1
|
Polic D, Yıldırım Y, Merilaita S, Franzén M, Forsman A. Genetic structure, UV-vision, wing coloration and size coincide with colour polymorphism in Fabriciana adippe butterflies. Mol Ecol 2024; 33:e17272. [PMID: 38240162 DOI: 10.1111/mec.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Colour polymorphisms have long served as model systems in evolutionary studies and continue to inform about processes involved in the origin and dynamics of biodiversity. Modern sequencing tools allow for evaluating whether phenotypic differences between morphs reflect genetic differentiation rather than developmental plasticity, and for investigating whether polymorphisms represent intermediate stages of diversification towards speciation. We investigated phenotypic and genetic differentiation between two colour morphs of the butterfly Fabriciana adippe using a combination of ddRAD-sequencing and comparisons of body size, colour patterns and optical properties of bright wing spots. The silvery-spotted adippe form had larger and darker wings and reflected UV light, while the yellow cleodoxa form displayed more green scales and reflected very little UV, showcasing that they constitute distinct and alternative integrated phenotypes. Genomic analyses revealed genetic structuring according to source population, and to colour morph, suggesting that the phenotypic differentiation reflects evolutionary modifications. We report 17 outlier loci associated with colour morph, including ultraviolet-sensitive visual pigment (UVRh1), which is associated with intraspecific communication and mate choice in butterflies. Together with the demonstration that the wings of the adippe (but essentially not the cleodoxa) morph reflect UV light, that UV reflectance is higher in females than males and that morphs differ in wing size, this suggests that these colour morphs might represent genetically integrated phenotypes, possibly adapted to different microhabitats. We propose that non-random mating might contribute to the differentiation and maintenance of the polymorphism.
Collapse
Affiliation(s)
- Daniela Polic
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Sami Merilaita
- Department of Biology, University of Turku, Turku, Finland
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Jahan H, Khudr MS, Arafeh A, Hager R. Exposure to heat stress leads to striking clone-specific nymph deformity in pea aphid. PLoS One 2023; 18:e0282449. [PMID: 37883483 PMCID: PMC10602343 DOI: 10.1371/journal.pone.0282449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/15/2023] [Indexed: 10/28/2023] Open
Abstract
Climatic changes, such as heatwaves, pose unprecedented challenges for insects, as escalated temperatures above the thermal optimum alter insect reproductive strategies and energy metabolism. While thermal stress responses have been reported in different insect species, thermo-induced developmental abnormalities in phloem-feeding pests are largely unknown. In this laboratory study, we raised two groups of first instar nymphs belonging to two clones of the pea aphid Acyrthosiphon pisum, on fava beans Vicia faba. The instars developed and then asexually reproduced under constant exposure to a sub-lethal heatwave (27°C) for 14 days. Most mothers survived but their progenies showed abnormalities, as stillbirths and appendageless or weak nymphs with folded appendages were delivered. Clone N116 produced more deceased and appendageless embryos, contrary to N127, which produced fewer dead and more malformed premature embryos. Interestingly, the expression of the HSP70 and HSP83 genes differed in mothers between the clones. Moreover, noticeable changes in metabolism, e.g., lipids, were also detected and that differed in response to stress. Deformed offspring production after heat exposure may be due to heat injury and differential HSP gene expression, but may also be indicative of a conflict between maternal and offspring fitness. Reproductive altruism might have occurred to ensure some of the genetically identical daughters survive. This is because maintaining homeostasis and complete embryogenesis could not be simultaneously fulfilled due to the high costs of stress. Our findings shine new light on pea aphid responses to heatwaves and merit further examination across different lineages and species.
