1
|
Herdiana Y, Sriwidodo S, Sofian FF, Wilar G, Diantini A. Nanoparticle-Based Antioxidants in Stress Signaling and Programmed Cell Death in Breast Cancer Treatment. Molecules 2023; 28:5305. [PMID: 37513179 PMCID: PMC10384004 DOI: 10.3390/molecules28145305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is a complex and heterogeneous disease, and oxidative stress is a hallmark of BC. Oxidative stress is characterized by an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense mechanisms. ROS has been implicated in BC development and progression by inducing DNA damage, inflammation, and angiogenesis. Antioxidants have been shown to scavenge ROS and protect cells from oxidative damage, thereby regulating signaling pathways involved in cell growth, survival, and death. Plants contain antioxidants like ascorbic acid, tocopherols, carotenoids, and flavonoids, which have been found to regulate stress signaling and PCD in BC. Combining different antioxidants has shown promise in enhancing the effectiveness of BC treatment. Antioxidant nanoparticles, when loaded with antioxidants, can effectively target breast cancer cells and enhance their cellular uptake. Notably, these nanoparticles have shown promising results in inducing PCD and sensitizing breast cancer cells to chemotherapy, even in cases where resistance is observed. This review aims to explore how nanotechnology can modulate stress signaling and PCD in breast cancer. By summarizing current research, it underscores the potential of nanotechnology in enhancing antioxidant properties for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ferry Ferdiansyah Sofian
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
2
|
Said YM, El-Gamel NEA, Ali SA, Mohamed AF. Evaluation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Conditioning Medium (hWJ-MSCs-CM) or Scorpion Venom Breast Cancer Cell Line In Vitro. J Gastrointest Cancer 2022; 53:888-901. [PMID: 34988906 DOI: 10.1007/s12029-021-00762-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The present study aimed to evaluate the anticancer potential of Egyptian scorpion Leiurus quinquestriatus venom (ScV) or human Wharton's jelly-derived mesenchymal stem cells conditioning medium (hWJ-MSCs-CM)/CM against breast cancer (MCF-7) cell line as an alternative effective cancer biotherapy. METHODS Venom (ScV) toxicity was performed recording concentration-dependent viability % and ScV IC50 value was in the order of 100 μg/ml. MCF-7 were treated with hWJ-MSCs-CM used as (25%, 50%, and 75% ml) or the IC50 of ScV. Apoptotic activity was traced via evaluation the apoptotic (Bax, Casp-3, and Casp-9) and anti-apoptotic genes (Bcl2, ALDOA, and PKM2) profile. RESULTS Both Bax and Casp-3 showed a significant upregulation while anti-apoptotic genes were significantly downregulated. In the meantime, Casp-3 and Casp-9 protein were monitored using ELISA, and their level was less than in control. Additionally, MCF-7 apoptosis was monitored using flow cytometry recording a significant DNA accumulation in the G0-G1 and S phases in case of cell treatment with ScV or CM75% ml and 50% ml. Also, there was a significant total necrotic cells % compared with control cells, and total apoptosis under the effect of ScV or CM75% ml was significantly elevated than rest of treatment. CONCLUSION Apoptosis induction was both dose- and time-dependent for hWJ-MSCs-CM and ScV. According to the present study and other studies, there is an ample evidence that hWJ-MSCs-CM and the venom IC50 abolish tumor growth.
Collapse
Affiliation(s)
| | - Nadia E A El-Gamel
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| | - Said A Ali
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Aly Fahmy Mohamed
- The International Center for Advanced Researches (ICTAR), Giza, Egypt
| |
Collapse
|
3
|
Cardile V, Avola R, Graziano ACE, Russo A. Moscatilin, a bibenzyl derivative from the orchid Dendrobium loddigesii, induces apoptosis in melanoma cells. Chem Biol Interact 2020; 323:109075. [PMID: 32229109 DOI: 10.1016/j.cbi.2020.109075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
The use of orchids in herbal medicine has a very long history. Dendrobium species are known to produce a variety of secondary metabolites such as phenanthrens, bibenzyls, fluorenones and sesquiterpenes, and alkaloids and are responsible for their wide variety of medicinal properties. For decades, bibenzyls, which are the main bioactive components derived from Dendrobium species, have been subjected to extensive investigation as likely candidates for cancer treatment. The present study was undertaken to investigate the effect of moscatilin, a bibenzyl derivative from the orchid Dendrobium loddigesii on human melanoma cells. In A375 cells compound moscatilin showed a clear dose-response relationship in the range of 6.25-50 μM concentrations. In addition, we demonstrated an apoptotic response after treatment of cancer cells with this bibenzyl compound at 6.25 and 12.5 μM concentrations that probably involves PTEN activity, inhibition of Hsp70 expression and reactive oxygen species production. Alternatively, the inhibition of the caspase cascade at higher concentrations, 25 and 50 μM, correlated with additional reactive oxygen species increase, probably switched the mode of moscatilin-induced cell death from apoptosis to necrosis.
Collapse
Affiliation(s)
- Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 89, 95123, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 89, 95123, Catania, Italy
| | - Adriana C E Graziano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 89, 95123, Catania, Italy
| | - Alessandra Russo
- Department of Drug Sciences, University of Catania, Via S. Sofia 64, 95125, Catania, Italy.
| |
Collapse
|
4
|
Mariotto E, Viola G, Zanon C, Aveic S. A BAG's life: Every connection matters in cancer. Pharmacol Ther 2020; 209:107498. [PMID: 32001313 DOI: 10.1016/j.pharmthera.2020.107498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
The members of the BCL-2 associated athanogene (BAG) family participate in the regulation of a variety of interrelated physiological processes, such as autophagy, apoptosis, and protein homeostasis. Under normal circumstances, the six BAG members described in mammals (BAG1-6) principally assist the 70 kDa heat-shock protein (HSP70) in protein folding; however, their role as oncogenes is becoming increasingly evident. Deregulation of the BAG multigene family has been associated with cell transformation, tumor recurrence, and drug resistance. In addition to BAG overexpression, BAG members are also involved in many oncogenic protein-protein interactions (PPIs). As such, either the inhibition of overloading BAGs or of specific BAG-client protein interactions could have paramount therapeutic value. In this review, we will examine the role of each BAG family member in different malignancies, focusing on their modular structure, which enables interaction with a variety of proteins to exert their pro-tumorigenic role. Lastly, critical remarks on the unmet needs for proposing effective BAG inhibitors will be pointed out.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy.
| | - Giampietro Viola
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| |
Collapse
|
5
|
Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS Chem Biol 2019; 14:2335-2348. [PMID: 31260254 PMCID: PMC6858495 DOI: 10.1021/acschembio.9b00338] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 (PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted anticancer strategy.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| |
Collapse
|
6
|
Than VT, Tran HTT, Ly DV, Dang HV, Nguyen MN, Truong AD. Bioinformatic identification and expression analysis of the chicken B cell lymphoma (BCL) gene. Genes Genomics 2019; 41:1195-1206. [PMID: 31313104 DOI: 10.1007/s13258-019-00849-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/03/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND B cell lymphoma (BCL) families play an important role in apoptosis as a growth factor, cell death programming, cytokine expression and immune-related genes expression. OBJECTIVES In this study, to investigate the roles of BCLs, we performed genome-wide identification, expression and functional analyses of the BCL family in chicken. METHODS Chicken BCLs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the BCLs genes in different chicken tissues were obtained from the genome-wide RNA-seq in the GEO, and Cluster and Java Treeview, respectively. RESULTS A total of 16 BCLs genes were identified from the chicken genome, which could be further classified into five distinct groups in the phylogenetic tree. On the other hand, the interaction among BCLs proteins and between BCLs proteins with NF-κB subunits are limited, indicating that the remaining the functions of BCLs protein could be investigated in chicken. Moreover, KEGG pathway analysis indicated that BCL gene family was involved in regulation of apoptotic and immune response. Finally, BCL gene family was differentially expressed in chicken tissues, pathogen infection and growth stages of early chicken early embryo. CONCLUSION This study provides significant insights into the potential functions of BCLs in chicken, including the regulation of apoptosis, cell death and expression of immune-related genes.
Collapse
Affiliation(s)
- Van Thai Than
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam.
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Duc Viet Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Minh Nam Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam.
| |
Collapse
|
7
|
Oudenaarden CRL, van de Ven RAH, Derksen PWB. Re-inforcing the cell death army in the fight against breast cancer. J Cell Sci 2018; 131:131/16/jcs212563. [DOI: 10.1242/jcs.212563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT
Metastatic breast cancer is responsible for most breast cancer-related deaths. Disseminated cancer cells have developed an intrinsic ability to resist anchorage-dependent apoptosis (anoikis). Anoikis is caused by the absence of cellular adhesion, a process that underpins lumen formation and maintenance during mammary gland development and homeostasis. In healthy cells, anoikis is mostly governed by B-cell lymphoma-2 (BCL2) protein family members. Metastatic cancer cells, however, have often developed autocrine BCL2-dependent resistance mechanisms to counteract anoikis. In this Review, we discuss how a pro-apoptotic subgroup of the BCL2 protein family, known as the BH3-only proteins, controls apoptosis and anoikis during mammary gland homeostasis and to what extent their inhibition confers tumor suppressive functions in metastatic breast cancer. Specifically, the role of the two pro-apoptotic BH3-only proteins BCL2-modifying factor (BMF) and BCL2-interacting mediator of cell death (BIM) will be discussed here. We assess current developments in treatment that focus on mimicking the function of the BH3-only proteins to induce apoptosis, and consider their applicability to restore normal apoptotic responses in anchorage-independent disseminating tumor cells.
