1
|
Wang YJ, Yeh CJ, Gao ZH, Hwang E, Chen HH, Wu SN. Inhibitory Perturbations of Fluvastatin on Afterhyperpolarization Current, Erg-mediated K + Current, and Hyperpolarization-activated Cation Current in Both Pituitary GH 3 Cells and Primary Embryonic Mouse Cortical Neurons. Neuroscience 2023; 531:12-23. [PMID: 37661016 DOI: 10.1016/j.neuroscience.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Fluvastatin (FLV), the first synthetically derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, is a potent inhibitor of cholesterol biosynthesis. While its primary mechanism of action is to reduce cholesterol levels, there is some evidence suggesting that it may also have effects on K+ channels. However, the overall effects of fluvastatin on ionic currents are not yet well understood. The whole-cell clamp recordings were applied to evaluate the ionic currents and action potentials of cells. Here, we have demonstrated that FLV can effectively inhibit the amplitude of erg-mediated K+ current (IK(erg)) in pituitary tumor (GH3) cells, with an IC50 of approximately 3.2 µM. In the presence of FLV, the midpoint in the activation curve of IK(erg) was distinctly shifted to a less negative potential by 10 mV, with minimal modification of the gating charge. However, the magnitude of hyperpolarization-activated cation current (Ih) elicited by long-lasting membrane hyperpolarization was progressively decreased, with an IC50 value of 8.7 µM, upon exposure to FLV. More interestingly, we also found that FLV (5 µM) could regulate the action potential and afterhyperpolarization properties in primary embryonic mouse cortical neurons. Our study presents compelling evidence indicating that FLV has the potential to impact both the amplitude and gating of the ion channels IK(erg) and Ih. We also provide credible evidence suggesting that this drug has the potential to modify the properties of action potentials and the afterhyperpolarization current in electrically excitable cells. However, the assumption that these findings translate to similar in-vivo results remains unclear.
Collapse
Affiliation(s)
- Ya-Jean Wang
- Department of Senior Services Industry Management, Minghsin University of Science and Technology, Hsinchu, Taiwan.
| | - Che-Jui Yeh
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hwei-Hisen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Institute of Neuroscience, National Chengchi University, Taipei, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Medical Research and Education, An Nan Hostpial, China Medical University Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
2
|
Mechanisms of Resistance in Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2022; 14:cancers14246114. [PMID: 36551599 PMCID: PMC9776394 DOI: 10.3390/cancers14246114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs), although curable when localized, frequently metastasize and require management with systemic therapies, including somatostatin analogues, peptide receptor radiotherapy, small-molecule targeted therapies, and chemotherapy. Although effective for disease control, these therapies eventually fail as a result of primary or secondary resistance. For small-molecule targeted therapies, the feedback activation of the targeted signaling pathways and activation of alternative pathways are prominent mechanisms, whereas the acquisition of additional genetic alterations only rarely occurs. For somatostatin receptor (SSTR)-targeted therapy, the heterogeneity of tumor SSTR expression and dedifferentiation with a downregulated expression of SSTR likely predominate. Hypoxia in the tumor microenvironment and stromal constituents contribute to resistance to all modalities. Current studies on mechanisms underlying therapeutic resistance and options for management in human GEP-NETs are scant; however, preclinical and early-phase human studies have suggested that combination therapy targeting multiple pathways or novel tyrosine kinase inhibitors with broader kinase inhibition may be promising.
Collapse
|
3
|
Natalicchio A, Faggiano A, Zatelli MC, Argentiero A, D'Oronzo S, Marrano N, Beretta GD, Acquati S, Adinolfi V, Di Bartolo P, Danesi R, Ferrari P, Gori S, Morviducci L, Russo A, Tuveri E, Montagnani M, Gallo M, Silvestris N, Giorgino F. Metabolic disorders and gastroenteropancreatic-neuroendocrine tumors (GEP-NETs): How do they influence each other? An Italian Association of Medical Oncology (AIOM)/ Italian Association of Medical Diabetologists (AMD)/ Italian Society of Endocrinology (SIE)/ Italian Society of Pharmacology (SIF) multidisciplinary consensus position paper. Crit Rev Oncol Hematol 2021; 169:103572. [PMID: 34954047 DOI: 10.1016/j.critrevonc.2021.103572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a heterogeneous group of malignancies derived from neuroendocrine cells that can occur anywhere along the gastrointestinal tract. GEP-NETs incidence has been steadily increasing over the past decades, in parallel with the increasing incidence of the metabolic syndrome (MetS). It is not yet fully known whether the MetS components (such as obesity, dyslipidemia and type 2 diabetes) could be involved in the etiology of GEP-NETs or could influence their outcomes. In this review, a panel of experts of the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provides a critical view of the experimental and clinical evidence about the association of GEP-NETs risk, outcomes, and therapies with the metabolic disorders typical of MetS. The potential therapeutic strategies for an optimal management of patients with both GEP-NETs and MetS are also discussed.
Collapse
Affiliation(s)
- Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | - Maria Chiara Zatelli
- Section of Endocrinology & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | | | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Nicola Marrano
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| | | | - Silvia Acquati
- Endocrinology Unit, Ospedale Pierantoni-Morgagni, Forlì, Italy.
| | - Valerio Adinolfi
- Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| | - Paolo Di Bartolo
- Diabetology Clinic, Rete Clinica di Diabetologia Aziendale - Dipartimento, Internistico di Ravenna - AUSL Romagna, Ravenna, Italy.
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Pietro Ferrari
- Palliative Care Unit, Istituti Clinici Scientifici Maugeri SPA SB, IRCCS (PV), Italy.
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria di Negrar, Verona, Italy.
| | - Lelio Morviducci
- Diabetology and Nutrition Unit, Department of Medical Specialities, ASL Roma 1 - S. Spirito Hospital, Rome, Italy.
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy.
| | - Enzo Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ATS Sardegna - ASSL Carbonia-Iglesias, Italy.
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Marco Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy.
| | - Nicola Silvestris
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy; Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
4
|
Torniai M, Scortichini L, Tronconi F, Rubini C, Morgese F, Rinaldi S, Mazzanti P, Berardi R. Systemic treatment for lung carcinoids: from bench to bedside. Clin Transl Med 2019; 8:22. [PMID: 31273555 PMCID: PMC6609661 DOI: 10.1186/s40169-019-0238-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
In the huge spectrum of lung neuroendocrine neoplasms, typical and atypical carcinoids should be considered as a separate biological entity from poorly differentiated forms, harboring peculiar molecular alterations. Despite their indolent behavior, lung carcinoids correlate with a worse survival. To date, only limited therapeutic options are available and novel drugs are strongly needed. In this work, we extensively reviewed scientific literature exploring available therapeutic options, new molecular targets and future perspectives in the management of well differentiated neoplasms of bronchopulmonary tree. Systemic therapy represents the main option in advanced and unresectable disease; accepted choices are somatostatin analogs, peptide receptor radionuclide therapy, everolimus and chemotherapy. To date, an univocal treatment strategy has not been identified yet, thus tailored therapeutic algorithms should consider treatment efficacy as well as safety profiles. Several molecular alterations found in carcinoid tumors might act as molecular targets leading to development of new therapeutic options. Further studies are necessary to identify new potential “druggable” molecular targets in the selected subset of low-grade lung carcinoids. Furthermore, evaluating the available therapies in more homogeneous population might improve their efficacy through a perfect tailoring of treatment options.
Collapse
Affiliation(s)
- Mariangela Torniai
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Laura Scortichini
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Francesca Tronconi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Corrado Rubini
- Section of Pathological Anatomy and Histopathology, Department of Neuroscience, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Francesca Morgese
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Silvia Rinaldi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Paola Mazzanti
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy
| | - Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, Via Conca 71, 60126, Ancona, Italy.
| |
Collapse
|
5
|
Cuny T, de Herder W, Barlier A, Hofland LJ. Role of the tumor microenvironment in digestive neuroendocrine tumors. Endocr Relat Cancer 2018; 25:R519-R544. [PMID: 30306777 DOI: 10.1530/erc-18-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) represent a group of heterogeneous tumors whose incidence increased over the past few years. Around half of patients already present with metastatic disease at the initial diagnosis. Despite extensive efforts, cytotoxic and targeted therapies have provided only limited efficacy for patients with metastatic GEP-NETs, mainly due to the development of a certain state of resistance. One factor contributing to both the failure of systemic therapies and the emergence of an aggressive tumor phenotype may be the tumor microenvironment (TME), comprising dynamic and adaptative assortment of extracellular matrix components and non-neoplastic cells, which surround the tumor niche. Accumulating evidence shows that the TME can simultaneously support both tumor growth and metastasis and contribute to a certain state of resistance to treatment. In this review, we summarize the current knowledge of the TME of GEP-NETs and discuss the current therapeutic agents that target GEP-NETs and those that could be of interest in the (near) future.