Collapse
Affiliation(s)
- Hawa Jahan
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Faculty of Biological Sciences, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Mouhammad Shadi Khudr
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Ali Arafeh
- Faculty of Science and Engineering, Chemical Engineering, James Chadwick Building, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Trissi N, Troczka BJ, Ozsanlav-Harris L, Singh KS, Mallott M, Aishwarya V, O'Reilly A, Bass C, Wilding CS. Differential regulation of the Tor gene homolog drives the red/green pigmentation phenotype in the aphid Myzuspersicae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 153:103896. [PMID: 36587809 DOI: 10.1016/j.ibmb.2022.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In some aphid species, intraspecific variation in body colour is caused by differential carotenoid content: whilst green aphids contain only yellow carotenoids (β-, γ-, and β,γ-carotenes), red aphids additionally possess red carotenoids (torulene and 3,4-didehydrolycopene). Unusually, within animals who typically obtain carotenoids from their diet, ancestral horizontal gene transfer of carotenoid biosynthetic genes from fungi (followed by gene duplication), have imbued aphids with the intrinsic gene repertoire necessary to biosynthesise carotenoids. In the pea aphid, Acyrthosiphon pisum a lycopene (phytoene) desaturase gene (Tor) underpins the red/green phenotype, with this locus present in heterozygous form in red individuals but absent in green aphids, resulting in them being unable to convert lycopene into the red compounds 3,4-didehydrolycopene and torulene. The green peach aphid, Myzus persicae, separated from the pea aphid for ≈45MY also exists as distinct colour variable morphs, with both red and green individuals present. Here, we examined genomic data for both red and green morphs of M. persicae and identified an enlarged (compared to A. pisum) repertoire of 16 carotenoid biosynthetic genes (11 carotenoid desaturases and five carotenoid cyclase/synthase genes). From these, we identify the homolog of A. pisum Tor (here called carotene desaturase 2 or CDE-2) and show through 3D modelling that this homolog can accommodate the torulene precursor lycopene and, through RNA knockdown feeding experiments, demonstrate that disabling CDE-2 expression in red M. persicae clones results in green-coloured offspring. Unlike in A. pisum, we show that functional CDE-2 is present in the genomes of both red and green aphids. However, expression differences between the two colour morphs (350-700 fold CDE-2 overexpression in red clones), potentially driven by variants identified in upstream putative regulatory elements, underpin this phenotype. Thus, whilst aphids have a common origin of their carotenoid biosynthetic pathway, two aphid species separated for over 40MY have evolved very different drivers of intraspecific colour variation.
Collapse
Affiliation(s)
- Nasser Trissi
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Bartlomiej J Troczka
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Luke Ozsanlav-Harris
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Mark Mallott
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | | | - Andrias O'Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| | - Craig S Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
4
|
Abstract
AbstractTrade-offs and constraints are inherent to life, and studies of these phenomena play a central role in both organismal and evolutionary biology. Trade-offs can be defined, categorized, and studied in at least six, not mutually exclusive, ways. (1) Allocation constraints are caused by a limited resource (e.g., energy, time, space, essential nutrients), such that increasing allocation to one component necessarily requires a decrease in another (if only two components are involved, this is referred to as the Y-model, e.g., energy devoted to size versus number of offspring). (2) Functional conflicts occur when features that enhance performance of one task decrease performance of another (e.g., relative lengths of in-levers and out-levers, force-velocity trade-offs related to muscle fiber type composition). (3) Shared biochemical pathways, often involving integrator molecules (e.g., hormones, neurotransmitters, transcription factors), can simultaneously affect multiple traits, with some effects being beneficial for one or more components of Darwinian fitness (e.g., survival, age at first reproduction, fecundity) and others detrimental. (4) Antagonistic pleiotropy describes genetic variants that increase one component of fitness (or a lower-level trait) while simultaneously decreasing another. (5) Ecological circumstances (or selective regime) may impose trade-offs, such as when foraging behavior increases energy availability yet also decreases survival. (6) Sexual selection may lead to the elaboration of (usually male) secondary sexual characters that improve mating success but handicap survival and/or impose energetic costs that reduce other fitness components. Empirical studies of trade-offs often search for negative correlations between two traits that are the expected outcomes of the trade-offs, but this will generally be inadequate if more than two traits are involved and especially for complex physiological networks of interacting traits. Moreover, trade-offs often occur only in populations that are experiencing harsh environmental conditions or energetic challenges at the extremes of phenotypic distributions, such as among individuals or species that have exceptional athletic abilities. Trade-offs may be (partially) circumvented through various compensatory mechanisms, depending on the timescale involved, ranging from acute to evolutionary. Going forward, a pluralistic view of trade-offs and constraints, combined with integrative analyses that cross levels of biological organization and traditional boundaries among disciplines, will enhance the study of evolutionary organismal biology.