Collapse
Affiliation(s)
- Clara R. L. Oudenaarden
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Lund University, Department of Experimental Oncology, Scheelevägen 2, 22363 Lund, Sweden
| | - Robert A. H. van de Ven
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Harvard Medical School, Department of Cell Biology, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Patrick W. B. Derksen
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| |
Collapse
|
8
|
Molina AS, Duprat Neto JP, Bertolli E, da Cunha IW, Fregnani JHTG, Figueiredo PHM, Soares FA, Macedo MP, Pinto Lopes CA, de Abranches Oliveira Santos Filho ID. Relapse in dermatofibrosarcoma protuberans: A histological and molecular analysis. J Surg Oncol 2018; 117:845-850. [PMID: 29509956 DOI: 10.1002/jso.25039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/09/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Dermatofibrosarcoma protuberans (DFSP) is a rare low grade tumor with a locally aggressive behavior and low metastatic potential. OBJECTIVES To evaluate the factors that are associated with relapse in DFSP. Methods Retrospective analysis of medical records from 61 patients with dermatofibrosarcoma. Fluorescence in situ hybridization was used to detect translocations. RESULTS Of 61 patients, 6 experienced a relapse. No patient with resection margins greater than 3 cm had a recurrence. One relapse was observed in a patient treated with at least 2 cm margins and 4 relapses occurred in 16 patients whose margins were below 2 cm (P = 0.018). The frequency of translocations was 77.8%. The recurrence rate was lower in patients with translocation, but this difference was not significant. Immunohistochemical markers did not correlate with recurrence rates, but greater FasL expression was associated with recurrence in patients with margins smaller than 3 cm. CONCLUSIONS Surgical margins smaller than than 2 cm are related to higher recurrences in dermatofibrosarcomas. In this analysis a 2 cm margin was acceptable for treatment. Between all the immunohistochemical markers analyzed, only FasL was associated with a higher recurrence rate in patients with margins smaller than 3 cm.
Collapse
Affiliation(s)
- André S Molina
- Skin Cancer Department, AC Camargo Cancer Hospital, São Paulo, Brazil
| | | | - Eduardo Bertolli
- Skin Cancer Department, AC Camargo Cancer Hospital, São Paulo, Brazil
| | | | - José H T G Fregnani
- Research and Teaching Institute of Barretos Cancer Hospital, Barretos, Brazil
| | | | - Fernando A Soares
- Department of Pathology, AC Camargo Cancer Hospital, São Paulo, Brazil
| | - Mariana P Macedo
- Department of Pathology, AC Camargo Cancer Hospital, São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Arciero C, Somiari S, Shriver C, Brzeski H, Jordan R, Hu H, Ellsworth D, Somiari R. Functional Relationship and Gene Ontology Classification of Breast Cancer Biomarkers. Int J Biol Markers 2018. [DOI: 10.1177/172460080301800403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast cancer is a complex disease that still imposes a significant healthcare burden on women worldwide. The etiology of breast cancer is not known but significant advances have been made in the area of early detection and treatment. The advent of advanced molecular biology techniques, mapping of the human genome and availability of high throughput genomic and proteomic strategies opens up new opportunities and will potentially lead to the discovery of novel biomarkers for early detection and prognostication of breast cancer. Currently, many biomarkers, particularly the hormonal and epidermal growth factor receptors, are being utilized for breast cancer prognosis. Unfortunately, none of the biomarkers in use have sufficient diagnostic, prognostic and/or predictive power across all categories and stages of breast cancer. It is recognized that more useful information can be generated if tumors are interrogated with multiple markers. But choosing the right combination of biomarkers is challenging, because 1) multiple pathways are involved, 2) up to 62 genes and their protein products are potentially involved in breast cancer-related mechanisms and 3) the more markers evaluated, the more the time and cost involved. This review summarizes the current literature on selected biomarkers for breast cancer, discusses the functional relationships, and groups the selected genes based on a Gene Ontology™ classification.
Collapse
Affiliation(s)
- C. Arciero
- General Surgery Services, Walter Reed Army Medical Center, Washington DC
- Windber Research Institute, Windber PA - USA
| | | | - C.D. Shriver
- General Surgery Services, Walter Reed Army Medical Center, Washington DC
| | - H. Brzeski
- Windber Research Institute, Windber PA - USA
| | - R. Jordan
- Windber Research Institute, Windber PA - USA
| | - H. Hu
- Windber Research Institute, Windber PA - USA
| | | | | |
Collapse
|
10
|
Association of Casp3 microRNA Target Site (1049216) SNP With the Risk and Progress of Cervical Squamous Cell Carcinoma. Int J Gynecol Cancer 2018; 27:206-213. [PMID: 28114230 DOI: 10.1097/igc.0000000000000881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE In the present study, we investigated the relationship between the single-nucleotide polymorphism (SNP) of caspase-3 rs1049216 (C > T), a miRNA target site, and the risk and progression of cervical cancer. MATERIALS AND METHODS Using polymerase chain reaction-restriction fragment length polymorphism, we evaluated the genotype and distribution of caspase-3 rs1049216 in 515 patients with cervical squamous cell cancer and 415 controls. In additional experiments, we transfected luciferase reporter plasmids carrying T or C allele and/or miRNA mimics into the human cervical cell lines (HeLa and C-33A) to analyze its roles in the regulation of caspase-3 expression. By immunohistochemistry, the protein level of caspase-3 expression was examined in tumor tissues from 515 patients with cervical squamous cell cancer. RESULTS We found that the TT genotype of caspase-3 rs1049216 conferred a significantly decreased risk of cervical cancer (adjusted odds ratio, 0.35; 95% confidence interval, 0.154-0.581) and may be associated with the progression of this cancer. Although the expression of caspase-3 in the TT genotype was higher than that in CC/CT genotype in peripheral blood mononuclear cells and tumor tissues. Additional luciferase analysis showed that the rs1049216 variant T allele was associated with significantly higher luciferase activity, compared with the C allele in the transfected cells, and when cotransfected with miRNAs, miRNA-181a could downregulate the luciferase activity in the cells that transfected the construct containing C allele, compared with T allele, which had not happened in the presence of other miRNAs selected. CONCLUSIONS These data indicate that through upregulating the expression of caspase-3, the TT genotype of caspase-3 rs1049216 can be associated with not only the risk of cervical cancer but also the progression of this cancer.
Collapse
|
11
|
N B, K R C. Tetrandrine and cancer - An overview on the molecular approach. Biomed Pharmacother 2017; 97:624-632. [PMID: 29101806 DOI: 10.1016/j.biopha.2017.10.116] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022] Open
Abstract
Tetrandrine has been known in the treatment of tuberculosis, hyperglycemia, negative ionotropic and chronotropic effects on myocardium, malaria, cancer and fever since years together. It has been known that, tetrandrine could modulate multiple signaling molecules such as kinases of cell cycle and rat sarcoma (RAS) pathway along with proteins of tumor suppressor genes, autophagy related, β-catenins, caspases, and death receptors. Moreover, tetrandrine exhibited reversal of drug resistance by modulating P-glyco protein (P-gp) expression levels in different cancers which is an added advantage of this compound compared to other chemotherapy drugs. Though, bioavailability of tetrandrine is a limiting factor, the anticancer activity was observed in animal models without changing any pharmacokinetic parameters. In the present review, role of tetrandrine as kinase inhibitor, inducer of autophagy and caspase pathways and suppressor of RAS mediated cell proliferation were discussed along with inhibition of angiogenesis. It has also been discussed that how tetrandrine potentiate anticancer effect in different types of cancers by modulating multidrug resistance under in vitro and in vivo trials including the available literature on the clinical trials.
Collapse
Affiliation(s)
- Bhagya N
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Chandrashekar K R
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India.
| |
Collapse
|
12
|
Papadakis ES, Reeves T, Robson NH, Maishman T, Packham G, Cutress RI. BAG-1 as a biomarker in early breast cancer prognosis: a systematic review with meta-analyses. Br J Cancer 2017; 116:1585-1594. [PMID: 28510570 PMCID: PMC5518859 DOI: 10.1038/bjc.2017.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The co-chaperone protein Bcl-2-associated athanogene-1 (BAG-1) is overexpressed in breast cancer and has been incorporated in the oncotype DX and PAM50 breast cancer prognostic assays. Bcl-2-associated athanogene-1 exists as multiple protein isoforms that interact with diverse partners, including chaperones Hsc70/Hsp70, Ser/Thr kinase Raf-1 and Bcl-2, to promote cancer cell survival. The BAG-1L isoform specifically binds to and increases the transcriptional activity of oestrogen receptor in cells, and in some, but not all studies, BAG-1 expression is predictive of clinical outcome in breast cancer. METHODS A systematic review of published studies reporting BAG-1 (mRNA and/or protein) expression and clinical outcome in early breast cancer. The REporting Recommendations for Tumour MARKer and Prognostic Studies (REMARK) criteria were used as a template against which data were assessed. Meta-analyses were performed for studies that provided a hazard ratio and 95% confidence intervals for clinical outcomes including disease-free survival or breast cancer-specific survival from univariate analysis. RESULTS Eighteen studies used differing methodologies and reported on differing outcomes. Meta-analyses were only possible on results from a subset of reported studies. Meta-analyses suggested improved outcome with high BAG-1 mRNA and high BAG-1 nuclear expression by immunohistochemisty. CONCLUSIONS Increased levels of BAG-1 are associated with better breast cancer outcomes.