Collapse
Affiliation(s)
- Thomas Cuny
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Assistance Publique - Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Wouter de Herder
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anne Barlier
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Assistance Publique - Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Leo J Hofland
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Kyriakopoulos G, Mavroeidi V, Chatzellis E, Kaltsas GA, Alexandraki KI. Histopathological, immunohistochemical, genetic and molecular markers of neuroendocrine neoplasms. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:252. [PMID: 30069454 DOI: 10.21037/atm.2018.06.27] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroendocrine neoplasms (NENs) arise from cells of the neuroendocrine system located in many sites amongst which most common are the gastrointestinal (GI) system and the lung. The efforts to assess the specific site of origin or predict the biological behavior of NENs is based upon a detailed study of neoplasm's architectural pattern, immunohistochemical, genetic and molecular profile. Immunohistochemistry is used to characterize the aggressivity of NENs, by assessing the proliferation index Ki-67, as well as the neuroendocrine differentiation by assessing chromogranin A (CgA) and CD56. Basal panels of immunohistochemical markers such as CDX-2, Isl-1, TTF-1, PAX6/8 are currently being used to allocate the neoplasms, while in dubious cases new markers are investigating. Unraveling the genetic and molecular mechanisms of NENs pathogenesis along with shedding light on the molecular heterogeneity of neoplasms and the individual patterns of molecular lesions, underlining these neoplasms may provide new tools in terms of diagnostics and therapeutics. Molecular targeted therapies (MTTs) such as everolimus and sunitinib have been the first example of druggable molecular targets implicated in NENs that have been approved for NEN treatment. New investigational drugs are developing along with genetic tests that may allow the identification of the specific subset of patients that will respond to each individual MTT. Multiparametrical molecular and genetic analysis such as the NETest and the MASTER are already in trials shedding light in a step-by-step management of NENs that allow not only the selection of an appropriate therapeutic option but also the identification of response to treatment or early relapse allowing an early amendment of the strategy. Summarizing the combination of histopathological, immunohistochemical, genetic and molecular profile of a NEN opens new horizons in the efficient management of NENs.
Collapse
Affiliation(s)
| | - Vasiliki Mavroeidi
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Chatzellis
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory A Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Krystallenia I Alexandraki
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Can insulin-like growth factor 1 (IGF-1), IGF-1 receptor connective tissue growth factor and Ki-67 labelling index have a prognostic role in pulmonary carcinoids? Oncotarget 2018; 9:22653-22664. [PMID: 29854305 PMCID: PMC5978255 DOI: 10.18632/oncotarget.25203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction Altered expression of Insulin-like Growth Factor-1 (IGF-1), its receptor (IGF-1R), Connective Tissue Growth Factor (CTGF) and Hypoxia Inducible Factor-1 (HIF-1), has been implicated in tumorigenesis. So far, these factors have not been studied systematically in Pulmonary Carcinoids (PCs). Aims To examine IGF-1, IGF-1R, CTGF and HIF-1 expression in PCs, and assess their prognostic value over established factors. Materials & Methods Retrospective study of 121 PCs (104 Typical and 17 Atypical). The expression of growth factors was studied immunohistochemically and tumors were considered positive if immunoreactivity appeared in >50% of cells. Results All studied parameters were expressed in the majority of tumors (IGF-1, IGF-1R, CTGF and HIF-1, in 78.5%, 67%, 72% and 78%, respectively). Their expression tended to be more frequent in TCs and in tumors with Ki-67≤2% (significant only for HIF-1; 82 vs. 53%; p=0.023 and 83 vs. 63%; p=0.025 respectively). CTGF was the only factor correlated with more extensive disease (larger size; presence of lymph node and distant metastases). According to logistic regression analysis, only advanced age, Ki-67≥3.4% and lymph node involvement could predict the development of distant metastases. Conclusions IGF-1, IGF-1R, CTGF and HIF-1 are avidly expressed in PCs; however, their presence did not appear to be of statistically significant value over established prognostic factors.
Collapse
|
8
|
Schmidt J, Kuzyniak W, Berkholz J, Steinemann G, Ogbodu R, Hoffmann B, Nouailles G, Gürek AG, Nitzsche B, Höpfner M. Novel zinc‑ and silicon‑phthalocyanines as photosensitizers for photodynamic therapy of cholangiocarcinoma. Int J Mol Med 2018; 42:534-546. [PMID: 29693115 DOI: 10.3892/ijmm.2018.3620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) has emerged as an effective and minimally invasive cancer treatment modality. In the present study, two novel phthalocyanines, tetra‑triethyleneoxysulfonyl substituted zinc phthalocyanine (ZnPc) and dihydroxy‑2,9(10),16(17),23(24)‑tetrakis(4,7,10‑trioxaundecan‑1‑sulfonyl) silicon phthalocyanine (Pc32), were investigated as photosensitizers (PS) for PDT of cholangiocarcinoma (CC). ZnPc showed a pronounced dose‑dependent and predominantly cytoplasmic accumulation in EGI‑1 and TFK‑1 CC cell lines. Pc32 also accumulated in the CC cells, but this was less pronounced. Without photoactivation, the PS did not exhibit any antiproliferative or cytotoxic effects. Upon photoactivation, ZnPc induced the formation of reactive oxygen species (ROS) and immediate phototoxicity, leading to a dose‑dependent decrease in cell proliferation, and an induction of mitochondria‑driven apoptosis and cell cycle arrest of EGI‑1 and TFK‑1 cells. Although photoactivated Pc32 also induced ROS formation in the two cell lines, the extent was less marked, compared with that induced by ZnPc‑PDT, and pronounced antipoliferative effects occurred only in the less differentiated EGI‑1 cells, whereas the more differentiated TFK‑1 cells did not show sustained growth inhibition upon Pc32‑PDT induction. In vivo examinations on the antiangiogenic potency of the novel PS were performed using chorioallantoic membrane (CAM) assays, which revealed reduced angiogenic sprouting with a concomitant increase in nonperfused regions and degeneration of the vascular network of the CAM following induction with ZnPc‑PDT only. The study demonstrated the pronounced antiproliferative and antiangiogenic potency of ZnPc as a novel PS for PDT, meriting further elucidation as a promising PS for the photodynamic treatment of CC.
Collapse
Affiliation(s)
- Jacob Schmidt
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Weronika Kuzyniak
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Janine Berkholz
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Gustav Steinemann
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Racheal Ogbodu
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Björn Hoffmann
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| | - Bianca Nitzsche
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, and Berlin Institute of Health, D‑10117 Berlin, Germany
| |
Collapse
|
9
|
Abstract
Pancreatic neuroendocrine tumours (PNETs) might occur as a non-familial isolated endocrinopathy or as part of a complex hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1). MEN1 is an autosomal dominant disorder characterized by the combined occurrence of PNETs with tumours of the parathyroids and anterior pituitary. Treatments for primary PNETs include surgery. Treatments for non-resectable PNETs and metastases include biotherapy (for example, somatostatin analogues, inhibitors of receptors and monoclonal antibodies), chemotherapy and radiological therapy. All these treatments are effective for PNETs in patients without MEN1; however, there is a scarcity of clinical trials reporting the efficacy of the same treatments of PNETs in patients with MEN1. Treatment of PNETs in patients with MEN1 is challenging owing to the concomitant development of other tumours, which might have metastasized. In recent years, preclinical studies have identified potential new therapeutic targets for treating MEN1-associated neuroendocrine tumours (including PNETs), and these include epigenetic modification, the β-catenin-wingless (WNT) pathway, Hedgehog signalling, somatostatin receptors and MEN1 gene replacement therapy. This Review discusses these advances.