Collapse
|
5
|
Li C, Yuan W, Gou Y, Zhang K, Zhang Q, Zhou JJ, Liu C. The Impact of Ultraviolet-B Radiation on the Sugar Contents and Protective Enzymes in Acyrthosiphon pisum. INSECTS 2021; 12:1053. [PMID: 34940141 PMCID: PMC8708437 DOI: 10.3390/insects12121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Natural and anthropogenic changes have been altering many environmental factors. These include the amount of solar radiation reaching the Earth's surface. However, the effects of solar radiation on insect physiology have received little attention. As a pest for agriculture and horticulture, aphids are one of the most difficult pest groups to control due to their small size, high fecundity, and non-sexual reproduction. Study of the effects of UV-B radiation on aphid physiology may provide alternative control strategies in pest management. In this study, we examined the effects of UV-B radiation on protein and sugar contents, as well as the activities of protective enzymes, of the red and green morphs of the pea aphid over eight generations. The results indicated a significant interaction between UV-B radiation and aphid generations. Exposure of the pea aphids to UV-B radiation caused a significant decrease in the protein content and a significant increase in the glycogen and trehalose contents at each generation as measured in whole aphid bioassays. The enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of the pea aphids changed significantly at each generation with UV-B treatments. The SOD activity increased over eight generations to the highest level at G7 generation. However, the enzyme activity of CAT first increased and then decreased with UV-B treatments, and POD mostly gradually decreased over the eight generations. Therefore, UV-B radiation is an environmental factor that could result in physiological changes of the pea aphid. Moreover, our study discovered that red and green aphids did not display a significant consistent difference in the response to the UV-B treatments. These results may prove useful in future studies especially for assessing their significance in the adaptation and management against UV-B radiation.
Collapse
Affiliation(s)
- Chunchun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Weining Yuan
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Yuping Gou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Kexin Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Qiangyan Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Changzhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| |
Collapse
|
6
|
Li C, Sun Q, Gou Y, Zhang K, Zhang Q, Zhou JJ, Liu C. Long-Term Effect of Elevated CO 2 on the Development and Nutrition Contents of the Pea Aphid ( Acyrthosiphon pisum). Front Physiol 2021; 12:688220. [PMID: 34149461 PMCID: PMC8213344 DOI: 10.3389/fphys.2021.688220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
It is predicted that the current atmospheric CO2 level will be doubled by the end of this century. Here, we investigate the impacts of elevated CO2 (550 and 750 μL/L) on the development and nutrition status of the green pea aphid for six generations, which is longer than previous studies. All seven examined physiological parameters were not affected over six generations under the ambient CO2 level (380 μL/L). However, the elevated CO2 levels (550 and 750 μL/L) prolonged nymph duration, decreased adult longevity, female fecundity and protein content, and increased the contents of total lipid, soluble sugar and glycogen. There was a significant interaction between the effect of CO2 levels and the effect of generations on nymph duration, female fecundity and adult longevity. The elevated CO2 had immediate effects on the female fecundity and the contents of total protein, total lipid and soluble sugar, starting within F0 generation. The adult longevity decreased, and the glycogen content increased from the F1 generation. However, the significant effect on the nymph development was only observed after three generations. Our study indicates that the elevated CO2 levels first influence the reproduction, the nutrition and the energy supply, then initiate aphid emergency responses by shortening lifespan and increasing glucose metabolism, and finally result in the slow development under further persistent elevated CO2 conditions after three generations, possibly leading to population decline under elevated CO2 conditions. Our results will guide further field experiments under climate change conditions to evaluate the effects of elevated CO2 on the development of the pea aphids and other insects, and to predict the population dynamics of the green pea aphid.