Collapse
Affiliation(s)
- E S Papadakis
- Cancer Research UK Centre Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - T Reeves
- Cancer Research UK Centre Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - N H Robson
- Cancer Research UK Centre Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - T Maishman
- Southampton Clinical Trials Unit, University of Southampton, Southampton SO17 1BJ, UK
| | - G Packham
- Cancer Research UK Centre Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - R I Cutress
- Cancer Research UK Centre Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
- University Hospital Southampton, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
13
|
Tiwari P, Khan MJ. Molecular and Computational Studies on Apoptotic Pathway Regulator, Bcl-2 Gene from Breast Cancer Cell Line MCF-7. Indian J Pharm Sci 2016; 78:87-93. [PMID: 27168686 PMCID: PMC4852581 DOI: 10.4103/0250-474x.180254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is a dreadful disease constituting abnormal growth and proliferation of malignant cells in the body. Next to lung cancer, breast cancer is the most common form of cancer affecting women. The apoptotic pathway regulators, B cell lymphoma family of protein, play a key role in various malignancies defining cancer and their constitutive expression plays an integral role in breast cancer chemotherapy. The research work discusses the identification and molecular cloning of a B cell lymphoma like gene from human breast cancer cell line. The open reading frame of the gene consisted of 965 nucleotides, encoding a protein of 380 amino acids with a predicted molecular weight of 42.5 kilodalton. The predicted physiochemical properties of the gene were as follows: Isoelectric point - 9.49, molecular formula - C1893H3004N534O548S16, total number of negatively charged residues, (Aspartate+Glutamate) - 26, total number of positively charged residues, (Arginine+Lysine)-39, instability index-42.08 (unstable protein) and grand average of hydropathicity is -0.202. Additionally, phobius prediction suggested non-cytoplasmic localization of the putative protein. The presence of secondary structure in the protein was determined by Memsat program. A 3 dimensional protein homology model was generated using threading based method of protein modeling for structural and functional annotation of the putative protein. Future prospects accounts for the biochemical characterization of the enzyme including in vitro assays on breast cancer cell line would establish the functional characteristics of the protein and its physiological mechanisms in breast cancer development and its therapeutic-target role in future.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Metabolic and Structural Biology, Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP), Lucknow-226 015, India
| | - M J Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh-202 002, India
| |
Collapse
|
14
|
Geranylgeranylacetone induces apoptosis via the intrinsic pathway in human melanoma cells. Biomed Pharmacother 2016; 82:15-9. [PMID: 27470333 DOI: 10.1016/j.biopha.2016.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to test the anti-cancer effects of geranylgeranylacetone (GGA), an isoprenoid compound, on human melanoma cells. Human melanoma cell lines G361, SK-MEL-2, and SK-MEL-5 were treated with GGA at various doses (1-100μM). Cell viability was measured by crystal violet assay. Western blot analysis was adopted to detect marker proteins of apoptosis. GGA significantly reduced the viability of G361, SK-MEL-2, and SK-MEL-5 human melanoma cells at concentrations above 10μM. Western blot analysis showed the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) after GGA treatment, as well as activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP) cleavage. GGA also induced p53 and Bax expression, but did not affect expression of Bcl-2 and MITF. These findings suggest that GGA induces apoptosis through the intrinsic pathway. Accordingly, GGA should be considered for further development as a potential agent for melanoma.
Collapse
|
15
|
Hu H, Wang J, Gao H, Li S, Zhang Y, Zheng N. Heat-induced apoptosis and gene expression in bovine mammary epithelial cells. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objective of this study was to identify the apoptosis and cell-defence response of bovine mammary epithelial cells under heat stress (HS). Cells were exposed to either 38°C or 42°C for 0.5, 1, 3, 5, 8, or 12 h, and the transcription of heat shock proteins (Hsps), Bcl-2 family, caspases and apoptosis-regulated genes were quantified by quantitative real-time polymerase chain reaction. Caspase-3, -7 and -8 were markedly upregulated by HS and the peak gene abundance appeared at 5 h. However, the same family numbers, caspase-6 and -9 were sustained downregulated in HS. The expression of anti-apoptotic gene Bcl-2, Bcl-2A and Mcl-1 increased sharply in HS but returned to pre-HS levels after 8 h. The pro-apoptotic genes: Bax, Bak and Bid were downregulated during HS. The striking changes of signalling factors of apoptosis: tumour necrosis factor receptor, p53, Apaf-1 was upregulated, and Fas was downregulated in HS. Stress proteins Hsp genes (hsp27, hsp70 and hsp90) were generally increased at 42°C and this was especially apparent for hsp70 transcription as it was increased 14-fold at 1 h. Simultaneously, HS induced cell apoptosis, and the peak of apoptosis rate appeared at 3 and 5 h, which were assessed by flow cytometry. Our results suggest that HS induces cell apoptosis, disturbs the normal biological activity, and aroused intracellular thermotolerance responses of bovine mammary epithelial cells.
Collapse
|
16
|
Roth HS, Hergenrother PJ. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and their Anticancer Activities. Curr Med Chem 2016; 23:201-41. [PMID: 26630918 PMCID: PMC4968085 DOI: 10.2174/0929867323666151127201829] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 01/26/2023]
Abstract
PAC-1 induces the activation of procaspase-3 in vitro and in cell culture by chelation of inhibitory labile zinc ions via its ortho-hydroxy-N-acylhydrazone moiety. First reported in 2006, PAC-1 has shown promise in cell culture and animal models of cancer, and a Phase I clinical trial in cancer patients began in March 2015 (NCT02355535). Because of the considerable interest in this compound and a well-defined structure-activity relationship, over 1000 PAC-1 derivatives have been synthesized in an effort to vary pharmacological properties such as potency and pharmacokinetics. This article provides a comprehensive examination of all PAC-1 derivatives reported to date. A survey of PAC-1 derivative libraries is provided, with an indepth discussion of four derivatives on which extensive studies have been performed.
Collapse
Affiliation(s)
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois, 261 Roger Adams Laboratory, Box 36-5, 600 S. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer 2015; 68:120-30. [PMID: 26699876 PMCID: PMC4784500 DOI: 10.1080/01635581.2016.1115094] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2–5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer.
Collapse
Affiliation(s)
- Anupam Bishayee
- a Department of Pharmaceutical Sciences , College of Pharmacy, Larkin Health Sciences Institute , Miami , Florida , USA
| | - Animesh Mandal
- b Department of Pharmaceutical Sciences , College of Pharmacy, Northeast Ohio Medical University , Rootstown , Ohio , USA
| | | | - Deepak Bhatia
- d Department of Pharmacogenomics , Bernard J. Dunn School of Pharmacy, Shenandoah University , Ashburn , Virginia , USA
| |
Collapse
|
18
|
Mitra N, Verma R, Deka D, Pawar HN, Sood NK, Gupta K, Mahajan SK, Mohindroo J. Differential expression of apoptosis-associated genes in canine mammary tumors. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Roth HS, Botham RC, Schmid SC, Fan TM, Dirikolu L, Hergenrother PJ. Removal of Metabolic Liabilities Enables Development of Derivatives of Procaspase-Activating Compound 1 (PAC-1) with Improved Pharmacokinetics. J Med Chem 2015; 58:4046-65. [PMID: 25856364 DOI: 10.1021/acs.jmedchem.5b00413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Procaspase-activating compound 1 (PAC-1) is an o-hydroxy-N-acylhydrazone that induces apoptosis in cancer cells by chelation of labile inhibitory zinc from procaspase-3. PAC-1 has been assessed in a wide variety of cell culture experiments and in vivo models of cancer, with promising results, and a phase 1 clinical trial in cancer patients has been initiated (NCT02355535). For certain applications, however, the in vivo half-life of PAC-1 could be limiting. Thus, with the goal of developing a compound with enhanced metabolic stability, a series of PAC-1 analogues were designed containing modifications that systematically block sites of metabolic vulnerability. Evaluation of the library of compounds identified four potentially superior candidates with comparable anticancer activity in cell culture, enhanced metabolic stability in liver microsomes, and improved tolerability in mice. In head-to-head experiments with PAC-1, pharmacokinetic evaluation in mice demonstrated extended elimination half-lives and greater area under the curve values for each of the four compounds, suggesting them as promising candidates for further development.
Collapse
Affiliation(s)
- Howard S Roth
- †Department of Chemistry, ‡Department of Veterinary Clinical Medicine, and §Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Rachel C Botham
- †Department of Chemistry, ‡Department of Veterinary Clinical Medicine, and §Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Steven C Schmid
- †Department of Chemistry, ‡Department of Veterinary Clinical Medicine, and §Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Timothy M Fan
- †Department of Chemistry, ‡Department of Veterinary Clinical Medicine, and §Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Levent Dirikolu
- †Department of Chemistry, ‡Department of Veterinary Clinical Medicine, and §Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Paul J Hergenrother
- †Department of Chemistry, ‡Department of Veterinary Clinical Medicine, and §Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Madrid A, Cardile V, González C, Montenegro I, Villena J, Caggia S, Graziano A, Russo A. Psoralea glandulosa as a potential source of anticancer agents for melanoma treatment. Int J Mol Sci 2015; 16:7944-59. [PMID: 25860949 PMCID: PMC4425060 DOI: 10.3390/ijms16047944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022] Open
Abstract
With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1), 3-hydroxy-bakuchiol (2) and 12-hydroxy-iso-bakuchiol (3)) against melanoma cells (A2058). In addition, the effect in cancer cells of bakuchiol acetate (4), a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS) production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells.
Collapse
Affiliation(s)
- Alejandro Madrid
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, 2340000 Valparaíso, Chile.
| | - Venera Cardile
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - César González
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España N° 1680, 2340000 Valparaíso, Chile.
| | - Ivan Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de medicina, Universidad de Valparaíso, Blanco N° 1911, 2340000 Valparaíso, Chile.
