1
|
Salman Hameed M, Ren Y, Tuda M, Basit A, Urooj N. Role of Argonaute proteins in RNAi pathway in Plutella xylostella: A review. Gene 2024; 903:148195. [PMID: 38295911 DOI: 10.1016/j.gene.2024.148195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Argonaute (Ago) proteins act as key elements in RNA interference (RNAi) pathway, orchestrating the intricate machinery of gene regulation within eukaryotic cells. Within the RNAi pathway, small RNA molecules, including microRNA (miRNA), small interfering RNA (siRNA), and PIWI-interacting RNA (piRNA), collaborate with Ago family member proteins such as Ago1, Ago2, and Ago3 to form the RNA-induced silencing complex (RISC). This RISC complex, in turn, either cleaves the target mRNA or inhibits the process of protein translation. The precise contributions of Ago proteins have been well-established in numerous animals and plants, although they still remain unclear in some insect species. This review aims to shed light on the specific roles played by Ago proteins within the RNAi mechanism in a destructive lepidopteran pest, the diamondback moth (Plutella xylostella). Furthermore, we explore the potential of double-stranded RNA (dsRNA)-mediated RNAi as a robust genetic tool in pest management strategies. Through an in-depth examination of Ago proteins and dsRNA-mediated RNAi, this review seeks to contribute to our understanding of innovative approaches for controlling this pest and potentially other insect species of agricultural significance.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Yanliang Ren
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Abdul Basit
- Institute of Entomology, Guizhou University Guiyang 550025, Guizhou China
| | - Nida Urooj
- Department of Business Administrative, Bahaudin Zakriya University, Multan, Pakistan
| |
Collapse
|
2
|
Mon H, Sato M, Lee JM, Kusakabe T. Construction of gene co-expression networks in cultured silkworm cells and identification of previously uncharacterized lepidopteran-specific genes required for chromosome dynamics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103875. [PMID: 36410580 DOI: 10.1016/j.ibmb.2022.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Advances in sequencing technology and bioinformatics have accelerated gene discovery and homology-based functional annotation in many species, and numerous targeted gene studies have greatly expanded the understanding of gene functions. Nevertheless, there are still many genes that lack homology with genes in other evolutionary lineages and are left as genes with unknown functions. We constructed a gene co-expression network from the Bombyx mori ovary-derived cell line, BmN4, and attempted to infer the biological roles of uncharacterized genes based on the correlation between the function-known and unknown genes. Within this network, we focused on the co-expression modules involved in chromosome architecture, dynamics, and integrity, and selected the uncharacterized genes for subsequent RNAi-based phenotypic screening. This approach enabled the identification of 5 genes whose knockdown led to abnormalities in chromosome dynamics and spindle morphology in mitosis. One of them was a recently characterized gene, BmCenp-T, which plays a central role in building the kinetochore protein complex on the silkworm holocentric chromosomes. In this study, we suggest a method for constructing the gene co-expression network and selecting candidate genes for small-scale RNAi screening. This approach is complementary to homology-based annotation and may be useful for the analysis of lineage-specific uncharacterized genes such as orphan genes.
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Sato
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Enhanced Myc Expression in Silkworm Silk Gland Promotes DNA Replication and Silk Production. INSECTS 2021; 12:insects12040361. [PMID: 33919579 PMCID: PMC8073660 DOI: 10.3390/insects12040361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Based on a transgenic approach, enhancing Myc expression in the silkworm posterior silk gland (PSG), which was driven by the promoter of the fibroin heavy chain (FibH) gene, was performed for investigating the biological functions of Myc in silk gland. Enhanced Myc expression elevated the cocoon size. This elevation might be resulted from the increasing of FibH expression and DNA content in the PSG cells by promoting the transcription of the genes that are involved in DNA replication. Abstract Silkworm is an economically important insect that synthetizes silk proteins for silk production in silk gland, and silk gland cells undergo endoreplication during larval period. Transcription factor Myc is essential for cell growth and proliferation. Although silkworm Myc gene has been identified previously, its biological functions in silkworm silk gland are still largely unknown. In this study, we examined whether enhanced Myc expression in silk gland could facilitate cell growth and silk production. Based on a transgenic approach, Myc was driven by the promoter of the fibroin heavy chain (FibH) gene to be successfully overexpressed in posterior silk gland. Enhanced Myc expression in the PSG elevated FibH expression by about 20% compared to the control, and also increased the weight and shell rate of the cocoon shell. Further investigation confirmed that Myc overexpression increased nucleus size and DNA content of the PSG cells by promoting the transcription of the genes involved in DNA replication. Therefore, we conclude that enhanced Myc expression promotes DNA replication and silk protein expression in endoreplicating silk gland cells, which subsequently raises silk yield.