Collapse
Affiliation(s)
- Chunchun Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Qian Sun
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Tougeron K, van Baaren J, Town J, Nordin D, Dumonceaux T, Wist T. Body-color plasticity of the English grain aphid in response to light in both laboratory and field conditions. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ding BY, Niu J, Shang F, Yang L, Zhang W, Smagghe G, Wang JJ. Parental silencing of a horizontally transferred carotenoid desaturase gene causes a reduction of red pigment and fitness in the pea aphid. PEST MANAGEMENT SCIENCE 2020; 76:2423-2433. [PMID: 32056367 DOI: 10.1002/ps.5783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aphids obtained carotenoid biosynthesis genes via horizontal gene transfers from fungi. However, the roles of these genes in the contributions of in aphids'adaptation and whether these genes could be used as RNAi-based pest control targets are not yet clear. Thus, in this study we used parental RNAi to analyze the potential function of a carotenoid desaturase gene (CdeB) by combined molecular and chemical approaches in the pea aphid (Acyrthosiphon pisum). RESULTS Transcriptional analyses showed that CdeB was significantly more highly expressed in the red morphs compared to the green ones and was associated with the production of red carotenoid. Co-transferring of pET28a-CdeB (the CdeB gene was cloned into pET28a) and pACCRT-EIB (produced lycopene) showed a deep red color in the bacterial precipitate and produced more of a red pigment, lycopene, in vitro. Parental gene-silencing of CdeB resulted in a lower body color intensity in the treated aphids and following generations in vivo. Interestingly, the dsCdeB treatment also reduced aphid performance as reflected by a delay in nymphal developmental duration, lower weight, smaller number, and altered age structure of the population. CONCLUSION Our results demonstrate that CdeB is involved in red color formation and the silencing of this gene by parental RNAi reduced fitness in the pea aphid. The results enhance our understanding of the biosynthesis of carotenoid in aphids and provide insights into the potential ecological significance of carotenoids in the adaptation of the aphid's biology to the environment and developing environmentally friendly control strategies for this pest.
Collapse
Affiliation(s)
- Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Wieczorek K, Kanturski M, Sempruch C, Świątek P. The reproductive system of the male and oviparous female of a model organism-the pea aphid, Acyrthosiphon pisum (Hemiptera, Aphididae). PeerJ 2019; 7:e7573. [PMID: 31534847 PMCID: PMC6727839 DOI: 10.7717/peerj.7573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
The structure of the reproductive system of the sexual generation-males and oviparous females-of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera, Aphididae), a serious pest of cultivated plants of Fabaceae, was investigated. For the first time we describe the morphology, histology and ultrastructure of the reproductive system in both morphs of the sexual generation of aphids within one species, using light and fluorescent microscopy, as well as transmission and scanning electron microscopy. The results revealed that males have testes composed of three follicles fused by the upper ends of the vasa efferentia, the vasa deferentia run independently, the accessory glands are asymmetric and the ejaculatory duct shortened. Oviparous females have ovaries composed of seven ovarioles each. The lateral oviducts join to a short common oviduct connected with the unpaired spermatheca and paired accessory glands. Yolky eggs with an aggregation of symbiotic bacteria at the posterior pole are produced. Histologically, the components of genital tracts are broadly similar: the epithelial cells of the walls of the vasa deferentia and accessory glands of the male and oviparous female have secretory functions which correlate with the age of the studied morphs. We also found symbiotic bacteria within the vasa deferentia epithelial cells in males and within the cells of the lateral oviducts of females. Because the pea aphid is listed among the 14 species that are of the greatest economic importance, our results will be useful for managing aphid populations, protecting plants and ensuring global food security.
Collapse
Affiliation(s)
- Karina Wieczorek
- Department of Zoology, University of Silesia in Katowice, Katowice, Poland
| | - Mariusz Kanturski
- Department of Zoology, University of Silesia in Katowice, Katowice, Poland
| | - Cezary Sempruch
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
10
|
Wang XX, Chen ZS, Feng ZJ, Zhu JY, Zhang Y, Liu TX. Starvation Stress Causes Body Color Change and Pigment Degradation in Acyrthosiphon pisum. Front Physiol 2019; 10:197. [PMID: 30890958 PMCID: PMC6412094 DOI: 10.3389/fphys.2019.00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/15/2019] [Indexed: 12/02/2022] Open
Abstract
The pea aphid, Acyrthosiphon pisum (Harris), shows body color shifting from red to pale under starvation in laboratory conditions. These body color changes reflect aphid’s adaptation to environmental stress. To understand the color-shifting patterns, the underlying mechanism and its biological or ecological functions, we measured the process of A. pisum’s body color shifting patterns using a digital imagery and analysis system; we conducted a series of biochemical experiments to determine the mechanism that causes color change and performed biochemical and molecular analyses of the energy reserves during the color shifting process. We found that the red morph of A. pisum could shift their body color to pale red, when starved; this change occurred rapidly at a certain stress threshold. Once A. pisum initiated the process, the shifting could not be stopped or reversed even after food was re-introduced. We also discovered that the orange-red pigments may be responsible for the color shift and that the shift might be caused by the degradation of these pigments. The carbohydrate and lipid content correlated to the fading of color in red A. pisum. A comparative analysis revealed that these reddish pigments might be used as backup energy. The fading of color reflects a reorganization of the energy reserves under nutritional stress in A. pisum; surprisingly, aphids with different body colors exhibit diverse strategies for storage and consumption of energy reserves.