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda N° 2664, 2340000 Valparaíso, Chile.
| | - Silvia Caggia
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Adriana Graziano
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Alessandra Russo
- Department of Drug Sciences, Biochemistry Section, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
21
|
Akkoç Y, Berrak Ö, Arısan ED, Obakan P, Çoker-Gürkan A, Palavan-Ünsal N. Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells. Biomed Pharmacother 2015; 71:161-71. [PMID: 25960232 DOI: 10.1016/j.biopha.2015.02.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/21/2015] [Indexed: 01/16/2023] Open
Abstract
Curcumin is a natural anti-cancer agent derived from turmeric (Curcuma longa). Curcumin triggers intrinsic apoptotic cell death by activating mitochondrial permeabilization due to the altered expression of pro- and anti-apoptotic Bcl-2 family members. Phosphoinositol-3-kinase (PI3K) and Akt, key molecular players in the survival mechanism, have been shown to be associated with the Bcl-2 signaling cascade; therefore, evaluating the therapeutic efficiency of drugs that target both survival and the apoptosis mechanism has gained importance in cancer therapy. We found that Bcl-2 overexpression is a limiting factor for curcumin-induced apoptosis in highly metastatic MCF-7 breast cancer cells. Forced overexpression of Bcl-2 also blocked curcumin-induced autophagy in MCF-7 cells, through its inhibitory interactions with Beclin-1. Pre-treatment of PI3K inhibitor LY294002 enhanced curcumin-induced cell death, apoptosis, and autophagy via modulating the expression of Bcl-2 family members and autophagosome formation in MCF-7 breast cancer cells. Atg7 silencing further increased apoptotic potential of curcumin in the presence or absence of LY294002 in wt and Bcl-2+ MCF-7 cells. The findings of this study support the hypothesis that blocking the PI3K/Akt pathway may further increased curcumin-induced apoptosis and overcome forced Bcl-2 expression level mediated autophagic responses against curcumin treatment in MCF-7 cells.
Collapse
Affiliation(s)
- Yunus Akkoç
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156 Bakirkoy-Istanbul, Turkey
| | - Özge Berrak
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156 Bakirkoy-Istanbul, Turkey
| | - Elif Damla Arısan
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156 Bakirkoy-Istanbul, Turkey.
| | - Pınar Obakan
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156 Bakirkoy-Istanbul, Turkey
| | - Ajda Çoker-Gürkan
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156 Bakirkoy-Istanbul, Turkey
| | - Narçin Palavan-Ünsal
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156 Bakirkoy-Istanbul, Turkey
| |
Collapse
|
22
|
Alidadiyani N, Salehi R, Ghaderi S, Samadi N, Davaran S. Synergistic antiproliferative effects of methotrexate-loaded smart silica nanocomposites in MDA-MB-231 breast cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:603-9. [PMID: 25405259 DOI: 10.3109/21691401.2014.975235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the ability of methotrexate (MTX)-loaded stimuli-responsive novel silica nanocomposites (MSNs) (with mean diameter of ± 60 nm) in the induction of apoptosis, and change in the Bax/Bcl-2 mRNA levels, were investigated. MTT assay and RT -PCR analysis were performed on MDA-MB-231 breast cancer cells, to evaluate their anti-proliferative, apoptotic and anti-apoptotic effects. MTX-loaded MSNs caused marked decrease in the percentage of viable cells, with a significant down-regulation in the level of expression of the anti-apoptotic gene (Bcl-2), and up-regulation in the apoptotic gene (Bax). MTX-loaded MSNs increased the efficacy of the chemotherapeutic agents in the inhibition of cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Neda Alidadiyani
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Biochemistry and Clinical Laboratories , Faculty of Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roya Salehi
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c School of Advanced Medical Science, Tabriz University of Medical Sciences , Tabriz , Iran.,d Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Shahrooz Ghaderi
- e Department of Molecular Medicine , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nasser Samadi
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Biochemistry and Clinical Laboratories , Faculty of Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran.,c School of Advanced Medical Science, Tabriz University of Medical Sciences , Tabriz , Iran.,d Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Soodabeh Davaran
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c School of Advanced Medical Science, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
23
|
Nicolopoulou-Stamati P, Tsipis A, Chelidonis G, Patsouris E, Athanassiadou P, Gonidi M, Athanassiadou AM. Prognostic value of COX-2, P53, and EZH-2 evaluated by quantitative image analysis in premalignant and malignant breast lesions. Diagn Cytopathol 2014; 43:294-300. [PMID: 25355039 DOI: 10.1002/dc.23217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/09/2014] [Accepted: 10/06/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cytological differential diagnosis of atypical hyperplasia and well differentiated breast carcinoma may be challenging, because sometimes there is an overlap between the cytomorphological features of these lesions. The aim of the study was to investigate COX-2, EZH-2, p53 expression in carcinomas and the gray zone of breast cytology categories of atypical hyperplastic lesions with regard to biological behavior of the tumor. METHODS FNA speciments from 100 patients with breast hyperplastic lesions and cancer were investigated by immunocytochemistry and a quantitative analysis for COX-2, p53, and EZH-2. RESULTS Extent of staining for COX-2 correlated with percentage of positive for EZH-2 (P < 0.0001) and p53 nuclei (P < 0.001). The intensity of COX-2 was lower in the carcinoma group (118.57 ± 12.43) than in the hyperplastic (127.16 ± 11.71) group (P = 0.006). On the contrary the mean value of staining extent was greater in the adenocarcinoma cases (15.96 ± 13.03) than in hyperplastic (4.04 ± 1.94) cases (P < 0.0001). The percentage of EZH-2 and p53 positive cells correlated with the histological type of the lesions (P = 0.001 and P = 0.011, respectively). There was also a statistically significant relation between tumor size and expression of COX-2 (P = 0.007) and EZH-2 (P = 0.010). CONCLUSION Our study showed that the expression of COX-2, EZH-2, and p53 as determined by immunocytochemistry at quantitative level may be a predictor for distinguishing cytologically atypical hyperplastic from malignant breast lesions and may be regarded as potential prognostic factor in breast cancer patients.
Collapse
Affiliation(s)
- Polyxeni Nicolopoulou-Stamati
- National and Kapodistrian University of Athens, School of Medicine, First Department of Pathology and Cytology Unit, 1st Pathology Laboratory, 11527, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
24
|
Karabulut AB, Karadag N, Gurocak S, Kiran T, Tuzcu M, Sahin K. Apricot attenuates oxidative stress and modulates of Bax, Bcl-2, caspases, NFκ-B, AP-1, CREB expression of rats bearing DMBA-induced liver damage and treated with a combination of radiotherapy. Food Chem Toxicol 2014; 70:128-33. [PMID: 24819963 DOI: 10.1016/j.fct.2014.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/29/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022]
Abstract
We evaluated the ability of apricot to attenuate apoptosis and oxidative stress developed during the process of 7,12-dimethylbenz[a]anthracene (DMBA) and radiotherapy in the liver of rats bearing liver damage. Fifty female Wistar rats were divided into 7 groups; (i) normal control rats; (ii) rats fed with standard diet with apricot (20%), (ii) rats fed with standard diet and administrated 6 gray radiotherapy with Co 60 device applied to a single fraction, (iv) rats fed with standard diet and administered intraperitoneally DMBA (20mg/kg), (v) rats fed with standard diet and administered DMBA and 6 gray radiotherapy, (vi) rats fed with standard rat diet and administered DMBA and supplemented apricot, (vii) rats fed with standard diet supplemented apricot administered DMBA and radiotherapy (RT) for 6weeks. Expression of Bax, caspase 3, and glutathione activity decreased in the liver but liver expression of NF-κB, AP-1, CREB, Bcl-2 and ALT, AST, 5'NT, MDA, NO levels increased in DMBA-induced liver damage rats. In conclusion, the results suggest that apricot supplementation and irradiation given in combination, offer maximum protection against DMBA-induced hepatic carcinogenesis.
Collapse
Affiliation(s)
- Aysun Bay Karabulut
- Department of Biochemistry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey.
| | - Nese Karadag
- Department of Pathology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Simay Gurocak
- Department of Radiation Oncology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Tugba Kiran
- Department of Biochemistry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, 23119 Elazig, Turkey
| | - Kazım Sahin
- Department of Nutrition, Faculty of Fisheries, Inonu University, 44280 Malatya, Turkey; Department of Animal Nutrition, Faculty of Veterinary, Firat University, 23119 Elazig, Turkey
| |
Collapse
|
25
|
Ahn SH, Kim HJ, Han W, Cho J, Gong G, Jung KH, Kim SB, Son BH, Lee JW. Effect Modification of Hormonal Therapy by p53 Status in Invasive Breast Cancer. J Breast Cancer 2013; 16:386-94. [PMID: 24454460 PMCID: PMC3893340 DOI: 10.4048/jbc.2013.16.4.386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/13/2013] [Indexed: 12/02/2022] Open
Abstract
Purpose We aimed to confirm the prognostic and predictive value of p53 expression, particularly in invasive breast cancer patients, according to immunohistochemical hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status. Methods Immunohistochemical data for p53, estrogen receptor, progesterone receptor, and HER2 expression from a total of 15,598 patients were retrospectively retrieved from the web-based database of the Korean Breast Cancer Society. Overall survival (OS) and breast cancer-specific survival (BCSS) were calculated and compared using the Kaplan-Meier method and log-rank test, respectively. Multivariate analyses were performed using a stratified Cox proportional hazard regression model. A model evaluating interactions between p53 expression and both hormonal therapy and chemotherapy was used to determine the treatment benefit from both modalities. Results The prognostic value of p53 for OS and BCSS was most significant in the HR+/HER2- subgroup, with hazard ratios of 1.44 (95% confidence interval [CI], 1.08-1.93) and 1.47 (95% CI, 1.09-1.99), respectively. The p53 overexpression hazard ratios were of borderline significance for the HR+/HER2+ subgroup and were not significant for the HR-/HER2+ and HR-/HER2- subgroups. The model with interaction terms revealed that hormonal therapy significantly interacts with p53 status (p=0.002 and p=0.007 for OS and BCSS, respectively), suggesting an insignificant prognostic value for p53 status (p=0.268 and p=0.296 for OS and BCSS, respectively). An interaction between chemotherapy and p53 status was not found in this model. Conclusion p53 overexpression has independent prognostic value, particularly in cases of HR+/HER2- invasive breast cancer, which may be due to effect modification of hormonal therapy dependent on p53 status.
