various cytogenetic tests have already allowed retrospective dose assessment of Chernobyl liquidators and military personnel exposed to nuclear tests after decades. In this review, we discuss the properties of various biodosimetry techniques, such as their sensitivity and limitations as a function of the time from exposure, using multiple examples of nuclear catastrophes or working exposure. Among them, chromosome FISH hybridization, which reveals chromosome translocations, is the most reliable due to the persistence of translocations for decades, whereas dicentric chromosome and micronuclei assays allow rapid and accurate dose assessment a short time after exposure. Both need to be adjusted through mathematical algorithms for retrospective analyses, accounting for the time since exposure and the victims' age. The goal for the future will be to better model chromosome damage, reduce the time to result, and develop new complementary biodosimetry approaches, such as mutation signatures.
Collapse
Affiliation(s)
- C Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, Fontenay-aux-Roses, France
| | - L Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, Fontenay-aux-Roses, France.
| |
Collapse
|
7
|
Tolstykh EI, Degteva MO, Vozilova AV, Akleyev AV. Interpretation of FISH Results in the Case of Nonuniform Internal Radiation Exposure of Human Body with the Use of Model Approach. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tolstykh EI, Degteva MO, Vozilova AV, Anspaugh LR. Local bone-marrow exposure: how to interpret the data on stable chromosome aberrations in circulating lymphocytes? (some comments on the use of FISH method for dose reconstruction for Techa riverside Residents). RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:389-403. [PMID: 28889186 DOI: 10.1007/s00411-017-0712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The method of fluorescence in situ hybridization (FISH) applied to peripheral blood T lymphocytes is used for retrospective dose estimation, and the results obtained from the analysis of stable chromosomal aberrations are usually interpreted as a dose accumulated in the red bone marrow (RBM). However, after local internal exposure of the RBM, doses derived from FISH were found to be lower than those derived from direct measurements of radionuclides accumulated in the bodies of exposed persons. These results were obtained for people residing near the Techa River contaminated by 89,90Sr (beta-emitters) in 1949-1956 (Chelyabinsk Oblast, Russia). A new analysis has been performed of the combined results of FISH studies (n = 178) undertaken during 1994-2012 for persons living on the Techa Riverside. Analysis confirms the lower slope of the translocation yield per Gy (8.0 ± 0.7 × 10-3) for Techa residents in comparison with FISH data for donors with external exposures (11.6 ± 1.6 × 10-3, Tawn et al., Radiat Res 184(3):296-303, 2015). It was suggested that some portion of T cells remained unexposed, because they represented the descendants of T cell progenitors, which had migrated to the thymus before the start of 89,90Sr intakes. To clarify this problem, the dynamics of T-cell Genera (TG), combining all descendants of specific T-cell progenitor reaching the thymus, was considered. Rates of TGs produced by RBM over different age periods of human life were estimated with the use of the mathematic model of T-cell homeostasis (Bains, Mathematical modeling of T-cell homeostasis. A thesis submitted for the degree of Doctor of Philosophy of the University College London. http://discovery.ucl.ac.uk/20159/1/20159.pdf , 2010). The rate of TG loss during the lifetime was assumed to be very small in comparison with production rate. The recirculation of mature T lymphocytes in contaminated RBM was taken into account. According to our model estimates, at the time of blood sampling, the fraction of exposed T lymphocytes (whose progenitors were irradiated) ranged from 20 to 80% depending on the donors' age at the start of exposure to 89,90Sr. Dose to T lymphocytes, estimated from FISH studies, should be about 0.6-0.9 of RBM dose for residents of the upper Techa region and about 0.4-0.8 in the middle Techa region. Our results could explain the lower value of translocation yield per Gy obtained for Techa residents. The approaches for further model improvement and validation are discussed in this paper.
Collapse
Affiliation(s)
- Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia.
| | - Marina O Degteva
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
| | - Alexandra V Vozilova
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
| | - Lynn R Anspaugh
- Emeritus, Radiobiology Division, Department of Radiology, University of Utah, Salt Lake City, USA
| |
Collapse
|
9
|
Hiller MM, Woda C, Bougrov NG, Degteva MO, Ivanov O, Ulanovsky A, Romanov S. External dose reconstruction for the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements, and radiation transport modelling. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:139-159. [PMID: 28374124 DOI: 10.1007/s00411-017-0688-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.