Collapse
Affiliation(s)
- Xing-Xing Wang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China.,College of Horiculture, Northwest A&F University, Yangling, China
| | - Zhan-Sheng Chen
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhu-Jun Feng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jing-Yun Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yi Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Sun YX, Liu TX. Harmonia axyridis Does Not Have Obvious Fitness Gain and Preference to the Red Morph of Acyrthosiphon pisum: A Case Study on a Laboratory Strain. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Zhang Y, Wang XX, Zhu JY, Zhang ZF, Tian HG, Liu TX. Strategies used by two apterous strains of the pea aphid Acyrthosiphon pisum for passive dispersal. Biol Open 2016; 5:1535-1544. [PMID: 27628035 PMCID: PMC5087678 DOI: 10.1242/bio.018903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/11/2016] [Indexed: 11/20/2022] Open
Abstract
Wingless forms of aphids are relatively sedentary, and have a limited ability to migrate or disperse. However, they can drop off hosts or walk away if disturbed, or their food quality or quantity become deteriorated. Earlier, we found that the pea aphid, Acyrthosiphon pisum (Harris, 1776), could use differed strategies to escape danger and locate new host plants. To determine the mechanisms behind the different strategies, we undertook a series of studies including the aphids' host location, energy reserves under starvation, glycogenesis, sugar assimilation, olfactory and probing behaviors. We found that in our controlled laboratory conditions, one strain (local laboratory strain) moved longer distances and dispersed wider ranges, and correspondingly these aphids assimilated more sugars, synthesized more glycogen, and moved faster than another strain (collected from Gansu Province, northwestern China). However, the latter strain could locate the host faster, probed leaves more frequently, and identified plant leaves more accurately than the former strain after they were starved. Our results explained how flightless or wingless insects adapt to fit biotic and abiotic challenges in the complex processes of natural selection.
Collapse
Affiliation(s)
- Yi Zhang
- College of plant protection, State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing-Xing Wang
- College of plant protection, State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing-Yun Zhu
- College of plant protection, State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhan-Feng Zhang
- College of plant protection, State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong-Gang Tian
- College of plant protection, State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong-Xian Liu
- College of plant protection, State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Tsuchida T. Molecular basis and ecological relevance of aphid body colors. CURRENT OPINION IN INSECT SCIENCE 2016; 17:74-80. [PMID: 27720077 DOI: 10.1016/j.cois.2016.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Aphids are small phloem sap-feeding insects, and show color polymorphism even within the same species. Crossing experiments have revealed the inheritance pattern of the body color. Coloration of aphids is determined by mainly three pigments, melanin, carotenoid, and aphin, and is influenced by both abiotic and biotic environmental factors. Aphid body colors also seem to correspond with specific biological functions under various environments. Partly due to the presence of natural enemies in the environment, a variety of physiological and behavioral responses have evolved in each color form. Thus, predation is one of the most significant external factors for maintaining body color polymorphisms. In addition, endosymbiont infections also influence aphid body color and prey-predator interactions. However, many unsolved questions remain regarding the molecular basis for and biological functions of aphid body colors. Further work, including the development of molecular techniques for comprehensive functional analysis, is needed in these areas.
Collapse
Affiliation(s)
- Tsutomu Tsuchida
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-0887, Japan.