Collapse
Affiliation(s)
- Sei Hyun Ahn
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwa Jung Kim
- Department of Biostatistics and Clinical Epidemiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jihyoung Cho
- Department of Surgery, Keimyung University School of Medicine, Daegu, Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byung Ho Son
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Wang RA, Li ZS, Yan QG, Bian XW, Ding YQ, Du X, Sun BC, Sun YT, Zhang XH. Resistance to apoptosis should not be taken as a hallmark of cancer. CHINESE JOURNAL OF CANCER 2013; 33:47-50. [PMID: 24417874 PMCID: PMC3935005 DOI: 10.5732/cjc.013.10131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the research community, resistance to apoptosis is often considered a hallmark of cancer. However, pathologists who diagnose cancer via microscope often see the opposite. Indeed, increased apoptosis and mitosis are usually observed simultaneously in cancerous lesions. Studies have shown that increased apoptosis is associated with cancer aggressiveness and poor clinical outcome. Furthermore, overexpression of Bcl-2, an antiapoptotic protein, is linked with better survival of cancer patients. Conversely, Bax, CD95, Caspase-3, and other apoptosis-inducing proteins have been found to promote carcinogenesis. This notion of the role of apoptosis in cancer is not new; cancer cells were found to be short-lived 88 years ago. Given these observations, resistance to apoptosis should not be considered a hallmark of cancer.
Collapse
Affiliation(s)
- Rui-An Wang
- Department of Pathology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mitrović O, Čokić V, Đikić D, Budeč M, Vignjević S, Subotički T, Gulan M, Radović S, Furtula S. Correlation between ER, PR, HER-2, Bcl-2, p53, proliferative and apoptotic indexes with HER-2 gene amplification and TOP2A gene amplification and deletion in four molecular subtypes of breast cancer. Target Oncol 2013; 9:367-79. [PMID: 24272208 DOI: 10.1007/s11523-013-0297-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/30/2013] [Indexed: 11/27/2022]
Abstract
The aim of our study was to investigate HER-2 and TOP2A gene status and their correlation with Bcl-2, p53, Ki67, ssDNA, and clinicopathological parameters in four molecular subtypes of breast cancer. Seventy-four paraffin-embedded samples are immunohistochemically studied for the expression of estrogen receptor (ER), progesterone receptor (PR), HER-2, p53, Bcl-2, ssDNA, and Ki67, while HER-2 and TOP2A gene status by fluorescence in situ hybridization was investigated in 60 samples. Luminal A and B subtypes were characterized with small tumor size, intermediate histological grade, negative lymph node, and metastatic status, while triple negative and HER-2 positive subtypes were associated with larger tumor size, poorly differentiated tumors, and positive lymph node status. p53, Ki67, and ssDNA expression was higher in triple negative and HER-2 positive than in luminal subtypes, while ER, PR, and Bcl-2 dominated in luminal subtypes. HER-2 gene status was higher in luminal B and HER-2 positive than in luminal A and triple negative subtypes, while TOP2A gene status was similar. HER-2 gene status positively correlated with TOP2A gene status, HER-2 receptor, and histological grade, while negative correlation characterized relationship between HER-2 gene status and ER, PR, and Bcl-2. The shortened overall survival period characterized patients from triple negative breast cancer subtype (18.7 months). HER-2 and TOP2A gene amplification showed a tendency to be associated with larger tumor size, positive lymph node status, high level of apoptotic and proliferative indexes, and low level of p53 and Bcl-2 expression, which all together indicate group of patients with similar outcome during the progression of the disease.
Collapse
Affiliation(s)
- Olivera Mitrović
- Institute for Medical Research, University of Belgrade, Dr Subotića 4, PO Box 39, 11129, Belgrade 102, Serbia,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dias MC, Furtado KS, Rodrigues MAM, Barbisan LF. Effects of Ginkgo biloba on chemically-induced mammary tumors in rats receiving tamoxifen. Altern Ther Health Med 2013; 13:93. [PMID: 23634930 PMCID: PMC3655872 DOI: 10.1186/1472-6882-13-93] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/24/2013] [Indexed: 11/26/2022]
Abstract
Background Ginkgo biloba extract (GbE) is used extensively by breast cancer patients undergoing treatment with Tamoxifen (TAM). Thus, the present study investigated the effects of GbE in female Sprague–Dawley (SD) rats bearing chemically-induced mammary tumors and receiving TAM. Methods Animals bearing mammary tumors (≥1 cm in diameter) were divided into four groups: TAM [10 mg/kg, intragastrically (i.g.)], TAM plus GbE [50 and 100 mg/kg, intraperitoneally (i.p.)] or an untreated control group. After 4 weeks, the therapeutic efficacy of the different treatments was evaluated by measuring the tumor volume (cm3) and the proportions of each tumor that were alive, necrotic or degenerative (mm2). In addition, labeling indexes (LI%) were calculated for cell proliferation (PCNA LI%) and apoptosis (cleaved caspase-3 LI%), expression of estrogen receptor-alpha (ER-α) and p63 biomarkers. Results Overall, the tumor volume and the PCNA LI% within live tumor areas were reduced by 83% and 99%, respectively, in all TAM-treated groups when compared to the untreated control group. GbE treatment (100 mg/kg) reduced the proportions of live (24.8%) and necrotic areas (2.9%) (p = 0.046 and p = 0.038, respectively) and significantly increased the proportion of degenerative areas (72.9%) (p = 0.004) in mammary tumors when compared to the group treated only with TAM. The expression of ER-α, p63 and cleaved caspase-3 in live tumor tissues was not modified by GbE treatment. Conclusions Co-treatment with 100 mg/kg GbE presented a slightly beneficial effect on the therapeutic efficacy of TAM in female SD rats bearing mammary tumors.
Collapse
|
29
|
Pterostilbene induces mitochondrially derived apoptosis in breast cancer cells in vitro. J Surg Res 2013; 180:208-15. [DOI: 10.1016/j.jss.2012.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
|
30
|
Prognostic value of bcl-2 expression among women with breast cancer in Libya. Tumour Biol 2013; 34:1569-78. [PMID: 23417836 DOI: 10.1007/s13277-013-0687-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/03/2013] [Indexed: 12/21/2022] Open
Abstract
We studied the association of the immunohistochemical bcl-2 expression in Libyan breast cancer with clinicopathological variables and patient outcome. Histological samples from 170 previously untreated primary Libyan breast carcinoma patients were examined. In immunohistochemistry, the NCL-L-bcl-2-486 monoclonal antibody was used. Positive expression of bcl-2 was found in 106 patients (62.4 %). The bcl-2 expression was significantly associated with estrogen receptor (p<0.0001) and progesterone receptor positive tumors (p=0.002), small tumor size (p<0.0001), low tumor grade (p<0.0001), negative axillary lymph nodes (p<0.0001), early stages (p=0.001), and low risk of metastasis (p<0.0001). Positive expression was also associated with older patients (>50 years; p=0.04). Histological subtypes and family history of breast cancer did not have significant relationship with bcl-2. Patients with positive expression of bcl-2 had lower recurrence rate than bcl-2-negative patients and better survival after median follow-up of 47 months. Patients with high bcl-2 staining were associated with the best survival. The role of bcl-2 as an independent predictor of disease-specific survival was assessed in a multivariate survival (Cox) analysis, including age, hormonal status, recurrence, histological grade, and clinical stage variables. Bcl-2 (p<0.0001) and clinical stage (p=0.016) were independent predicators of disease-specific survival. For analysis of disease-free survival, the same variables were entered to the model and only bcl-2 proved to be an independent predictor (p=0.002). Patients with positive expression of bcl-2 were associated with low grade of malignancy, with lower recurrence rate, with lower rate of death, and with longer survival time. Bcl-2 is an independent predictor of breast cancer outcome, and it provides useful prognostic information in Libyan breast cancer. Thus, it could be used with classical clinicopathological factors to improve patient selection for therapy.