Collapse
|
4
|
You L, Zhang F, Huang S, Merchant A, Zhou X, Li Z. Over-expression of RNA interference (RNAi) core machinery improves susceptibility to RNAi in silkworm larvae. INSECT MOLECULAR BIOLOGY 2020; 29:353-362. [PMID: 32086963 DOI: 10.1111/imb.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/18/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
RNA interference (RNAi), one of the strategies that organisms use to defend against invading viruses, is an important tool for functional genomic analysis. In insects, the efficacy of RNAi varies amongst taxa. Lepidopteran insects are, in large part, recalcitrant to RNAi. The overall goal of this study is to overcome such insensitivity in lepidopterans to RNAi. We hypothesize that over-expression of core RNAi machinery enzymes can improve RNAi efficacy in traditionally recalcitrant species. A transgenic Bombyx mori strain, Baculovirus Immediate-Early Gene, ie1, promoter driven expression of silkworm Dicer2 coding sequence (IE1-BmDicer2), which over-expresses BmDicer2, was generated by piggyBac transposon-mediated transgenesis. Two indexes, the ratio of animals that showed a silencing phenotype and the duration of silencing, were used to evaluate silencing efficiency. Significant knockdown of target gene expression was observed at 48 h postinjection at both the transcriptional and translational levels. Furthermore, we coexpressed B. mori Argonaute 2 BmAgo2)and BmDicer 2 and found that 22% of the animals (n = 18) showed an obvious silencing effect even at 72 h, suggesting that coexpression of these two RNAi core machinery enzymes further increased the susceptibility of B. mori to injected double-stranded RNAs. This study offers a new strategy for functional genomics research in RNAi-refractory insect taxa in general and for lepidopterans in particular.
Collapse
Affiliation(s)
- L You
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - F Zhang
- School of Life Science, Shanghai University, Shanghai, China
| | - S Huang
- Agricultrual and Medical Biotechnology, University of Kentucky, Lexington, KY, USA
| | - A Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - X Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Z Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Wang P, Qian W, Wang W, Guo M, Xia Q, Cheng D. Identification and Characterization of the Anillin Gene in Silkworm. DNA Cell Biol 2019; 38:532-540. [PMID: 30985224 DOI: 10.1089/dna.2019.4660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anillin is an actin binding protein and plays crucial roles during mitotic cell cycle progression in metazoan. However, the sequence and functions of the Anillin gene have not been yet characterized in the silkworm, Bombyx mori. In this study, we cloned the full-length cDNA sequence of the silkworm Anillin (BmAnillin) gene. The deduced amino acid sequence for BmAnillin protein comprises an Anillin homology region (AHR) covering an Anillin homology domain and a pleckstrin homology domain. Phylogenetic analysis and multiple alignments of the Anillin genes from silkworm and other organisms indicated evolutionary conservation in the AHR containing conserved phosphorylation sites. Reverse transcription-PCR experiments confirmed that the BmAnillin gene was highly expressed during larval development of gonads in which cells undergo mitotic cycles and exhibited an unexpected high expression in silk gland with endocycle during larval molting. RNA interference-mediated knockdown of the BmAnillin gene in silkworm BmN4-SID1 cells derived from ovary disrupted chromosome separation and resulted in a loss of the F-actin filament at cleavage furrow during anaphase, suggesting that the BmAnillin gene is essential for cytokinesis in silkworm.
Collapse
Affiliation(s)
- Peng Wang
- 1 State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wenliang Qian
- 1 State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Weina Wang
- 1 State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Mengpei Guo
- 1 State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- 1 State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,2 Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Daojun Cheng
- 1 State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,2 Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
7
|
Moriyama M, Osanai K, Ohyoshi T, Wang HB, Iwanaga M, Kawasaki H. Ecdysteroid promotes cell cycle progression in the Bombyx wing disc through activation of c-Myc. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:1-9. [PMID: 26696544 DOI: 10.1016/j.ibmb.2015.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Developmental switching from growth to metamorphosis in imaginal primordia is an essential process of adult body planning in holometabolous insects. Although it is disciplined by a sequential action of the ecdysteroid, molecular mechanisms linking to cell proliferation are poorly understood. In the present study, we investigated the expression control of cell cycle-related genes by the ecdysteroid using the wing disc of the final-instar larvae of the silkworm, Bombyx mori. We found that the expression level of c-myc was remarkably elevated in the post-feeding cell proliferation phase, which coincided with a small increase in ecdysteroid titer. An in vitro wing disc culture showed that supplementation of the moderate level of the ecdysteroid upregulated c-myc expression within an hour and subsequently increased the expression of cell cycle core regulators, including A-, B-, D-, and E-type cyclin genes, Cdc25 and E2F1. We demonstrated that c-myc upregulation by the ecdysteroid was not inhibited in the presence of a protein synthesis inhibitor, suggesting a possibility that the ecdysteroid directly stimulates c-myc expression. Finally, results from the administration of a c-Myc inhibitor demonstrated that c-Myc plays an essential role in 20E-inducible cell proliferation. These findings suggested a novel pathway for ecdysteroid-inducible cell proliferation in insects, and it is likely to be conserved between insects and mammals in terms of steroid hormone regulation.