| |
Collapse
|
14
|
Mandrioli M, Rivi V, Nardelli A, Manicardi GC. Genomic and Cytogenetic Localization of the Carotenoid Genes in the Aphid Genome. Cytogenet Genome Res 2016; 149:207-217. [PMID: 27585067 DOI: 10.1159/000448669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Data published in the scientific literature suggests a possible link between chromosomal rearrangements involving autosomes 1 and 3 and the presence of red morphs in the peach-potato aphid Myzus persicae (Sulzer). In order to begin a study of this relationship, we analysed the genomic and chromosomal location of genes involved in carotenoid biosynthesis in M. persicae and the pea aphid, Acyrthosiphon pisum (Harris), since carotenoids are the basis of the colour in many aphid species. Genomic analysis identified a DNA sequence containing carotenoid genes in synteny between the 2 species. According to the results obtained using in situ PCR, carotenoid genes were located in a subterminal portion of autosome 1 in both species. The same localization has also been observed in the onion aphid Neotoxoptera formosana Takahashi that, as M. persicae and A. pisum, belongs to the tribe Macrosiphini, thereby suggesting a synteny of this chromosomal region in aphids. In situ PCR experiments performed on 2 M. persicae asexual lineages bearing heterozygous translocations involving autosomes 1 and 3 revealed that carotenoid genes were located within chromosomal portions involved in recurrent rearrangements. We also verified by bioinformatics analyses the presence of fragile sites that could explain these recurrent rearrangements in M. persicae.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | | |
Collapse
|
15
|
Watanabe S, Murakami T, Yoshimura J, Hasegawa E. Color polymorphism in an aphid is maintained by attending ants. SCIENCE ADVANCES 2016; 2:e1600606. [PMID: 27617289 PMCID: PMC5014468 DOI: 10.1126/sciadv.1600606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
The study of polymorphisms is particularly informative for enhancing our understanding of phenotypic and genetic diversity. The persistence of polymorphism in a population is generally explained by balancing selection. Color polymorphisms that are often found in many insects and arthropods are prime examples of the maintenance of polymorphisms via balancing selection. In some aphids, color morphs are maintained through frequency-dependent predation by two predatory insects. However, the presence of color polymorphism in ant-attended aphids cannot be explained by traditional balancing selection because these aphids are free from predation. We examined the selective advantages of the existence of two color (red and green) morphs in the ant-attended aphid, Macrosiphoniella yomogicola, in fields. We measured the degree of ant attendance on aphid colonies with different proportions of color morphs. The results show that the ants strongly favor aphid colonies with intermediate proportions of the two color morphs. The relationship between the degree of ant attendance and the proportion of color morphs in the field is convex when aphid colony size and ant colony size are controlled. This function has a peak of approximately 65% of green morphs in a colony. This system represents the first case of a balancing polymorphism that is not maintained by opposing factors but by a symbiotic relationship.
Collapse
Affiliation(s)
- Saori Watanabe
- Laboratory of Animal Ecology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Taiga Murakami
- Laboratory of Animal Ecology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Jin Yoshimura
- Graduate School of Science and Technology and Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Marine Biosystems Research Center, Chiba University, Uchiura, Kamogawa, Chiba 299-5502, Japan
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Eisuke Hasegawa
- Laboratory of Animal Ecology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
16
|
Qiu Z, Liu F, Lu H, Huang Y. Characterization and analysis of a de novo transcriptome from the pygmy grasshopper Tetrix japonica. Mol Ecol Resour 2016; 17:381-392. [PMID: 27288670 DOI: 10.1111/1755-0998.12553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 11/29/2022]
Abstract
The pygmy grasshopper Tetrix japonica is a common insect distributed throughout the world, and it has the potential for use in studies of body colour polymorphism, genomics and the biology of Tetrigoidea (Insecta: Orthoptera). However, limited biological information is available for this insect. Here, we conducted a de novo transcriptome study of adult and larval T. japonica to provide a better understanding of its gene expression and develop genomic resources for future work. We sequenced and explored the characteristics of the de novo transcriptome of T. japonica using Illumina HiSeq 2000 platform. A total of 107 608 206 paired-end clean reads were assembled into 61 141 unigenes using the trinity software; the mean unigene size was 771 bp, and the N50 length was 1238 bp. A total of 29 225 unigenes were functionally annotated to the NCBI nonredundant protein sequences (Nr), NCBI nonredundant nucleotide sequences (Nt), a manually annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of putative genes that are potentially involved in pigment pathways, juvenile hormone (JH) metabolism and signalling pathways were identified in the T. japonica transcriptome. Additionally, 165 769 and 156 796 putative single nucleotide polymorphisms occurred in the adult and larvae transcriptomes, respectively, and a total of 3162 simple sequence repeats were detected in this assembly. This comprehensive transcriptomic data for T. japonica will provide a usable resource for gene predictions, signalling pathway investigations and molecular marker development for this species and other pygmy grasshoppers.