Collapse
Affiliation(s)
- Morten Frost
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
- Endocrine Research Unit, University of Southern Denmark, Odense, 5000, Denmark
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| |
Collapse
|
10
|
Carmona-Bayonas A, Jiménez-Fonseca P, Custodio A, Grande E, Capdevila J, López C, Teule A, Garcia-Carbonero R. Optimizing Somatostatin Analog Use in Well or Moderately Differentiated Gastroenteropancreatic Neuroendocrine Tumors. Curr Oncol Rep 2017; 19:72. [PMID: 28920153 DOI: 10.1007/s11912-017-0633-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Somatostatin analogues, aiming to control tumor secretion or growth, constitute the most attractive therapeutic option for patients with well-differentiated gastroenteropancreatic neuroendocrine tumors (GEP-NETs). The objective of this article is to provide a comprehensive review of the current state-of-the-art knowledge gaps and potential opportunities for future development and optimization of this therapeutic modality. METHOD A contextualized systematic review with a narrative component was conducted using PubMed, The Cochrane Library, EMBASE, and Google Scholar. Titles were screened, and non-English, duplicate, or irrelevant entries were excluded. Selection criteria for articles included the following: publication in English between 1995 and 2016, patients with GEP-NETs, analysis of efficacy, safety, practical management considerations, predictive factors, and/or strategies for overcoming resistance, concerning somatostatin analogs. RESULTS Ninety-seven studies out of 2771 screened publications met the inclusion criteria (16 randomized clinical trials, 27 phase II trials, 3 phase I trials, 3 subgroup analyses of clinical trials, 1 open-label extension of a randomized trial, 1 phase IV trial, 32 observational studies, and 14 basic research articles). The nature and scope of literature was diverse with most articles dedicated to drug efficacy or indications of use (n = 49), pharmacological issues (n = 8), assessment or predictors of response (n = 4), practical management (n = 11), combination therapy or other means to overcome resistance (n = 19), receptors and signaling pathways (n = 3), and subgroup analyses (n = 3). CONCLUSION In this appraisal, we have found some practical aspects that can help to the optimization of somatostatin analog (SSA) therapy in patients with well-differentiated GEP-NETs. We have also identified areas of uncertainty in an effort to guide clinical research in the coming years.
Collapse
Affiliation(s)
- Alberto Carmona-Bayonas
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Calle Marqués de los Vélez, s/n, CP 30008, Murcia, Spain.
| | | | - Ana Custodio
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
| | - Enrique Grande
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Jaume Capdevila
- Department of Medical Oncology, Vall D'Hebrón University Hospital, Vall D'Hebrón Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, center affiliated with the Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto Carlos III, Spanish Ministry of Science and Innovation, Barcelona, Spain
| | - Carlos López
- Department of Medical Oncology, Marqués de Valdecilla University Hospital, Santander, Spain
| | - Alex Teule
- Department of Medical Oncology, Institut Català d'Oncologia, L'Hospitalet de Llobregat, center affiliated with the Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto Carlos III, Spanish Ministry of Science and Innovation, Barcelona, Spain
| | - Rocío Garcia-Carbonero
- Department of Medical Oncology, Doce de Octubre University Hospital, center affiliated with the Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto Carlos III, Spanish Ministry of Science and Innovation, Madrid, Spain
| | | |
Collapse
|
11
|
Alexandraki KI, Philippou A, Boutzios G, Theohari I, Koutsilieris M, Delladetsima IK, Kaltsas GA. IGF-IEc expression is increased in secondary compared to primary foci in neuroendocrine neoplasms. Oncotarget 2017; 8:79003-79011. [PMID: 29108282 PMCID: PMC5668015 DOI: 10.18632/oncotarget.20743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
Different Insulin-like growth factor-I (IGF-I) mRNA transcripts are produced by alternative splicing and particularly the IGF-IEc isoform has been implicated in the development and/or progression of various types of cancer. In the present study, we examined the potential role of IGF-IEc expression as a new immunohistochemical marker of aggressiveness in neuroendocrine neoplasms (NENs). We utilized immunohistochemical analysis in tissue specimens of 47 patients with NENs, to evaluate the expression of IGF-IEc (%) and Ki-67 proliferation index (%). Specimens from patients with tumors of different tissue origin, of either primary or metastatic lesions and of different grade were examined. Cytoplasmic IGF-IEc staining was found in 23 specimens of NENs or NECs: 10 pancreatic, 4 small bowel, 3 gastric, 1 lung, 1 uterine and 4 poorly differentiated of unknown primary origin. Ki-67 and IGF-IEc expression was positively correlated in all the samples studied (r=0.31, p=0.03). IGF-1Ec expression was more prevalent in specimens originating from metastatic foci with high Ki-67 compared to primary sites with low Ki-67 expression (p=0.036). These findings suggest a possible role of IGF-IEc in NEN tumorigenesis and progression to metastases that could be used as an additional new marker of a more aggressive behavior and a potential drugable target.
Collapse
Affiliation(s)
- Krystallenia I Alexandraki
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Boutzios
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Irini Theohari
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gregory A Kaltsas
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Mohamed A, Romano D, Saveanu A, Roche C, Albertelli M, Barbieri F, Brue T, Niccoli P, Delpero JR, Garcia S, Ferone D, Florio T, Moutardier V, Poizat F, Barlier A, Gerard C. Anti-proliferative and anti-secretory effects of everolimus on human pancreatic neuroendocrine tumors primary cultures: is there any benefit from combination with somatostatin analogs? Oncotarget 2017; 8:41044-41063. [PMID: 28454119 PMCID: PMC5522327 DOI: 10.18632/oncotarget.17008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
Therapeutic management of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) is challenging. The mammalian target of rapamycin (mTOR) inhibitor everolimus recently obtained approval from the Food and Drug Administration for the treatment of patients with advanced pancreatic neuroendocrine tumors (pNETs). Despite its promising antitumor efficacy observed in cell lines, clinical benefit for patients is unsatisfactory. The limited therapeutic potential of everolimus in cancer cells has been attributed to Akt activation due to feedback loops relief following mTOR inhibition. Combined inhibition of Akt might then improve everolimus antitumoral effect. In this regard, the somatostatin analog (SSA) octreotide has been shown to repress the PI3K/Akt pathway in some tumor cell lines. Moreover, SSAs are well tolerated and routinely used to reduce symptoms caused by peptide release in patients carrying functional GEP-NETs. We have recently established and characterized primary cultures of human pNETs and demonstrated the anti-proliferative effects of both octreotide and pasireotide. In this study, we aim at determining the antitumor efficacy of everolimus alone or in combination with the SSAs octreotide and pasireotide in primary cultures of pNETs. Everolimus reduced both Chromogranin A secretion and cell viability and upregulated Akt activity in single treatment. Its anti-proliferative and anti-secretory efficacy was not improved combined with the SSAs. Both SSAs did not overcome everolimus-induced Akt upregulation. Furthermore, caspase-dependent apoptosis induced by SSAs was lost in combined treatments. These molecular events provide the first evidence supporting the lack of marked benefit in patients co-treated with everolimus and SSA.
Collapse
Affiliation(s)
- Amira Mohamed
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France
- APHM, Conception Hospital, Molecular Biology Laboratory, Marseille, France
| | - David Romano
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France
| | - Alexandru Saveanu
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France
- APHM, Conception Hospital, Molecular Biology Laboratory, Marseille, France
| | - Catherine Roche
- APHM, Conception Hospital, Molecular Biology Laboratory, Marseille, France
| | - Manuela Albertelli
- Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Federica Barbieri
- Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Thierry Brue
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France
- APHM, Conception Hospital, Endocrinology Department, Marseille, France
| | - Patricia Niccoli
- Paoli Calmettes Cancer Institute, Oncology Department, IPC CoE-ENETS, Marseille, France
| | - Jean-Robert Delpero
- Paoli Calmettes Cancer Institute, Surgery Department, IPC CoE-ENETS, Marseille, France
| | - Stephane Garcia
- APHM, North Hospital, Pathology Laboratory, Marseille, France
| | - Diego Ferone
- Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | | | - Flora Poizat
- Paoli Calmettes Cancer Institute, Biopathology Department, IPC CoE-ENETS, Marseille, France
| | - Anne Barlier
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France
- APHM, Conception Hospital, Molecular Biology Laboratory, Marseille, France
| | | |
Collapse
|
13
|
Berardi R, Morgese F, Torniai M, Savini A, Partelli S, Rinaldi S, Caramanti M, Ferrini C, Falconi M, Cascinu S. Medical treatment for gastro-entero-pancreatic neuroendocrine tumours. World J Gastrointest Oncol 2016; 8:389-401. [PMID: 27096034 PMCID: PMC4824717 DOI: 10.4251/wjgo.v8.i4.389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 02/16/2016] [Indexed: 02/05/2023] Open
Abstract
Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) represents a various family of rare tumours. Surgery is the first choice in GEP-NENs patients with localized disease whilst in the metastatic setting many other treatment options are available. Somatostatin analogues are indicated for symptoms control in functioning tumours. Furthermore they may be effective to inhibit tumour progression. GEP-NENs pathogenesis has been extensively studied in the last years therefore several driver mutations pathway genes have been identified as crucial factors in their tumourigenesis. GEP-NENs can over-express vascular endothelial growth factor (VEGF), basic-fibroblastic growth factor, transforming growth factor (TGF-α and -β), platelet derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1) and their receptors PDGF receptor, IGF-1 receptor, epidermal growth factor receptor, VEGF receptor, and c-kit (stem cell factor receptor) that can be considered as potential targets. The availability of new targeted agents, such as everolimus and sunitinib that are effective in advanced and metastatic pancreatic neuroendocrine tumours, has provided new treatment opportunities. Many trials combing new drugs are ongoing.