Collapse
Affiliation(s)
- M M Hiller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany.
| | - C Woda
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany
| | - N G Bougrov
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - M O Degteva
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - O Ivanov
- Kurchatov Institute Moscow, Moscow, 123182, Russia
| | - A Ulanovsky
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany
| | - S Romanov
- Southern Urals Biophysics Institute, Ozyorsk, Russia
| |
Collapse
|
10
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
11
|
Tawn EJ, Curwen GB, Jonas P, Riddell AE, Hodgson L. Chromosome aberrations determined by sFISH and G-banding in lymphocytes from workers with internal deposits of plutonium. Int J Radiat Biol 2016; 92:312-20. [PMID: 27043761 PMCID: PMC4898148 DOI: 10.3109/09553002.2016.1152414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Purpose: To examine the influence of α-particle radiation exposure from internally deposited plutonium on chromosome aberration frequencies in peripheral blood lymphocytes of workers from the Sellafield nuclear facility, UK. Materials and methods: Chromosome aberration data from historical single colour fluorescence in situ hybridization (sFISH) and Giemsa banding (G-banding) analyses, together with more recent sFISH results, were assessed using common aberration analysis criteria and revised radiation dosimetry. The combined sFISH group comprised 29 men with a mean internal red bone marrow dose of 21.0 mGy and a mean external γ-ray dose of 541 mGy. The G-banding group comprised 23 men with a mean internal red bone marrow dose of 23.0 mGy and a mean external γ-ray dose of 315 mGy. Results: Observed translocation frequencies corresponded to expectations based on age and external γ-ray dose with no need to postulate a contribution from α-particle irradiation of the red bone marrow by internally deposited plutonium. Frequencies of stable cells with complex aberrations, including insertions, were similar to those in a group of controls and a group of workers with external radiation exposure only, who were studied concurrently. In a similar comparison there is some suggestion of an increase in cells with unstable complex aberrations and this may reflect recent direct exposure to circulating lymphocytes. Conclusions: Reference to in vitro dose response data for the induction of stable aberrant cells by α-particle irradiation indicates that the low red bone marrow α-particle radiation doses received by the Sellafield workers would not result in a discernible increase in translocations, thus supporting the in vivo findings. Therefore, the greater risk from occupational radiation exposure of the bone marrow resulting in viable chromosomally aberrant cells comes from, in general, much larger γ-ray exposure in comparison to α-particle exposure from plutonium.
Collapse
Affiliation(s)
- E Janet Tawn
- a Centre for Integrated Genomic Medical Research (CIGMR) , Centre for Epidemiology, Institute of Population Health, The University of Manchester , Manchester , UK ;,b Formerly of Westlakes Research Institute*, Westlakes Science and Technology Park , Moor Row , Cumbria , UK
| | - Gillian B Curwen
- a Centre for Integrated Genomic Medical Research (CIGMR) , Centre for Epidemiology, Institute of Population Health, The University of Manchester , Manchester , UK ;,b Formerly of Westlakes Research Institute*, Westlakes Science and Technology Park , Moor Row , Cumbria , UK
| | - Patricia Jonas
- c Formerly of Northern Genetics Service, Institute of Genetic Medicine, International Centre for Life, Newcastle University , Newcastle upon Tyne , UK
| | - Anthony E Riddell
- b Formerly of Westlakes Research Institute*, Westlakes Science and Technology Park , Moor Row , Cumbria , UK ;,d Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Westlakes Science and Technology Park , Moor Row , Cumbria , UK
| | - Leanne Hodgson
- b Formerly of Westlakes Research Institute*, Westlakes Science and Technology Park , Moor Row , Cumbria , UK
| |
Collapse
|
12
|
Little MP, Kwon D, Doi K, Simon SL, Preston DL, Doody MM, Lee T, Miller JS, Kampa DM, Bhatti P, Tucker JD, Linet MS, Sigurdson AJ. Association of chromosome translocation rate with low dose occupational radiation exposures in U.S. radiologic technologists. Radiat Res 2014; 182:1-17. [PMID: 24932535 DOI: 10.1667/rr13413.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chromosome translocations are a well-recognized biological marker of radiation exposure and cancer risk. However, there is uncertainty about the lowest dose at which excess translocations can be detected, and whether there is temporal decay of induced translocations in radiation-exposed populations. Dosimetric uncertainties can substantially alter the shape of dose-response relationships; although regression-calibration methods have been used in some datasets, these have not been applied in radio-occupational studies, where there are also complex patterns of shared and unshared errors that these methods do not account for. In this article we evaluated the relationship between estimated occupational ionizing radiation doses and chromosome translocation rates using fluorescent in situ hybridization in 238 U.S. radiologic technologists selected from a large cohort. Estimated cumulative red bone marrow doses (mean 29.3 mGy, range 0-135.7 mGy) were based on available badge-dose measurement data and on questionnaire-reported work history factors. Dosimetric assessment uncertainties were evaluated using regression calibration, Bayesian and Monte Carlo maximum likelihood methods, taking account of shared and unshared error and adjusted for overdispersion. There was a significant dose response for estimated occupational radiation exposure, adjusted for questionnaire-based personal diagnostic radiation, age, sex and study group (5.7 translocations per 100 whole genome cell equivalents per Gy, 95% CI 0.2, 11.3, P = 0.0440). A significant increasing trend with dose continued to be observed for individuals with estimated doses <100 mGy. For combined estimated occupational and personal-diagnostic-medical radiation exposures, there was a borderline-significant modifying effect of age (P = 0.0704), but little evidence (P > 0.5) of temporal decay of induced translocations. The three methods of analysis to adjust for dose uncertainty gave similar results. In summary, chromosome translocation dose-response slopes were detectable down to <100 mGy and were compatible with those observed in other radiation-exposed populations. However, there are substantial uncertainties in both occupational and other (personal-diagnostic-medical) doses that may be imperfectly taken into account in our analysis.