Collapse
Affiliation(s)
- Zhongying Qiu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Fei Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.,College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi'an, 710061, China
| | - Huimeng Lu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
17
|
Mullen SP, Shaw KL. Insect speciation rules: unifying concepts in speciation research. ANNUAL REVIEW OF ENTOMOLOGY 2013; 59:339-361. [PMID: 24160421 DOI: 10.1146/annurev-ento-120710-100621] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The study of speciation is concerned with understanding the connection between causes of divergent evolution and the origin and maintenance of barriers to gene exchange between incipient species. Although the field has historically focused either on examples of recent divergence and its causes or on the genetic basis of reproductive isolation between already divergent species, current efforts seek to unify these two approaches. Here we integrate these perspectives through a discussion of recent progress in several insect speciation model systems. We focus on the evolution of speciation phenotypes in each system (i.e., those phenotypes causally involved in reducing gene flow between incipient species), drawing an explicit connection between cause and effect (process and pattern). We emphasize emerging insights into the genomic architecture of speciation as well as timely areas for future research.
Collapse
Affiliation(s)
- Sean P Mullen
- Department of Biology, Boston University, Boston, Massachusetts 02215;
| | | |
Collapse
|
18
|
Balog A. Jumping-ship can have its costs: implications of predation and host plant species for the maintenance of pea aphid (Acyrthosiphon pisum Harris) colour polymorphism. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:578-583. [PMID: 23601915 DOI: 10.1017/s0007485313000217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interplay between the host plant of an insect herbivore and an insect predator (here two-spot ladybird beetles; Adalia bipunctata (L).; Coleoptera: Coccinellidae), feeding upon such a herbivore was examined in the laboratory as factors possibly determining the differential abundance and success of green and red host races of pea aphid, Acyrthosiphon pisum Harris. The experiment comprised three treatments: two host plants (bean and clover), two treatment levels (control and predation) and three colour morph levels (green alone, red alone and green and red in mixture). Green morphs had higher fitness on the general host plant, bean Vicia faba, than on the derived host, clover (Trifolium pratense), in the absence of predation. Although green morph fitness was reduced by predation when infesting bean together with reds, there was no observable net fitness loss due to predation on clover in mixed colonies with red morphs. Red morphs exhibited fitness loss alone on both bean and clover, while clover plants seemingly prevented fitness loss in the presence of predation when red morphs were mixed with green ones. According to this scenario, when colour morphs existed as a mixed colony, the net fitness of either pea aphid morph was not influenced by predation on clover. Predators had significant effects only on red morphs on broad bean either when alone or were mixed together with green morphs. Thus, only red morphs experienced the benefits of switching from the general to the derived host red clover in the presence of predation. For green morphs, there was no apparent cost of switching host plants when they faced predation. Hence, the co-existence of green-red colour polymorphism of pea aphids on single host plants appears to be maintained by the morph gaining fitness on the derived host due to a host plant– and predation–reduction effect. These findings have important implications for understanding the ecology and evolution of host switching by different colour-plant host adapted races of pea aphids
Collapse
Affiliation(s)
- Adalbert Balog
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
19
|
Tabadkani SM, Ahsaei SM, Hosseininaveh V, Nozari J. Food stress prompts dispersal behavior in apterous pea aphids: do activated aphids incur energy loss? Physiol Behav 2013; 110-111:221-5. [PMID: 23262143 DOI: 10.1016/j.physbeh.2012.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/12/2012] [Indexed: 11/26/2022]
Abstract
The pea aphid, Acyrthosiphon pisum (Hem: Aphididae), has been repeatedly used as a model species in a wide range of biological studies including genetics, ecology, physiology, and behavior. When red pea aphids feed on low quality plants in crowded conditions, some individuals lose their color shade and become pale yellowish, while other individuals on the same host plants remain changeless. The pale aphids have been shown to walk significantly faster and migrate more frequently to neighboring plants compared to the original red ones. We hypothesized that the color change and higher activity of pale aphids are directly associated with their suboptimal nutritional status. We showed that the pale aphids have significantly lower wet and dry weights than red ones. Analyses of energy reserves in individual aphids revealed that the pale aphids suffer a significant loss in their lipid and soluble carbohydrate contents. Our results provide a strong link between host quality, body color, dispersal rate, and energy reserves of pea aphids. Apparently, utilization of energy reserves resulted from an imbalance in food sources received by the aphids stimulates them to walk more actively to find new hosts and restore their lost energy. This reversible shift enables aphids to quickly respond to deprived host plants much earlier than the appearance of winged morph and restore their original status when they find appropriate host.
Collapse
Affiliation(s)
- Seyed Mohammad Tabadkani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | | | | |
Collapse
|