Collapse
|
31
|
Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Los MJ. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp (Warsz) 2012; 61:43-58. [PMID: 23229678 DOI: 10.1007/s00005-012-0205-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022]
Abstract
Cell death is a fundamental ingredient of life. Thus, not surprisingly more than one form of cell death exists. Several excellent reviews on various forms of cell death have already been published but manuscripts describing interconnection and interdependence between such processes are uncommon. Here, what follows is a brief introduction on all three classical forms of cell death, followed by a more detailed insight into the role of p53, the master regulator of apoptosis, and other forms of cell death. While discussing p53 and also the role of caspases in cell death forms, we offer insight into the interplay between autophagy and apoptosis, or necrosis, where autophagy may initially serve pro-survival functions. The review moves further to present some details about less researched forms of programmed cell death, namely necroptosis, necrosis and mitoptosis. These "mixed" forms of cell death allow us to highlight the interconnected nature of cell death forms, particularly apoptosis and necrosis. The interdependence between apoptosis, autophagy and necrosis, and their significance for cancer development and treatment are also analyzed in further parts of the review. In the concluding parts, the afore-mentioned issues will be put in perspective for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Wiem Chaabane
- Division of Cell Biology, Department Clinical and Experimental Medicine (IKE), and Integrative Regenerative Medicine Center (IGEN), Linköping University, Cell Biology Building, Linköping, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Russo A, Espinoza CL, Caggia S, Garbarino JA, Peña-Cortés H, Carvajal TM, Cardile V. A new jasmonic acid stereoisomeric derivative induces apoptosis via reactive oxygen species in human prostate cancer cells. Cancer Lett 2012; 326:199-205. [DOI: 10.1016/j.canlet.2012.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
33
|
Systematic analysis and validation of differential gene expression in ovarian serous adenocarcinomas and normal ovary. J Cancer Res Clin Oncol 2012; 139:347-55. [PMID: 23090696 DOI: 10.1007/s00432-012-1334-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Cancer of the ovary confers the worst prognosis among women with gynecological malignancies, primarily because most ovarian cancers are diagnosed at late stage. Hence, there is a substantial need to develop new diagnostic biomarkers to enable detection of ovarian cancer at earlier stages, which would confer better prognosis. In addition, the identification of druggable targets is of substantial interest to find new therapeutic strategies for ovarian cancer. METHODS The expression of 22,500 genes in a series of 67 serous papillary carcinomas was compared with 9 crudely enriched normal ovarian tissue samples by RNA hybridization on oligonucleotide microarrays. Multiple genes with near-uniformly expression were elevated in carcinomas of varying grade and malignant potential, including several previously described genes (e.g., MUC-1, CD9, CD24, claudin 3, and mesothelin). We performed immunohistochemical staining with antibodies against several of the proteins encoded by differentially expressed genes in an independent cohort of 71 cases of paraffin-embedded ovarian cancer samples. RESULTS We found striking differences in EpCAM (p < 0.005), CD9 (p < 0.001), MUC-1 (p < 0.001), and claudin 3 proteins (p < 0.001) but not for mesothelin (p > 0.05) using the Mann-Whitney U test. CONCLUSIONS Protein expression of a majority of the differentially expressed genes tested was found to be elevated in ovarian carcinomas and, as such, define potential new biomarkers or targets.
Collapse
|
34
|
Jaafar H, Abdullah S, Murtey MD, Idris FM. Expression of Bax and Bcl-2 in Tumour Cells and Blood Vessels of Breast Cancer and their Association with Angiogenesis and Hormonal Receptors. Asian Pac J Cancer Prev 2012; 13:3857-62. [DOI: 10.7314/apjcp.2012.13.8.3857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Antoon JW, Lai R, Struckhoff AP, Nitschke AM, Elliott S, Martin EC, Rhodes LV, Yoon NS, Salvo VA, Shan B, Beckman BS, Nephew KP, Burow ME. Altered death receptor signaling promotes epithelial-to-mesenchymal transition and acquired chemoresistance. Sci Rep 2012; 2:539. [PMID: 22844580 PMCID: PMC3406343 DOI: 10.1038/srep00539] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/18/2012] [Indexed: 11/09/2022] Open
Abstract
Altered death receptor signaling and resistance to subsequent apoptosis is an important clinical resistance mechanism. Here, we investigated the role of death receptor resistance in breast cancer progression. Resistance of the estrogen receptor alpha (ER)-positive, chemosensitive MCF7 breast cancer cell line to tumor necrosis factor (TNF) was associated with loss of ER expression and a multi-drug resistant phenotype. Changes in three major pathways were involved in this transition to a multidrug resistance phenotype: ER, Death Receptor and epithelial to mesenchymal transition (EMT). Resistant cells exhibited altered ER signaling, resulting in decreased ER target gene expression. The death receptor pathway was significantly altered, blocking extrinsic apoptosis and increasing NF-kappaB survival signaling. TNF resistance promoted EMT changes, resulting in a more aggressive phenotype. This first report identifying specific mechanisms underlying acquired resistance to TNF could lead to a better understanding of the progression of breast cancer in response to chemotherapy treatment.
Collapse
Affiliation(s)
- James W Antoon
- Departments of Pharmacology, Tulane University School of Medicine, Tulane Avenue, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Skrypek N, Duchêne B, Hebbar M, Leteurtre E, van Seuningen I, Jonckheere N. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene 2012; 32:1714-23. [PMID: 22580602 DOI: 10.1038/onc.2012.179] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The fluorinated analog of deoxycytidine, Gemcitabine (Gemzar), is the main chemotherapeutic drug in pancreatic cancer, but survival remains weak mainly because of the high resistance of tumors to the drug. Recent works have shown that the mucin MUC4 may confer an advantage to pancreatic tumor cells by modifying their susceptibility to drugs. However, the cellular mechanism(s) responsible for this MUC4-mediated resistance is unknown. The aim of this work was to identify the cellular mechanisms responsible for gemcitabine resistance linked to MUC4 expression. CAPAN-2 and CAPAN-1 adenocarcinomatous pancreatic cancer (PC) cell lines were used to establish stable MUC4-deficient clones (MUC4-KD) by shRNA interference. Measurement of the IC50 index using tetrazolium salt test indicated that MUC4-deficient cells were more sensitive to gemcitabine. This was correlated with increased Bax/BclXL ratio and apoptotic cell number. Expression of Equilibrative/Concentrative Nucleoside Transporter (hENT1, hCNT1/3), deoxycytidine kinase (dCK), ribonucleotide reductase (RRM1/2) and Multidrug-Resistance Protein (MRP3/4/5) was evaluated by quantitative RT-PCR (qRT-PCR) and western blotting. Alteration of MRP3, MRP4, hCNT1 and hCNT3 expression was observed in MUC4-KD cells, but only hCNT1 alteration was correlated to MUC4 expression and sensitivity to gemcitabine. Decreased activation of MAPK, JNK and NF-κB pathways was observed in MUC4-deficient cells, in which the NF-κB pathway was found to have an important role in both sensitivity to gemcitabine and hCNT1 regulation. Finally, and in accordance with our in vitro data, we found that MUC4 expression was conversely correlated to that of hCNT1 in tissues from patients with pancreatic adenocarcinoma. This work describes a new mechanism of PC cell resistance to gemcitabine, in which the MUC4 mucin negatively regulates the hCNT1 transporter expression via the NF-κB pathway. Altogether, these data point out to MUC4 and hCNT1 as potential targets to ameliorate the response of pancreatic tumors to gemcitabine treatment.
Collapse
Affiliation(s)
- N Skrypek
- Inserm, UMR837, Jean-Pierre Aubert Research Center, Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H, Wei Z. Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett 2011; 314:155-65. [PMID: 22014978 DOI: 10.1016/j.canlet.2011.09.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 11/27/2022]
Abstract
Uncontrolled estrogen exposure can induce an imbalance in BCL2/BAX expression in endometrial cells, leading to precancerous lesions and type I endometrial adenocarcinoma. This study aimed to explore the mechanism underlying this phenomenon. We show that the activated estrogen receptor can suppress the expression of BAX by upregulating a group of microRNAs including hsa-let-7 family members and hsa-miR-27a, thereby promoting an increased BCL2/BAX ratio as well as enhanced survival and proliferation in the affected cells. These ER-regulated hsa-let-7 microRNAs can be detected in most hyperplastic endometria, suggesting their potential utility as indicators of estrogen over-exposure.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Central Hospital, Shanghai 201400, PR China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Papageorgiou SG, Kontos CK, Pappa V, Thomadaki H, Kontsioti F, Dervenoulas J, Papageorgiou E, Economopoulos T, Scorilas A. The novel member of the BCL2 gene family, BCL2L12, is substantially elevated in chronic lymphocytic leukemia patients, supporting its value as a significant biomarker. Oncologist 2011; 16:1280-91. [PMID: 21737576 DOI: 10.1634/theoncologist.2010-0349] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BCL2L12 is a recently identified gene belonging to the BCL2 family, members of which are implicated in hematologic malignancies, including chronic lymphocytic leukemia (CLL). The aim of this study was to analyze the mRNA expression of the novel apoptosis-related gene BCL2L12 in patients with CLL and to examine its prognostic and predictive value and potential clinical application as a novel molecular biomarker for CLL. For this purpose, total RNA was isolated from peripheral blood of 65 CLL patients and 23 healthy donors. An ultrasensitive quantitative real-time polymerase chain reaction methodology for BCL2L12 and BCL2 mRNA quantification was developed using SYBR Green chemistry. After preparing cDNA by reverse transcription, relative quantification analysis was performed using the comparative C(T) (2(-ΔΔCT)) method. Furthermore, analysis of IGHV mutational status, CD38 expression, and detection of early apoptosis by double staining with Annexin V-FITC and propidium iodide were performed. According to our findings, BCL2L12 mRNA expression is significantly higher in CLL patients than in healthy donors. Receiver operating characteristic analysis demonstrated that BCL2L12 expression had significant discriminatory value, distinguishing very efficiently CLL patients from the non-leukemic population. Moreover, BCL2L12 expression predicts the presence of CLL, as demonstrated by both univariate and multivariate logistic regression analyses. Finally, high BCL2L12 mRNA levels are associated with advanced clinical stage and predict shorter overall survival in CLL patients.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- Middle Aged