Collapse
Affiliation(s)
- Minoru Moriyama
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Kohji Osanai
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Tomokazu Ohyoshi
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Masashi Iwanaga
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
8
|
Zhu L, Mon H, Xu J, Lee JM, Kusakabe T. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Sci Rep 2015; 5:18103. [PMID: 26657947 PMCID: PMC4674802 DOI: 10.1038/srep18103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 01/16/2023] Open
Abstract
Gene targeting can be achieved by precise genetic modifications through homology-directed repair (HDR) after DNA breaks introduced by genome editing tools such as CRISPR/Cas9 system. The most common form of HDR is homologous recombination (HR). Binding to the DNA breaks by HR factors is thought to compete with non-homologous end joining (NHEJ), an alternative DNA repair pathway. Here, we knocked out the factors in NHEJ by CRISPR/Cas9 system in silkworm cells, so that increased the activities of HR up to 7-fold. Also efficient HR-mediated genome editing events occurred between the chromosomal BmTUDOR-SN gene and donor DNA sequences with an EGFP gene in the middle of two homologous arms for the target gene. Utilizing the NHEJ-deficient silkworm cells, we found that homologous arms as short as 100 bp in donor DNA could be designed to perform precise genome editing. These studies should greatly accelerate investigations into genome editing of silkworm.
Collapse
Affiliation(s)
- Li Zhu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
9
|
Zhu L, Tatsuke T, Xu J, Li Z, Mon H, Lee JM, Kusakabe T. Loqs depends on R2D2 to localize in D2 body-like granules and functions in RNAi pathways in silkworm cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:78-90. [PMID: 26184783 DOI: 10.1016/j.ibmb.2015.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/03/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
The phenomenon of RNA interference (RNAi) has been found in various organisms. However, the proteins implicated in RNAi pathway in different species show distinct roles. Knowledge on the underlying mechanism of lepidopteron RNAi is quite lacking such as the roles of Loquacious (Loqs) and R2D2, the dsRNA-binding proteins in silkworm RNAi pathway. Here, we report that Loqs and R2D2 protein depletion affected efficiency of dsRNA-mediated RNAi pathway. Besides, Loqs was found to co-localize with Dicer2 to some specific cytoplasmic foci, which were looked like D2-bodies marked by R2D2 and Dicer2 in Fly cells, thereby calling the foci as D2 body-like granules. Using RNAi methods, Loqs was found to be the key protein in these granules, although R2D2 determined the localization of Loqs in D2 body-like granules. Interestingly, in the R2D2-depeted silkworm cells, the formation of processing bodies, another cytoplasmic foci, was affected. These data indicated R2D2 regulated these two kinds of cytoplasmic foci. Domain deletion analysis demonstrated that dsRBD 1 and 2 were required for Loqs in D2 body-like granules and dsRBD 2 and 3 were required for Loqs to interact with R2D2 and Ago1, respectively. Altogether, our observations provide important information for further study on D2 body-like granules, the newly found cytoplasmic foci in silkworm cells.
Collapse
Affiliation(s)
- Li Zhu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Tsuneyuki Tatsuke
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Jian Xu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Hiroaki Mon
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan.
| |
Collapse
|
10
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
11
|
Kolliopoulou A, Swevers L. Recent progress in RNAi research in Lepidoptera: intracellular machinery, antiviral immune response and prospects for insect pest control. CURRENT OPINION IN INSECT SCIENCE 2014; 6:28-34. [PMID: 0 DOI: 10.1016/j.cois.2014.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 05/03/2023]
|
12
|
Cell cycle-dependent recruitment of polycomb proteins to the ASNS promoter counteracts C/ebp-mediated transcriptional activation in Bombyx mori. PLoS One 2013; 8:e52320. [PMID: 23382816 PMCID: PMC3557315 DOI: 10.1371/journal.pone.0052320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/16/2012] [Indexed: 01/05/2023] Open
Abstract
Epigenetic modifiers and transcription factors contribute to developmentally programmed gene expression. Here, we establish a functional link between epigenetic regulation by Polycomb group (PcG) proteins and transcriptional regulation by C/ebp that orchestrates the correct expression of Bombyx mori asparagine synthetase (BmASNS), a gene involved in the biosynthesis of asparagine. We show that the cis-regulatory elements of YY1-binding motifs and the CpG island present on the BmASNS promoter are required for the recruitment of PcG proteins and the subsequent deposition of the epigenetic repression mark H3K27me3. RNAi-mediated knockdown of PcG genes leads to derepression of the BmASNS gene via the recruitment of activators, including BmC/ebp, to the promoter. Intriguingly, we find that PcG proteins and BmC/ebp can dynamically modulate the transcriptional output of the BmASNS target in a cell cycle-dependent manner. It will be essential to suppress BmASNS expression by PcG proteins at the G2/M phase of the cell cycle in the presence of BmC/ebp activator. Thus, our results provide a novel insight into the molecular mechanism underlying the recruitment and regulation of the PcG system at a discrete gene locus in Bombyx mori.
Collapse
|