Collapse
Affiliation(s)
- Mark P Little
- a Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland 20892
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vozilova AV, Shagina NB, Degteva MO, Moquet J, Ainsbury EA, Darroudi F. FISH analysis of translocations induced by chronic exposure to Sr radioisotopes: second set of analysis of the Techa River Cohort. RADIATION PROTECTION DOSIMETRY 2014; 159:34-37. [PMID: 24743760 DOI: 10.1093/rpd/ncu131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescent in situ hybridisation analysis of stable translocations was performed for 26 residents living along the Techa River (Russia), who were predominantly (95%) exposed to ingested strontium radioisotopes ((89)Sr and (90)Sr) resulting in exposure of their red bone marrow (RBM). Analysis was conducted at the Urals Research Center for Radiation Medicine, Public Health England and Leiden University Medical Center. Each laboratory scored 1000 cells per donor, which resulted in ∼1000 genome equivalents (GE) per donor. The age-dependent spontaneous level of translocations for each donor was evaluated on the basis of data published by Sigurdson et al. (International study of factors affecting human chromosome. Mutat. Res. 2008;652: :112-121). Reconstruction of doses was performed with the 'Techa River Dosimetry System' developed in 2009. In the studied donors, the range of individual cumulated RBM dose was from 0.3 to 3.7 Gy. Analysis of the yield of stable translocations dependent on the individual RBM dose from (89,90)Sr showed a linear dose-response relationship of 0.007 ± 0.002 translocation/GE cell/Gy (R = 0.61, p = 0.001). This set of results was in a good agreement with the previous data reported for 18 donors by Vozilova et al. (Preliminary FISH-based assessment of external dose for residents exposed on the Techa River.
Collapse
Affiliation(s)
- Alexandra V Vozilova
- Urals Research Center for Radiation Medicine (URCRM), Vorovsky str. 68A, Chelyabinsk 454076, Russia
| | - Natalia B Shagina
- Urals Research Center for Radiation Medicine (URCRM), Vorovsky str. 68A, Chelyabinsk 454076, Russia
| | - Marina O Degteva
- Urals Research Center for Radiation Medicine (URCRM), Vorovsky str. 68A, Chelyabinsk 454076, Russia
| | - Jayne Moquet
- Public Health England (PHE), Chilton, Didcot, Oxon OX11 ORQ, UK
| | | | - Firouz Darroudi
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), Einthovenweg 20, Leiden 2300RC, The Netherlands
| |
Collapse
|
14
|
Ainsbury EA, Moquet J, Rothkamm K, Darroudi F, Vozilova A, Degteva M, Azizova TV, Lloyd DC, Harrison J. What radiation dose does the FISH translocation assay measure in cases of incorporated radionuclides for the Southern Urals populations? RADIATION PROTECTION DOSIMETRY 2014; 159:26-33. [PMID: 24736296 DOI: 10.1093/rpd/ncu118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fluorescence in situ hybridisation (FISH) technique is now well established for retrospective dosimetry in cases of external radiation exposure that occurred many years ago. However, the question remains as to whether FISH provides valid estimates of cumulative red bone marrow radiation doses in cases of incorporation of radionuclides or combined external and internal exposures. This question has arisen in connection with the interpretation of results of dose assessments for epidemiological studies of plutonium workers at the Russian Mayak plant and of members of the public exposed to strontium radioisotopes and external radiation as a result of discharges from Mayak to the Techa River. Exposures to penetrating external radiation result in fairly uniform irradiation of body tissues, and hence similar doses to all tissues, for which FISH dosimetry can provide a reliable measure of this whole body dose. However, intakes of radionuclides into the body by inhalation or ingestion may result in retention in specific organs and tissues, so that the distribution of dose is highly heterogeneous. For radionuclides emitting short-range radiations (e.g. alpha particles), this heterogeneity can apply to dose delivery within tissues and between cells within tissues. In this paper, an attempt is made to address the question of what FISH measures in such circumstances by considering evidence regarding the origin and lifetime dynamics of lymphocyte subsets in the human body in relation to the localised delivery of dose from the internal emitters (90)Sr and (239)Pu, which are of particular interest for the Southern Urals Mayak and Techa River populations, and for which most evidence is available in these populations. It is concluded that the FISH translocation assay can be usefully applied for detecting internal and combined external gamma and internal doses from internally deposited (90)Sr, albeit with fairly large uncertainties. The same may be true of (239)Pu, as well as other radionuclides, although much work remains to be done to establish dose-response relationships.