Collapse
|
14
|
van Adrichem RCS, de Herder WW, Kamp K, Brugts MP, de Krijger RR, Sprij-Mooij DM, Lamberts SWJ, van Koetsveld PM, Janssen JAMJL, Hofland LJ. Effects of Somatostatin Analogs and Dopamine Agonists on Insulin-Like Growth Factor 2-Induced Insulin Receptor Isoform A Activation by Gastroenteropancreatic Neuroendocrine Tumor Cells. Neuroendocrinology 2016; 103:815-25. [PMID: 26836610 DOI: 10.1159/000444280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/17/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) express insulin-like growth factor (IGF)-related factors [IGF1, IGF2; insulin receptor (IR)-A, IR-B; IGF-binding protein (IGFBP) 1-3] as well as somatostatin (SSTRs) and dopamine D2 receptors (D2Rs). OBJECTIVES To (1) compare mRNA expression of IGF-related factors in human pancreatic NET (panNET) cell lines with that in human GEP-NETs to evaluate the usefulness of these cells as a model for studying the IGF system in GEP-NETs, (2) determine whether panNET cells produce growth factors that activate IR-A, and (3) investigate whether somatostatin analogs (SSAs) and/or dopamine agonists (DAs) influence the production of these growth factors. METHODS In panNET cells (BON-1 and QGP-1) and GEP-NETs, mRNA expression of IGF-related factors was measured by quantitative real-time PCR. Effects of the SSAs octreotide and pasireotide (PAS), the DA cabergoline (CAB), and the dopastatin BIM-23A760 (all 100 nM) were evaluated at the IGF2 mRNA and protein level (by ELISA) and regarding IR-A bioactivity (by kinase receptor activation assay) in panNET cells. RESULTS panNET cells and GEP-NETs had comparable expression profiles of IGF-related factors. Especially in BON-1 cells, IGF2 and IR-A were most highly expressed. PAS + CAB inhibited IGF2 (-29.5 ± 4.9%, p < 0.01) and IGFBP3 (-20.0 ± 4.0%, p < 0.01) mRNA expression in BON-1 cells. In BON-1 cells, IGF2 protein secretion was significantly inhibited with BIM-23A760 (-23.7 ± 3.8%). BON-1- but not QGP-1- conditioned medium stimulated IR-A bioactivity. In BON-1 cells, IR-A bioactivity was inhibited by BIM-23A760 and PAS + CAB (-37.8 ± 2.1% and -30.9 ± 4.1%, respectively, p < 0.0001). CONCLUSIONS (1) The BON-1 cell line is a representative model for studying the IGF system in GEP-NETs, (2) BON-1 cells produce growth factors (IGF2) activating IR-A, and (3) combined SSTR and D2R targeting with PAS + CAB and BIM-23A760 suppresses IGF2-induced IR-A activation.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Line, Tumor/chemistry
- Culture Media, Conditioned/pharmacology
- Dopamine/analogs & derivatives
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation, Neoplastic/drug effects
- HEK293 Cells
- Humans
- Insulin-Like Growth Factor II/metabolism
- Intestinal Neoplasms/pathology
- Neuroendocrine Tumors/pathology
- Pancreatic Neoplasms/pathology
- RNA, Messenger/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Stomach Neoplasms/pathology
- Transfection
Collapse
Affiliation(s)
- Roxanne C S van Adrichem
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dasari A, Phan A, Gupta S, Rashid A, Yeung SCJ, Hess K, Chen H, Tarco E, Chen H, Wei C, Anh-Do K, Halperin D, Meric-Bernstam F, Yao J. Phase I study of the anti-IGF1R antibody cixutumumab with everolimus and octreotide in advanced well-differentiated neuroendocrine tumors. Endocr Relat Cancer 2015; 22:431-41. [PMID: 25900182 PMCID: PMC4566955 DOI: 10.1530/erc-15-0002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 12/22/2022]
Abstract
Preclinical data suggest multiple roles for the IGF1 receptor (IGF1R) in neuroendocrine tumors (NETs), including mediating resistance to mammalian target of rapamycin (mTOR) inhibitors. Everolimus, an oral mTOR inhibitor, and octreotide long-acting repeatable (LAR) are approved for subgroups of well-differentiated NET. The primary objective of the present study was to establish the safety and recommended phase II dose (RP2D) of cixutumumab, a monoclonal antibody (MAB) against IGF1R, with everolimus and octreotide LAR. Patients with well-differentiated NET were treated with 10 mg everolimus p.o. daily, 20 mg octreotide LAR i.m. every 21 days, and escalating doses of cixutumumab. An expansion cohort was enrolled at RP2D. Correlative studies included the evaluation of mTOR pathway inhibition in paired tumor biopsies and the effects of this combination on metabolism via indirect calorimetry. Nineteen patients with progressive disease were enrolled, including nine to the expansion portion. Two patients had dose-limiting toxicities of grade 3 mucositis at 15 mg/kg cixutumumab. Long-term tolerance at RP2D was problematic, and the most common ≥grade 3 adverse event was fatigue. One patient with metastatic insulinoma had a confirmed partial response, whereas 17 had stable disease. The median progression-free survival was 43.6 weeks, and the median overall survival was 25.5 months. The RP2D of this combination per the predefined study protocol of 10 mg/kg cixutumumab i.v., 20 mg octreotide LAR i.m. every 21 days plus 10 mg everolimus p.o. daily is associated with non-dose-limiting toxicities that limit long-term tolerance. Although a signal of activity was noted in the present study, this will need to be reconciled with limited tolerance of the combination and data from larger studies of anti-IGF1R MABs in NET that have been disappointing.
Collapse
Affiliation(s)
- Arvind Dasari
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Alexandria Phan
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Sanjay Gupta
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Asif Rashid
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Sai-Ching Jim Yeung
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Kenneth Hess
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Helen Chen
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Emily Tarco
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Huiqin Chen
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Caimiao Wei
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Kim Anh-Do
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Daniel Halperin
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - Funda Meric-Bernstam
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| | - James Yao
- Department of Gastrointestinal Medical OncologyThe University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Street, Unit 426, Houston, Texas 77030, USANational Cancer InstituteRockville, Maryland, USA
| |
Collapse
|
16
|
De Dosso S, Grande E, Barriuso J, Castellano D, Tabernero J, Capdevila J. The targeted therapy revolution in neuroendocrine tumors: in search of biomarkers for patient selection and response evaluation. Cancer Metastasis Rev 2014; 32:465-77. [PMID: 23589060 DOI: 10.1007/s10555-013-9421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The molecular events of tumorigenesis in neuroendocrine tumors are poorly understood. Understanding of the molecular alterations will lead to the identification of molecular markers, providing new targets for therapeutics. The purpose of this review was to critically analyze the genetic abnormalities in neuroendocrine tumors, with the aim of identifying biomarkers that indicate a response to agents developed against these targets and to serve as an understanding for the combinations of different active compounds. Human epidermal growth factor receptor 1/2 (EGFR and HER2), vascular endothelial growth factor receptors, hepatocyte growth factor receptor (c-Met), platelet-derived growth factor receptor, insulin-like growth factor, phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, and heat shock proteins are all interesting candidate biomarkers with involvement in carcinogenesis and tumor evolution of several neoplasms, including neuroendocrine tumors. Some of them have already been evaluated both as targets and also as biomarkers in clinical trials conducted in advanced neuroendocrine tumor settings, and others should encourage further investigations into innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Sara De Dosso
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Barbieri F, Albertelli M, Grillo F, Mohamed A, Saveanu A, Barlier A, Ferone D, Florio T. Neuroendocrine tumors: insights into innovative therapeutic options and rational development of targeted therapies. Drug Discov Today 2014; 19:458-68. [DOI: 10.1016/j.drudis.2013.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/02/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
|
18
|
RGD-Functionalization of Poly(2-oxazoline)-Based Networks for Enhanced Adhesion to Cancer Cells. Polymers (Basel) 2014. [DOI: 10.3390/polym6020264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
|
20
|
Strosberg JR, Chan JA, Ryan DP, Meyerhardt JA, Fuchs CS, Abrams T, Regan E, Brady R, Weber J, Campos T, Kvols LK, Kulke MH. A multi-institutional, phase II open-label study of ganitumab (AMG 479) in advanced carcinoid and pancreatic neuroendocrine tumors. Endocr Relat Cancer 2013; 20:383-90. [PMID: 23572164 PMCID: PMC4029434 DOI: 10.1530/erc-12-0390] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The IGF pathway has been implicated in the regulation of neuroendocrine tumor (NET) growth, and preliminary studies suggested that ganitumab (AMG 479), a human MAB against IGF1R, may have antitumor activity in this setting. We performed a two-cohort phase II study of ganitumab in patients with metastatic progressive carcinoid or pancreatic NETs (pNETs). This open-label study enrolled patients (≥18 years) with metastatic low- and intermediate-grade carcinoid or pNETs. Inclusion criteria included evidence of progressive disease (by Response Evaluation Criteria in Solid Tumors (RECIST)) within 12 months of enrollment, ECOG PS 0-2, and fasting blood sugar <160 mg/dl. Prior treatments were allowed and concurrent somatostatin analog therapy was permitted. The primary endpoint was objective response. Secondary endpoints included overall survival (OS), progression-free survival (PFS), and safety. Sixty patients (30 carcinoid and 30 pNETs) were treated with ganitumab 18 mg/kg every 3 weeks, among whom 54 patients were evaluable for survival and 53 patients for response. There were no objective responders by RECIST. The median PFS duration was 6.3 months (95% CI, 4.2-12.6) for the entire cohort; 10.5 months for carcinoid patients, and 4.2 months for pNET patients. The OS rate at 12 months was 66% (95% CI, 52-77%) for the entire cohort. The median OS has not been reached. Grade 3/4 AEs were rare and consisted of hyperglycemia (4%), neutropenia (4%), thrombocytopenia (4%), and infusion reaction (1%). Although well tolerated, treatment with single-agent ganitumab failed to result in significant tumor responses among patients with metastatic well-differentiated carcinoid or pNET.