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Prognosis
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Sequence Analysis
Collapse
Affiliation(s)
- Sotirios G Papageorgiou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gonidi M, Athanassiadou AM, Patsouris E, Tsipis A, Dimopoulos S, Kyriakidou V, Chelidonis G, Athanassiadou P. Mitochondrial UCP4 and bcl-2 expression in imprints of breast carcinomas: relationship with DNA ploidy and classical prognostic factors. Pathol Res Pract 2011; 207:377-82. [PMID: 21621926 DOI: 10.1016/j.prp.2011.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/26/2011] [Accepted: 03/21/2011] [Indexed: 02/07/2023]
Abstract
Mitochondria are the bioenergetic and metabolic centers of cells and play an important role in the regulation of cell death. The mitochondrial apoptosis pathway is controlled by the bcl-2 protein family. Overexpression of mitochondrial uncoupling protein 4 (UCP4) can promote proliferation and inhibit apoptosis and differentiation. Imprint smears obtained from 124 tumors were studied immunocytochemically, and results were correlated with prognostic markers. There were 112 ductal and 12 lobular carcinomas. The positivity of UCP4 was correlated with lymph node metastases (p=0.005), positive ER and PR expression (p<0.0001 for both), as well as positivity for p53 (p<0.0001) and Ki-67 (p<0.0001). Decreased expression of bcl-2 correlated with increased expression of UCP4 (p=0.001). Regarding DNA ploidy, UCP4 positivity was correlated with aneuploid tumors (p=0.002). Negative expression of bcl-2 was correlated with poorly differentiated carcinomas (p<0.0001), as well as with positive expression of p53 (p<0.0001) and Ki-67 (p<0.0001). Logistic regression revealed that ploidy and p53 expression had an impact on UCP4. These findings encourage future investigations regarding the potential role of UCPs not only into mechanisms underlying breast cancer, but also as a novel candidate to the design and development of more effective therapeutic strategies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Breast Neoplasms/chemistry
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/chemistry
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Lobular/chemistry
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/secondary
- Carcinoma, Lobular/surgery
- Cell Differentiation
- Chi-Square Distribution
- Female
- Greece
- Humans
- Immunohistochemistry
- Ki-67 Antigen/analysis
- Logistic Models
- Lymphatic Metastasis
- Membrane Transport Proteins/analysis
- Middle Aged
- Mitochondrial Uncoupling Proteins
- Neoplasm Staging
- Ploidies
- Prognosis
- Proto-Oncogene Proteins c-bcl-2/analysis
- Receptor, ErbB-2/analysis
- Receptors, Estrogen/analysis
- Receptors, Progesterone/analysis
- Risk Assessment
- Risk Factors
- Tumor Suppressor Protein p53/analysis
Collapse
Affiliation(s)
- Maria Gonidi
- 1st Pathology Department and Cytology Unit, National & Kapodistrian University of Athens, Medical School, 75 Mikras Asias, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Samadi N, Bekele RT, Goping IS, Schang LM, Brindley DN. Lysophosphatidate induces chemo-resistance by releasing breast cancer cells from taxol-induced mitotic arrest. PLoS One 2011; 6:e20608. [PMID: 21647386 PMCID: PMC3103588 DOI: 10.1371/journal.pone.0020608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
Background Taxol is a microtubule stabilizing agent that arrests cells in mitosis leading to cell death. Taxol is widely used to treat breast cancer, but resistance occurs in 25–69% of patients and it is vital to understand how Taxol resistance develops to improve chemotherapy. The effects of chemotherapeutic agents are overcome by survival signals that cancer cells receive. We focused our studies on autotaxin, which is a secreted protein that increases tumor growth, aggressiveness, angiogenesis and metastasis. We discovered that autotaxin strongly antagonizes the Taxol-induced killing of breast cancer and melanoma cells by converting the abundant extra-cellular lipid, lysophosphatidylcholine, into lysophosphatidate. This lipid stimulates specific G-protein coupled receptors that activate survival signals. Methodology/Principal Findings In this study we determined the basis of these antagonistic actions of lysophosphatidate towards Taxol-induced G2/M arrest and cell death using cultured breast cancer cells. Lysophosphatidate does not antagonize Taxol action in MCF-7 cells by increasing Taxol metabolism or its expulsion through multi-drug resistance transporters. Lysophosphatidate does not lower the percentage of cells accumulating in G2/M by decreasing exit from S-phase or selective stimulation of cell death in G2/M. Instead, LPA had an unexpected and remarkable action in enabling MCF-7 and MDA-MB-468 cells, which had been arrested in G2/M by Taxol, to normalize spindle structure and divide, thus avoiding cell death. This action involves displacement of Taxol from the tubulin polymer fraction, which based on inhibitor studies, depends on activation of LPA receptors and phosphatidylinositol 3-kinase. Conclusions/Significance This work demonstrates a previously unknown consequence of lysophosphatidate action that explains why autotaxin and lysophosphatidate protect against Taxol-induced cell death and promote resistance to the action of this important therapeutic agent.
Collapse
Affiliation(s)
- Nasser Samadi
- Department of Biochemistry (Signal Transduction Research Group), School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Raie T. Bekele
- Department of Biochemistry (Signal Transduction Research Group), School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ing Swie Goping
- Department of Biochemistry (Signal Transduction Research Group), School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Luis M. Schang
- Department of Biochemistry (Signal Transduction Research Group), School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David N. Brindley
- Department of Biochemistry (Signal Transduction Research Group), School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
41
|
Babashah S, Soleimani M. The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 2011; 47:1127-37. [PMID: 21402473 DOI: 10.1016/j.ejca.2011.02.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 02/14/2011] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs that regulate gene expression at the post-transcriptional level. MiRNAs play important roles in regulating a variety of biological process such as proliferation, differentiation and apoptosis. It has been demonstrated that miRNAs have a crucial function in oncogenesis by regulating cell proliferation and apoptosis as oncogenes or tumour suppressors. As several reports have underlined the possible contribution of miRNAs to promote or evade apoptosis, it seems that the dysregulation of miRNAs involved in apoptosis may provide a mechanism for cancer development. Given emerging evidence that points to oncogenic and tumour suppressive roles of miRNAs in cancer and apoptosis, it is thought that manipulating miRNA expression level may be a potential therapeutic strategy for curing cancer.
Collapse
Affiliation(s)
- Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
42
|
Robinson KS, Clements A, Williams AC, Berger CN, Frankel G. Bax Inhibitor 1 in apoptosis and disease. Oncogene 2011; 30:2391-400. [DOI: 10.1038/onc.2010.636] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Chen Y, Saini S, Zaman MS, Hirata H, Shahryari V, Deng G, Dahiya R. Cytochrome P450 17 (CYP17) is involved in endometrial cancinogenesis through apoptosis and invasion pathways. Mol Carcinog 2011; 50:16-23. [PMID: 20886547 DOI: 10.1002/mc.20680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 17 (CYP17) encodes cytochrome P450c17α, an enzyme with 17α-hydroxylase and 17, 20-lyase activities involved in estradiol biosynthesis. Here we examine the role of CYP17 gene in endometrial carcinogenesis. Immunohistochemistry staining of endometrial carcinoma and corresponding uninvolved tissues showed that CYP17 is upregulated in endometrial cancers (15 of 24, 62.5%). To understand the functional significance of this upregulation, we silenced CYP17 gene by introduction of siRNA into endometrial cancer cell line KLE followed by functional studies. Further, to understand the molecular basis of the role of CYP17, we profiled the expression of key pathway-specific genes and identified several components of the apoptosis and invasion pathways that are potentially regulated by CYP17. Silencing of CYP17 caused decreased cell proliferation and induced apoptosis. Significantly, CYP17 depletion leads to downregulation of anti-apoptotic genes B cell lymphoma 2 (Bcl-2) and telomerase reverse transcriptase (TERT), indicating induced apoptosis. Also, attenuation of CYP17 decreased the cellular invasion ability and regulated expression of several invasion pathway components such as melanoma cell adhesion molecule (MCAM), matrix metallopeptidase 2 and 9 (MMP-2 and MMP-9), and tissue inhibitor of metalloproteinase 3 (TIMP3). In conclusion, this is the first report documenting that upregulation of CYP17 in endometrial cancers play a crucial role in endometrial carcinogenesis by targeting multiple components of apoptosis and invasion pathways. Further studies are required to understand the detailed mechanisms underlying CYP17-mediated regulation of these components.