Collapse
Affiliation(s)
| | - Jayne Moquet
- Public Health England (PHE) CRCE, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Kai Rothkamm
- Public Health England (PHE) CRCE, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Firouz Darroudi
- Department of Toxicogenetics, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Alexandra Vozilova
- Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| | - Marina Degteva
- Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| | - Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Chelyabinsk, Russian Federation
| | - David C Lloyd
- Public Health England (PHE) CRCE, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - John Harrison
- Public Health England (PHE) CRCE, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| |
Collapse
|
15
|
Liu QJ, Lu X, Zhao XT, Feng JB, Lü YM, Jiang EH, Zhang SL, Chen DQ, Jia TZ, Liang L. Assessment of retrospective dose estimation, with fluorescence in situ hybridization (FISH), of six victims previously exposed to accidental ionizing radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 759:1-8. [DOI: 10.1016/j.mrgentox.2013.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/25/2013] [Accepted: 07/05/2013] [Indexed: 11/25/2022]
|
16
|
Schmitz S, Brzozowska K, Pinkawa M, Eble M, Kriehuber R. Chromosomal Radiosensitivity Analyzed by FISH in Lymphocytes of Prostate Cancer Patients and Healthy Donors. Radiat Res 2013; 180:465-73. [DOI: 10.1667/rr3239.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sabine Schmitz
- a Department of Safety and Radiation Protection, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; and
| | | | | | | | | |
Collapse
|
17
|
Vozilova AV, Shagina NB, Degteva MO, Akleyev AV. Chronic radioisotope effects on residents of the Techa River (Russia) region: cytogenetic analysis more than 50 years after onset of exposure. Mutat Res 2013; 756:115-8. [PMID: 23751212 DOI: 10.1016/j.mrgentox.2013.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
This paper presents the results of a cytogenetic study conducted among residents of the Techa Riverside communities (Southern Urals, Russia) exposed in the early 1950s as a result of releases of liquid radioactive wastes from the Mayak plutonium-production facility. The study was performed 50-60 years after the beginning of the exposure for those individuals who were predominantly exposed to strontium radioisotopes ((89,90)Sr) through drinking contaminated river water and consumption of local foodstuff. Standard cytogenetic methods were used for evaluation of the frequency of unstable chromosome aberrations in exposed persons as well as in persons from the control group who were of similar age and sex, living in similar socio-economic conditions in non-contaminated territories of the Southern Urals. The exposure doses were reconstructed for the studied donors using the Techa River Dosimetry System developed in 2009. The doses of internal exposure from ingested radionuclides were evaluated using individual or family in vivo measurements of (90)Sr-body burden. Individual cumulative absorbed doses in red bone marrow (RBM) in the studied persons varied in the range of 0.01-4.4Gy. A significantly higher level of unstable chromosome aberrations (UCA) in T-cells was observed in the group of exposed individuals as compared to control group. The highest UCA level was detected in the individuals who were suspected of having chronic radiation syndrome.
Collapse
Affiliation(s)
- A V Vozilova
- Clinical Physiology Laboratory of the Urals Research Center for Radiation Medicine of the Federal Medical-Biological Agency of Russia, 68-A Vorovsky st., Chelyabinsk 454076, Russian Federation.
| | | | | | | |
Collapse
|