Collapse
Affiliation(s)
- J R Strosberg
- Department of GI Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Haisa M. The type 1 insulin-like growth factor receptor signalling system and targeted tyrosine kinase inhibition in cancer. J Int Med Res 2013; 41:253-64. [PMID: 23569026 DOI: 10.1177/0300060513476585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Type 1 insulin-like growth factor receptor (IGF1R) signalling plays a critical role in normal cell growth, and in cancer development and progression. IGF1R and the insulin-like growth factors 1 and 2 (IGF1 and IGF2) are involved in various aspects of the malignant phenotype, suggesting that IGF1R is a potential target for cancer therapy. IGF1R is particularly important in the establishment and maintenance of the transformed phenotype, in mediating proliferation, and for the survival of tumour cells with anchorage-independent growth. IGF1R also exerts antiapoptotic activity and has a substantial influence on the control of the cell and body size. This property enables transformed cells to form macroscopic tumours and to survive the process of detachment required for metastasis. Pharmaceutical companies are investigating molecules that target IGF1R, including specific low molecular weight tyrosine kinase inhibitors and monoclonal antibodies, both of which possess various advantages and display different activity profiles. This review article focuses on the preclinical and clinical development of low molecular weight IGF1R tyrosine kinase inhibitors. It is critical to pursue a thorough molecular analysis of the metabolic activity of IGF1R to avoid possible side-effects of its inhibition.
Collapse
Affiliation(s)
- Minoru Haisa
- Department of Surgery, Okayama City Hospital, Okayama, Japan.
| |
Collapse
|
22
|
van Adrichem RCS, Hofland LJ, Feelders RA, De Martino MC, van Koetsveld PM, van Eijck CHJ, de Krijger RR, Sprij-Mooij DM, Janssen JAMJL, de Herder WW. Chromogranin A, Ki-67 index and IGF-related genes in patients with neuroendocrine tumors. Endocr Connect 2013; 2:172-7. [PMID: 24042314 PMCID: PMC3847918 DOI: 10.1530/ec-13-0052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Chromogranin A (CgA) and the Ki-67 proliferation index are considered as important biochemical and pathological markers for clinical behaviour of gastroenteropancreatic neuroendocrine tumors (GEP NETs), respectively. The IGF system has been suggested as an important regulator of GEP NET proliferation and differentiation. A possible relationship between serum CgA (sCgA), Ki-67 proliferation index, and expression of IGF-related genes in patients with GEP NETs has not been demonstrated yet. This study investigates the relationship between sCgA, the Ki-67 proliferation index, and the expression of IGF-related genes in GEP NET tissues and their relation with 5-year survival. Tumor and blood samples from 22 GEP NET patients were studied. TUMORAL MRNA EXPRESSION OF IGF-RELATED GENES (IGFS IGF1, IGF2; IGF receptors: IGF1R, IGF2R; insulin receptors: subtype A (IR-A) and B (IR-B); IGF-binding proteins (IGFBPs): IGFBP1, IGFBP2, IGFBP3, and IGFBP6) was measured using quantitative RT-PCR. Ki-67 proliferation index was determined using immunohistochemistry. sCgA was measured with ELISA. Five-year survival in patients with nonelevated sCgA (n=11) was 91 vs 46% in patients with elevated sCgA (n=11) (P=0.006). IR-A mRNA expression was significantly higher in tumors obtained from patients with elevated sCgA than in those from patients with nonelevated sCgA (6.42±2.08 vs 2.60±0.40; P=0.04). This data suggests that sCgA correlates well with 5-year survival of GEP NET patients, and that IR-A mRNA expression correlates well with tumor mass in GEP NET patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - R R de Krijger
- Department of Pathology, Erasmus MCRotterdam, and Reinier de Graaf HospitalDelftThe Netherlands
| | | | | | | |
Collapse
|
23
|
Nölting S, Garcia E, Alusi G, Giubellino A, Pacak K, Korbonits M, Grossman AB. Combined blockade of signalling pathways shows marked anti-tumour potential in phaeochromocytoma cell lines. J Mol Endocrinol 2012; 49:79-96. [PMID: 22715163 PMCID: PMC4714579 DOI: 10.1530/jme-12-0028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently, there is no completely effective therapy available for metastatic phaeochromocytomas (PCCs) and paragangliomas. In this study, we explore new molecular targeted therapies for these tumours, using one more benign (mouse phaeochromocytoma cell (MPC)) and one more malignant (mouse tumour tissue (MTT)) mouse PCC cell line - both generated from heterozygous neurofibromin 1 knockout mice. Several PCC-promoting gene mutations have been associated with aberrant activation of PI3K/AKT, mTORC1 and RAS/RAF/ERK signalling. We therefore investigated different agents that interfere specifically with these pathways, including antagonism of the IGF1 receptor by NVP-AEW541. We found that NVP-AEW541 significantly reduced MPC and MTT cell viability at relatively high doses but led to a compensatory up-regulation of ERK and mTORC1 signalling at suboptimal doses while PI3K/AKT inhibition remained stable. We subsequently investigated the effect of the dual PI3K/mTORC1/2 inhibitor NVP-BEZ235, which led to a significant decrease of MPC and MTT cell viability at doses below 50 nM but again increased ERK signalling. Accordingly, we next examined the combination of NVP-BEZ235 with the established agent lovastatin, as this has been described to inhibit ERK signalling. Lovastatin alone significantly reduced MPC and MTT cell viability at therapeutically relevant doses and inhibited both ERK and AKT signalling, but increased mTORC1/p70S6K signalling. Combination treatment with NVP-BEZ235 and lovastatin showed a significant additive effect in MPC and MTT cells and resulted in inhibition of both AKT and mTORC1/p70S6K signalling without ERK up-regulation. Simultaneous inhibition of PI3K/AKT, mTORC1/2 and ERK signalling suggests a novel therapeutic approach for malignant PCCs.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, William Harvey Research Institute and Barts Cancer Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Reidy-Lagunes DL, Vakiani E, Segal MF, Hollywood EM, Tang LH, Solit DB, Pietanza MC, Capanu M, Saltz LB. A phase 2 study of the insulin-like growth factor-1 receptor inhibitor MK-0646 in patients with metastatic, well-differentiated neuroendocrine tumors. Cancer 2012; 118:4795-800. [DOI: 10.1002/cncr.27459] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/06/2011] [Accepted: 01/03/2012] [Indexed: 11/09/2022]
|
25
|
Nölting S, Grossman AB. Signaling pathways in pheochromocytomas and paragangliomas: prospects for future therapies. Endocr Pathol 2012; 23:21-33. [PMID: 22391976 DOI: 10.1007/s12022-012-9199-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is currently no completely effective therapy available for metastatic pheochromocytomas or paragangliomas. Increasing understanding of the germline and somatic mutations leading to pheochromocytoma and paraganglioma development has revealed crucial insights into the molecular pathology of these tumors. A detailed understanding of the molecular pathway alterations giving rise to pheochromocytomas and paragangliomas should allow for the exploration and development of new effective molecular-targeted therapy options for this rare but frequently fatal malignancy. Molecular analysis has shown that pheochromocytoma/paraganglioma-promoting gene mutations can be divided into two major groups-clusters 1 and 2-following two different routes to tumorigenesis. Cluster 1 mutations are associated with pseudohypoxia and aberrant VEGF signaling while cluster 2 mutations are associated with abnormal activation of kinase signaling pathways such as PI3 kinase/AKT, RAS/RAF/ERK, and mTORC1/p70S6K suggesting relevant targets for novel molecular-targeted therapy approaches which will be discussed in detail in this chapter.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | |
Collapse
|
26
|
Jeong HK, Roh SY, Hong SH, Won HS, Jeon EK, Shin OR, Lee SL, Ko YH. Pancreatic endocrine tumors: a report on a patient treated with sorafenib. J Korean Med Sci 2011; 26:954-8. [PMID: 21738352 PMCID: PMC3124729 DOI: 10.3346/jkms.2011.26.7.954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/21/2011] [Indexed: 11/23/2022] Open
Abstract
A 31-yr-old man with abdominal pain was diagnosed with a pancreatic endocrine tumor and multiple hepatic metastases. Despite optimal treatment with interferon alpha, a somatostatin analog, local therapy with high-intensity focused ultrasound ablation for multiple hepatic metastases, and multiple lines of chemotherapy with etoposide/cisplatin combination chemotherapy and gemcitabine monotherapy, the tumor progressed. As few chemotherapeutic options were available for him, sorafenib (800 mg/day, daily) was administered as a salvage regimen. Sorafenib was continued despite two episodes of grade 3 skin toxicity; it delayed tumor progression compared to the previous immunotherapy and chemotherapy. Serial computed tomography scans showed that the primary and metastatic tumors were stable. Thirteen months after beginning targeted therapy, and up to the time of this report, the patient is well without disease progression. We suggest that sorafenib is effective against pancreatic endocrine tumors.