Collapse
Affiliation(s)
- Yi Chen
- Department of Urology, Veterans Affairs Medical Center, University of California-San Francisco, San Francisco, California 94121, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang H, Ye Y, Pan SY, Zhu GY, Li YW, Fong DWF, Yu ZL. Proteomic identification of proteins involved in the anticancer activities of oridonin in HepG2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:163-169. [PMID: 20724128 DOI: 10.1016/j.phymed.2010.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 05/03/2010] [Accepted: 06/11/2010] [Indexed: 05/29/2023]
Abstract
Oridonin is the main bioactive constituent of the Chinese medicinal herb Isodon rubescens and has been shown to have anti-neoplastic effects against a number of cancers in vitro and in vivo. Here we report the proteomic identification of proteins involved in the anticancer properties of oridonin in hepatocarcinoma HepG2 cells. Cell viability assay showed that oridonin dose-dependently inhibited cell growth with an IC(50) of 41.77μM. Treatment with oridonin at 44μM for 24h induced apoptosis and G2/M cell cycle arrest, which were associated with nine differentially expressed proteins identified by proteomic analysis. The proteomic expression patterns of Hsp70.1, Sti1 and hnRNP-E1 were confirmed by quantitative real-time PCR and/or immunoblotting. Eight of the nine identified proteins are shown, for the first time, to be involved in the anticancer activities of oridonin. Up-regulation of Hsp70.1, STRAP, TCTP, Sti1 and PPase, as well as the down-regulation of hnRNP-E1 could be responsible for the apoptotic and G2/M-arresting effects of oridonin observed in this study. Up-regulation of HP1 beta and GlyRS might contribute to inhibitory effects of oridonin on telomerase and tyrosine kinase, respectively. These findings shed new insights into the molecular mechanisms underlying the anticancer properties of oridonin in liver cancer cells.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Diterpenes, Kaurane/chemistry
- Diterpenes, Kaurane/pharmacology
- Diterpenes, Kaurane/therapeutic use
- Dose-Response Relationship, Drug
- Hep G2 Cells
- Humans
- Inhibitory Concentration 50
- Isodon/chemistry
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Neoplasm Proteins/analysis
- Neoplasm Proteins/metabolism
- Phytotherapy
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Polymerase Chain Reaction
- Proteomics/methods
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Hui Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Fendri A, Kontos CK, Khabir A, Mokdad-Gargouri R, Scorilas A. BCL2L12 is a novel biomarker for the prediction of short-term relapse in nasopharyngeal carcinoma. Mol Med 2010; 17:163-71. [PMID: 21152697 DOI: 10.2119/molmed.2010.00056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 12/02/2010] [Indexed: 12/16/2022] Open
Abstract
BCL2-like 12 (BCL2L12 ) is a new member of the apoptosis-related BCL2 gene family, members of which are implicated in various malignancies. Nasopharyngeal carcinoma is a highly metastatic, malignant epithelial tumor, with a high prevalence in Southeast Asia and North Africa. The purpose of the current study was to quantify and investigate the expression levels of the BCL2L12 gene in nasopharyngeal carcinoma biopsies and to assess its prognostic value. Total RNA was isolated from 89 malignant and hyperplastic nasopharyngeal biopsies from Tunisian patients. After testing the quality of the extracted RNA, cDNA was prepared by reverse transcription. A highly sensitive real-time polymerase chain reaction (PCR) method for BCL2L12 mRNA quantification was developed using SYBR Green chemistry. GAPDH served as a reference gene. Relative quantification analysis was performed using the comparative C(T) (2(-ΔΔCT)) method. Higher BCL2L12 mRNA levels were detected in undifferentiated carcinomas of the nasopharynx, rather than in nonkeratinizing nasopharyngeal tumors (P = 0.045). BCL2L12 expression status was also found to be positively associated with the presence of distant metastases (P = 0.014). Kaplan-Meier survival analysis demonstrated that patients with BCL2L12-positive nasopharyngeal tumors have significantly shorter disease-free survival (P = 0.020). Cox regression analysis showed BCL2L12 expression to be an unfavorable and independent prognostic indicator of short-term relapse in nasopharyngeal carcinoma (P = 0.042). Our results suggest that mRNA expression of BCL2L12 may constitute a novel biomarker for the prediction of short-term relapse in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ali Fendri
- Laboratory of Cancer Genetics and Production of Recombinant Proteins, Sfax Biotechnology Center, Sfax, Tunisia
| | | | | | | | | |
Collapse
|
46
|
The enigmatic roles of caspases in tumor development. Cancers (Basel) 2010; 2:1952-79. [PMID: 24281211 PMCID: PMC3840446 DOI: 10.3390/cancers2041952] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/25/2022] Open
Abstract
One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors.
Collapse
|
47
|
Ben-Batalla I, Seoane S, Garcia-Caballero T, Gallego R, Macia M, Gonzalez LO, Vizoso F, Perez-Fernandez R. Deregulation of the Pit-1 transcription factor in human breast cancer cells promotes tumor growth and metastasis. J Clin Invest 2010; 120:4289-302. [PMID: 21060149 DOI: 10.1172/jci42015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 09/15/2010] [Indexed: 12/28/2022] Open
Abstract
The Pit-1 transcription factor (also know as POU1F1) plays a critical role in cell differentiation during organogenesis of the anterior pituitary in mammals and is a transcriptional activator for pituitary gene transcription. Increased expression of Pit-1 has been reported in human tumorigenic breast cells. Here, we found that Pit-1 overexpression or knockdown in human breast cancer cell lines induced profound phenotypic changes in the expression of proteins involved in cell proliferation, apoptosis, and invasion. Some of these protumorigenic effects of Pit-1 were mediated by upregulation of Snai1, an inductor of the epithelial-mesenchymal transition. In immunodeficient mice, Pit-1 overexpression induced tumoral growth and promoted metastasis in lung. In patients with invasive ductal carcinoma of the breast and node-positive tumor, high expression of Pit-1 was significantly correlated with Snai1 positivity. Notably, in these patients elevated expression of Pit-1 was significantly and independently associated with the occurrence of distant metastasis. These findings suggest that Pit-1 could help to make a more accurate prognosis in patients with node-positive breast cancer and may represent a new therapeutic target.
Collapse
Affiliation(s)
- Isabel Ben-Batalla
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang H, Ye Y, Chu JH, Zhu GY, Fong WF, Yu ZL. Proteomic and functional analyses reveal the potential involvement of endoplasmic reticulum stress and α-CP1 in the anticancer activities of oridonin in HepG2 cells. Integr Cancer Ther 2010; 10:160-7. [PMID: 20926737 DOI: 10.1177/1534735410383171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oridonin has been shown to exhibit therapeutic effects against hepatocellular carcinoma (HCC) in vitro and in vivo. This study aimed to identify the anti-HCC mechanisms of oridonin in HepG2 cells using proteomic and functional analyses. MTT assay showed that oridonin treatment for 24 hours dose-dependently inhibited cell growth with an IC(50) value of 40.4 μM. Treatment with 40 μM oridonin for 24 hours induced apoptosis determined by nuclear morphologic changes of DAPI-stained cells and flow cytometric analysis of annexin V-FITC/PI-stained cells, which was accompanied by Grp78 upregulation and α-CP1 downregulation identified by proteomic analysis. Immunoblot analysis for the endoplasmic reticulum (ER) stress- related proteins demonstrated that the expression levels of phosphorylated PERK (p-PERK) and CHOP were increased, whereas PERK, ATF-6, and IRE-1 expression levels were decreased. Knockdown of α-CP1 expression with siRNA significantly increased cell death and apoptosis in control and oridonin-treated HepG2 cells. Together, these data provide proteomic and functional evidence for the potential involvement of ER stress and α-CP1 in the antiproliferative and apoptotic activities of oridonin in HepG2 cells, which shed new light on the action mechanisms of oridonin in HCC management.
Collapse
Affiliation(s)
- Hui Wang
- Hong Kong Baptist University, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
49
|
Mattar A, Logullo AF, Facina G, Nonogaki S, Soares FA, Gebrim LH. Short-term anastrozole therapy reduces Ki-67 and progesterone receptor expression in invasive breast cancer: a prospective, placebo-controlled, double-blind trial. J Cancer Res Clin Oncol 2010; 137:897-905. [PMID: 20886231 DOI: 10.1007/s00432-010-0950-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 09/16/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE The objective of this study was to compare Ki-67, Bcl-2, Bax, Bak, ER, and PgR expression in postmenopausal women with ER-positive invasive breast cancer (IBC) before and after short-term hormone therapy (HT) with either tamoxifen or anastrozole in order to identify a possible biomarker profile associated with hormone resistance. METHODS Fifty-eight patients with palpable IBC were assigned to receive neoadjuvant therapy with either anastrozole, placebo, or tamoxifen for 26 days prior to surgery. Tissue microarray blocks were constructed from pre- and post-treatment biopsy samples and used for immunohistochemical analysis. Biomarker (Ki-67, Bcl-2, Bax, Bak, ER, and PgR) levels were assessed semiquantitatively using the Allred score. A statistical analysis was performed using general estimating equations (GEE) and analysis of variance (ANOVA) with a significance level of 0.05. RESULTS There was a significant reduction in PgR scores from baseline (mean, 4.22) to post-treatment (mean, 1.94) in the anastrozole group, but only a non-significant trend toward an increase in PgR scores was found in the tamoxifen group. There was a significant reduction in Ki-67 scores from baseline (mean, 3.61) to post-treatment (mean, 2.56) in the anastrozole group (P = 0.01), but only a non-significant trend toward a reduction in Ki-67 scores was found in the tamoxifen group. CONCLUSIONS There was a significant reduction in PgR and Ki-67 expression in the group treated with anastrozole. In the present study, the short-term HT was not associated with changes in apoptosis-related protein levels, regardless the type of drug used.
Collapse
Affiliation(s)
- Andre Mattar
- Department of Gynecology, Federal University of São Paulo (UNIFESP), Rua Napoleão de Barros, 715 - 7°.andar, CEP 04024-002, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
50
|
Liao Y, Du X, Lönnerdal B. miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells. J Nutr 2010; 140:1552-6. [PMID: 20610637 DOI: 10.3945/jn.110.124289] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lactoferrin (Lf) is an abundantly expressed protein in human milk. Lactoferrin exhibits several important biological functions, and its expression is regulated by multiple environmental factors. Cellular endogenous factors, however, have not been extensively studied with regard to lactoferrin gene expression. In this study, we showed that lactoferrin gene expression and function are directly targeted by miR-214 in HC11 and MCF7 cells. In the lactoferrin mRNA 3 prime untranslated region (UTR) of human, mouse, rat, pig, bovine, camel, and goat species, there is a conserved region that perfectly matches the seed region of miR-214. Transfection of miR-214 mimic in HEK293 cells dose-dependently inhibited the activity of pGL3-control vector containing lactoferrin mRNA 3 prime UTR downstream of the luciferase gene. In HC11 cells, miR-214 overexpression inhibited the induction of lactoferrin expression by beta -estradiol (E2) and dexamethasone-prolactin-insulin (DPI). Furthermore, in MCF7 cells, overexpression of miR-214 markedly decreased lactoferrin expression (P lt 0.05), and inhibition of endogenous miR-214 expression increased lactoferrin expression and cellular apoptotic activities (P lt 0.05). In summary, our data showed that miR-214 is directly involved in lactoferrin expression and lactoferrin mediated cancer susceptibility (proapoptotic activities) in mammary epithelial cells.
Collapse
Affiliation(s)
- Yalin Liao
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|