Collapse
Affiliation(s)
- Hee Kyoung Jeong
- Division of Oncology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Sang Young Roh
- Division of Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Sook Hee Hong
- Division of Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hye Sung Won
- Division of Oncology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Eun Kyoung Jeon
- Division of Oncology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Ok Ran Shin
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Su Lim Lee
- Department of Radiology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| |
Collapse
|
27
|
Therapy innovations: tyrosine kinase inhibitors for the treatment of pancreatic neuroendocrine tumors. Cancer Metastasis Rev 2011; 30 Suppl 1:19-26. [PMID: 21308478 DOI: 10.1007/s10555-011-9291-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) show limited sensitivity to cytotoxic agents, requiring the search for novel therapies. Recently, data from a phase III trial demonstrated that sunitinib produces a clinically significant improvement in progression-free survival in patients with unresectable, advanced, or metastatic GEP-NETs. Based on this finding, sunitinib became the first targeted drug approved for the treatment of GEP-NETs, paving the way for the approval of other anticancer agents in this drug-orphan disease. To date, results of trials involving other multitargeted tyrosine kinase inhibitors, such as sorafenib, the monoclonal antibody bevacizumab, and insulin-like growth factor 1 receptor inhibitors, have also shown promising results, and some are already being studied in phase III trials. This review updates the results of ongoing trials using inhibitors of growth factors and tyrosine kinase receptors involved in the carcinogenesis of GEP-NETs.
Collapse
|
28
|
Fazio N, Cinieri S, Lorizzo K, Squadroni M, Orlando L, Spada F, Maiello E, Bodei L, Paganelli G, Delle Fave G, de Braud F. Biological targeted therapies in patients with advanced enteropancreatic neuroendocrine carcinomas. Cancer Treat Rev 2011; 36 Suppl 3:S87-94. [PMID: 21129617 DOI: 10.1016/s0305-7372(10)70026-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enteropancreatic (EP) neuroendocrine carcinomas (NECs) represent relatively rare and heterogeneous malignancies. They are the most common group among neuroendocrine tumors (NETs). In most cases they are advanced at diagnosis and slow-growing, therefore conditioning a better prognosis compared with non neuroendocrine carcinomas from the same sites. No standard medical therapy exists, except for somatostatin analogs in functioning tumors, and octreotide LAR in functioning or non functioning well differentiated NECs from small bowel. Several systemic therapeutic options exist, including chemotherapy, somatostatin analog, interferon, peptide receptor radionuclide therapy (PRRT), and molecular targeted drugs. Among them some therapies have specific biological tumor targets and can be defined as "biological targeted therapies". This review focuses on the status of EP NECs targeted therapies in the light of recent advances. Somatostatin receptors (SSTRs) are the first therapeutic target detected in EP NECs. Through them SS analogs and PRRT act, producing symptomatic, biochemical, and, to a lesser extent, antiproliferative effects. New SS analogs, covering a higher number of SSTR subtypes, were developed, including pasireotide (SOM230), which controls 25% of carcinoid syndromes resistant to full dose octreotide LAR. Chimeric analogs, which bind SSTR2/SSTR5 and dopamine-2 receptor subtype (D2), are in preclinical phase of development. Among the numerous molecular targeted agents investigated in NETs, mTOR inhibitors and VEGF/VEGFR/PDGFR inhibitors are in most advanced clinical phase of investigation. In particular, everolimus, sunitinib, and bevacizumab are all studied in phase III trials. Both everolimus and sunitinib produced significant survival benefit versus placebo in advanced progressing well-differentiated pancreatic NECs. Sunitinib data have been presented at the last ASCO in June 2010, and everolimus data will be presented at next ESMO in September 2010.
Collapse
Affiliation(s)
- Nicola Fazio
- European Institute of Oncology, IEO NET Study Group, Via Ripamonti 435, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wiedenmann B, Pavel M, Kos-Kudla B. From targets to treatments: a review of molecular targets in pancreatic neuroendocrine tumors. Neuroendocrinology 2011; 94:177-90. [PMID: 21893937 DOI: 10.1159/000329386] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 05/15/2011] [Indexed: 12/30/2022]
Abstract
Pancreatic neuroendocrine tumors (pancreatic NET) are relatively rare, slowly growing tumors, although their incidence is increasing, and patients may survive for several years with metastatic disease. Apart from symptomatic relief, there have been few treatment options for these tumors in the past. More recently, investigators have explored the potential of molecularly targeted agents in treating pancreatic NET, with some success. In this review, we consider the data supporting exploitation of different targets in pancreatic NET, including peptide receptors, receptor tyrosine kinases (involved in tumor angiogenesis and more directly supporting tumor growth), and intracellular targets, such as the mammalian target of rapamycin (mTOR), which has a central role in regulating cell growth, metabolism, and apoptosis. Probably due to the paucity of pancreatic NET, many clinical trials to date have included heterogeneous NET populations, and there are few randomized studies of this specific patient population. Very recently, promising results have been achieved in placebo-controlled, phase III trials with the multitargeted tyrosine kinase inhibitor, sunitinib, and the mTOR inhibitor, everolimus. These agents have been approved or are currently being reviewed by authorities for use in patients with pancreatic NET. Here we review potential molecular targets in pancreatic NET and summarize the available data for targeted agents from phase II and III trials open to patients with this tumor.
Collapse
Affiliation(s)
- Bertram Wiedenmann
- Department of Hepatology, Gastroenterology and Endocrinology, Charité Medical School, Berlin, Germany.
| | | | | |
Collapse
|
30
|
Couderc C, Poncet G, Villaume K, Blanc M, Gadot N, Walter T, Lepinasse F, Hervieu V, Cordier-Bussat M, Scoazec JY, Roche C. Targeting the PI3K/mTOR pathway in murine endocrine cell lines: in vitro and in vivo effects on tumor cell growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:336-44. [PMID: 21224070 DOI: 10.1016/j.ajpath.2010.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/13/2010] [Accepted: 09/09/2010] [Indexed: 11/29/2022]
Abstract
The mammalian target of rapamycin (mTOR) inhibitors, such as rapalogues, are a promising new tool for the treatment of metastatic gastroenteropancreatic endocrine tumors. However, their mechanisms of action remain to be established. We used two murine intestinal endocrine tumoral cell lines, STC-1 and GLUTag, to evaluate the antitumor effects of rapamycin in vitro and in vivo in a preclinical model of liver endocrine metastases. In vitro, rapamycin inhibited the proliferation of cells in the basal state and after stimulation by insulin-like growth factor-1. Simultaneously, p70S6 kinase and 4EBP1 phosphorylation was inhibited. In vivo, rapamycin substantially inhibited the intrahepatic growth of STC-1 cells, irrespectively of the timing of its administration and even when the treatment was administered after cell intrahepatic engraftment. In addition, treated animals had significantly prolonged survival (mean survival time: 47.7 days in treated animals versus 31.8 days in controls) and better clinical status. Rapamycin treatment was associated with a significant decrease in mitotic index and in intratumoral vascular density within STC-1 tumors. Furthermore, the antitumoral effect obtained after treatment with a combination of rapamycin and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 was more significant than with rapamycin alone in both cell lines. Our results suggest that the antitumor efficacy of rapamycin in neuroendocrine tumors results from a combination of antiproliferative and antiangiogenic effects. Interestingly, a more potent antitumor efficiency could be obtained by simultaneously targeting several levels of the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Christophe Couderc
- INSERM, U865, Faculté Laënnec, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Faivre S, Sablin MP, Dreyer C, Raymond E. Novel anticancer agents in clinical trials for well-differentiated neuroendocrine tumors. Endocrinol Metab Clin North Am 2010; 39:811-26. [PMID: 21095547 DOI: 10.1016/j.ecl.2010.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neuroendocrine tumors (NETs) are rare malignancies that arise from endocrine cells located in various anatomic locations, with a dramatic increase in incidence during the last 30 years. Limited therapeutic options are currently available for patients with advanced well-differentiated NETs, including carcinoids and pancreatic NETs. Streptozotocin-based chemotherapy and somatostatin analogues are drugs that are currently used for the treatment of progressive metastatic NETs. Recently, sunitinib demonstrating efficacy in pancreatic islet cell carcinomas has opened a new avenue for the treatment of NETs, and further trials shall be considered in NET types such as carcinoids, poorly differentiated neuroendocrine carcinomas, and several other endocrine tumors that depend on vascular endothelial growth factor (VEGF)/VEGF receptor for angiogenesis. In addition, drugs with distinct mechanisms of action, such as mammalian target of rapamycin inhibitors, currently investigated in phase 3 trials, may also supply novel options to control tumor growth and metastasis. Although acknowledged as rare tumors, recent data demonstrated the feasibility of large randomized trials in this disease. Furthermore, data from large trials also showed the importance of selecting an appropriate patient population when designing randomized studies. This review focuses on novel therapeutic approaches in the treatment of well-differentiated NETs. Based on recent data, novel strategies may now be designed using those anticancer agents to optimize the current treatment of patients with NETs.
Collapse
Affiliation(s)
- Sandrine Faivre
- Department of Medical Oncology, Beaujon University Hospital (AP-HP, Paris 7 Diderot), Clichy, France
| | | | | | | |
Collapse
|
32
|
Advances in the therapy of gastroenteropancreatic-neuroendocrine tumours (GEP-NETs). Clin Transl Oncol 2010; 12:481-92. [PMID: 20615825 DOI: 10.1007/s12094-010-0541-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neuroendocrine tumours (NET) of the digestive tract comprise a broad range of malignancies. The therapeutic approach to these tumours has not evolved as it did in other tumour types in the last two decades. The deeper knowledge of the underlying molecular biology behind the growth of neuroendocrine cells has brought much information to light. We now know that somatostatin analogues may not only be considered as symptomatic treatment but also as antitumour agents. Sunitinib, a tyrosine kinase (TK) inhibitor with antiangiogenic and antitumoural properties, has been shown to induce significant improvement in progression-free survival in a randomised trial conducted in well-differentiated pancreatic islet-cell NETs. The relevance of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway seems to be crucial in gastroenteropancreatic (GEP)-NETs. In fact, mTOR inhibitors have shown activity in uncontrolled trials, and large, randomised trial results will be available shortly. In this article, we summarise the most recent available data on medical therapy for GEPNETs.
Collapse
|
33
|
Iida S, Miki Y, Ono K, Akahira JI, Suzuki T, Ishida K, Watanabe M, Sasano H. Novel classification based on immunohistochemistry combined with hierarchical clustering analysis in non-functioning neuroendocrine tumor patients. Cancer Sci 2010; 101:2278-85. [PMID: 20682006 PMCID: PMC11159394 DOI: 10.1111/j.1349-7006.2010.01657.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Somatostatin analogues ameliorated many symptoms caused by neuroendocrine tumors (NET), but their antitumor activities are limited especially in non-functioning cases. An overactivation of signaling pathways under receptor tyrosine-kinase (RTK) has been recently demonstrated in some NET patients, but its details have remained largely unknown. Therefore, in this study, we immunolocalized therapeutic factors and evaluated the data to study the clinical significance of the molecules in non-functioning Japanese gastrointestinal NET. Fifty-two NET cases were available for examination in this study and expression of somatostatin receptor (sstr) 1, 2A, 2B, 3 and 5, activated form of mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4-binding protein 1 (4EBP1), ribosomal protein s6 (S6), extracellular signal-regulated kinase (ERK) and insulin-like growth factor 1 receptor (IGF-1R) was evaluated using immunohistochemistry. We then studied the correlation among the immunohistochemical results of the individual cases using hierarchical clustering analysis. Results of clustering analysis demonstrated that NET cases were basically classified into Cluster I and II. Cluster I was associated with higher expression of sstr1, 2B and 3 and Cluster II was characterized by an activation of the PI3K/Akt pathway and IGF-1R and higher proliferative status. Cluster II was further classified into Cluster IIa and IIb. Cluster IIa was associated with higher expression of sstr1 and 5 and higher proliferative status and Cluster IIb was characterized by ERK activation. Hierarchical clustering analysis of immunoreactivity of the therapeutic factors can classify NET cases into three distinctive groups and the medical treatment may be determined according to this novel classification method for non-functioning NET patients.
Collapse
Affiliation(s)
- Shinya Iida
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jeng JE, Chuang LY, Chuang WL, Chang JG, Tsai JF. Insulin-like growth factor II in hepatocellular carcinoma. Biomark Med 2010; 1:261-71. [PMID: 20477401 DOI: 10.2217/17520363.1.2.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant human tumors. Hepatocarcinogenesis is a multistep process with a multifactorial etiology. Chronic hepatitis B and hepatitis C virus infection, alcohol drinking and cirrhosis of any etiology are the major risk factors for hepatocellular carcinoma. Growth factors, their receptors and related proteins are involved in the process of malignant transformation. The IGF axis is involved in the proliferation and differentiation of normal, transformed and malignant hepatocytes. In the context of hepatocarcinogenesis, IGF-II has, in particular, been investigated thoroughly. Increased IGF-II bioavailability, protease activity of IGF-binding proteins and IGF-I receptor expression, decreased expression of IGF-II receptor and IGF-binding proteins are thought to contribute to hepatocellular carcinoma genesis. This review will first focus on the role of the IGF axis in hepatocarcinogenesis. In the second part it will emphasize circulating IGF-II levels in chronic liver disease and hepatocellular carcinoma, and diagnostic application of serum IGF-II level in both small and larger hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jeng-Eing Jeng
- Kaohsiung Medical University, Department of Clinical Laboratory, Faculty of Medicine, College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Wolf S, Lorenz J, Mössner J, Wiedmann M. Treatment of biliary tract cancer with NVP-AEW541: Mechanisms of action and resistance. World J Gastroenterol 2010; 16:156-66. [PMID: 20066734 PMCID: PMC2806553 DOI: 10.3748/wjg.v16.i2.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate in vitro treatment with NVP-AEW541, a small molecule inhibitor of insulin-like growth factor-1 receptor (IGF-1R), in biliary tract cancer (BTC), since this disease is associated with a poor prognosis due to wide resistance to chemotherapeutic agents and radiotherapy.
METHODS: Cell growth inhibition by NVP-AEW541 was studied in vitro in 7 human BTC cell lines by automated cell counting. In addition, the anti-tumoral mechanism of NVP-AEW541 was studied by Western blotting, cell cycle analysis and reverse transcription-polymerase chain reaction (RT-PCR). Anti-tumoral drug effect in combination with gemcitabine, 5-fluorouracil (5-FU) and Polo-like kinase 1 inhibitor BI2536 was also studied.
RESULTS: In vitro treatment with NVP-AEW541 suppressed growth in all human BTC cell lines, however response was lower in gallbladder cancer. Treatment with NVP-AEW541 was associated with dephosphorylation of IGF-1R and AKT. In contrast, phosphorylation of p42/p44 and Stat3 and expression of Bcl-xL were inconsistently downregulated. In addition, treated cells showed cell cycle arrest at the G1/S-checkpoint and an increase in sub-G1 peak. Moreover, IGF-1R and its ligands IGF-1 and IGF-2 were co-expressed in RT-PCR, suggesting an autocrine loop of tumor cell activation. Combined with gemcitabine, NVP-AEW541 exerted synergistic effects, particularly at low concentrations, while effects of combination with 5-FU or BI 2536 were only additive.
CONCLUSION: Our findings suggest that NVP-AEW541 is active against BTC in vitro and potentiates the efficacy of gemcitabine.
Collapse
|
36
|
Bao XH, Naomoto Y, Hao HF, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Takaoka M. IGF-IR and its inhibitors in gastrointestinal carcinomas (Review). Oncol Lett 2010; 1:195-201. [PMID: 22966282 DOI: 10.3892/ol_00000036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/07/2009] [Indexed: 12/12/2022] Open
Abstract
The type I insulin-like growth factor receptor (IGF-IR) and its associated signaling system play a significant role in tumorigenesis, tumor survival and progression, and cancer therapeutic resistance, and thus has provoked great interest as a promising target for cancer treatment. In this report we present the role of IGF-IR in gastrointestinal carcinomas whose pathology has been identified as tightly correlated with an abnormal expression and activation of IGF-IR. Reported data from experimental studies suggest the feasibility of targeted IGF-IR therapy in gastrointestinal carcinomas. Many types of inhibitors against IGF-IR have been developed. Inhibitors with anti-IGF-IR monoclonal antibodies and tyrosine kinase inhibitors currently undergoing preclinical and clinical evolution are also reviewed.
Collapse
Affiliation(s)
- Xiao Hong Bao
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vitale G, van Koetsveld PM, de Herder WW, van der Wansem K, Janssen JAMJL, Colao A, Lombardi G, Lamberts SWJ, Hofland LJ. Effects of type I interferons on IGF-mediated autocrine/paracrine growth of human neuroendocrine tumor cells. Am J Physiol Endocrinol Metab 2009; 296:E559-66. [PMID: 19141687 DOI: 10.1152/ajpendo.90770.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently demonstrated that interferon (IFN)-beta has a more potent antitumor activity than IFN-alpha in BON cells, a neuroendocrine tumor (NET) cell line. The present study showed the role of type I IFNs in the modulation of the insulin-like growth factor (IGF) system in NETs. BON cells expressed IGF-I, IGF-II, IGF-I receptor, and insulin receptor mRNA. In addition, IGF-I and IGF-II stimulated the proliferation of BON cells and induced an inhibition of DNA fragmentation (apoptosis). As evaluated by quantitative RT-PCR, treatment with IFN-alpha (100 IU/ml) or IFN-beta (100 IU/ml) inhibited the expression of IGF-II mRNA (-42% and -65%, respectively, both P < 0.001), whereas IGF-I receptor mRNA was significantly upregulated by IFN-alpha (+28%, P < 0.001) and downregulated by IFN-beta (-47%, P < 0.001). Immunoreactive IGF-II concentration decreased in the conditioned medium during IFN-alpha (-16%, P < 0.05) and IFN-beta (-69%, P < 0.001) treatment. Additionally, IGF-I receptor bioactivity was reduced (-54%) after IFN-beta treatment. Scatchard analysis of (125)I-labeled IGF-I binding to cell membrane of BON cells revealed a dramatic suppression of maximum binding capacity only in the presence of IFN-beta. Finally, the proapoptotic activity of IFN-beta was partially counteracted by the coadministration of IGF-I and IGF-II (both at 50 nM). In conclusion, these data demonstrate that the IGF system has an important role in autocrine/paracrine growth of BON cells. The more potent antitumor activity of IFN-beta compared with IFN-alpha could be explained by several effects on this system: 1) both IFNs inhibit the transcription of IGF-II, but the suppression is significantly higher after IFN-beta than IFN-alpha and 2) only IFN-beta inhibits the expression of IGF-I receptor.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Internal Medicine, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Almeida MQ, Fragoso MCBV, Lotfi CFP, Santos MG, Nishi MY, Costa MHS, Lerario AM, Maciel CC, Mattos GE, Jorge AAL, Mendonca BB, Latronico AC. Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors. J Clin Endocrinol Metab 2008; 93:3524-31. [PMID: 18611974 DOI: 10.1210/jc.2008-0065] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adrenocortical tumors are heterogeneous neoplasms with incompletely understood pathogenesis. IGF-II overexpression has been consistently demonstrated in adult adrenocortical carcinomas. OBJECTIVES The objective of the study was to analyze expression of IGF-II and its receptor (IGF-IR) in pediatric and adult adrenocortical tumors and the effects of a selective IGF-IR kinase inhibitor (NVP-AEW541) on adrenocortical tumor cells. PATIENTS Fifty-seven adrenocortical tumors (37 adenomas and 20 carcinomas) from 23 children and 34 adults were studied. METHODS Gene expression was determined by quantitative real-time PCR. Cell proliferation and apoptosis were analyzed in NCI H295 cells and a new cell line established from a pediatric adrenocortical adenoma. RESULTS IGF-II transcripts were overexpressed in both pediatric adrenocortical carcinomas and adenomas. Otherwise, IGF-II was mainly overexpressed in adult adrenocortical carcinomas (270.5 +/- 130.2 vs. 16.1 +/- 13.3; P = 0.0001). IGF-IR expression was significantly higher in pediatric adrenocortical carcinomas than adenomas (9.1 +/- 3.1 vs. 2.6 +/- 0.3; P = 0.0001), whereas its expression was similar in adult adrenocortical carcinomas and adenomas. IGF-IR expression was a predictor of metastases in pediatric adrenocortical tumors in univariate analysis (hazard ratio 1.84; 95% confidence interval 1.28-2.66; P = 0.01). Furthermore, NVP-AEW541 blocked cell proliferation in a dose- and time-dependent manner in both cell lines through a significant increase of apoptosis. CONCLUSION IGF-IR overexpression was a biomarker of pediatric adrenocortical carcinomas. Additionally, a selective IGF-IR kinase inhibitor had antitumor effects in adult and pediatric adrenocortical tumor cell lines, suggesting that IGF-IR inhibitors represent a promising therapy for human adrenocortical carcinoma.
Collapse
Affiliation(s)
- Madson Q Almeida
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM-42 da Disciplina de Endocrinologia do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Piao W, Wang Y, Adachi Y, Yamamoto H, Li R, Imsumran A, Li H, Maehata T, Ii M, Arimura Y, Lee CT, Shinomura Y, Carbone DP, Imai K. Insulin-like growth factor-I receptor blockade by a specific tyrosine kinase inhibitor for human gastrointestinal carcinomas. Mol Cancer Ther 2008; 7:1483-93. [PMID: 18566219 DOI: 10.1158/1535-7163.mct-07-2395] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor-I receptor (IGF-IR) signaling is required for carcinogenicity and proliferation of gastrointestinal (GI) cancers. In this study, we sought to evaluate the effect of a new tyrosine kinase inhibitor of IGF-IR, NVP-AEW541, on the signal transduction and the progression of GI carcinomas. We assessed the effect of NVP-AEW541 on signal transduction, proliferation, survival, and migration in four GI cancer cells: colorectal adenocarcinoma HT29, pancreatic adenocarcinoma BxPC3, esophageal squamous cell carcinoma TE1, and hepatoma PLC/PRF/5. The effects of NVP-AEW541 alone and with chemotherapy were studied in vitro and in nude mouse xenografts. We also analyzed the effects of NVP-AEW541 on insulin signals and hybrid receptor formation between IGF-IR and insulin receptor. NVP-AEW541 blocked autophosphorylation of IGF-IR and both Akt and extracellular signal-regulated kinase activation by IGF but not by insulin. NVP-AEW541 suppressed proliferation and tumorigenicity in vitro in a dose-dependent manner in all cell lines. The drug inhibited tumor as a single agent and, when combined with stressors, up-regulated apoptosis in a dose-dependent fashion and inhibited mobility. NVP-AEW541 augmented the effects of chemotherapy on in vitro growth and induction of apoptosis. Moreover, the combination of NVP-AEW541 and chemotherapy was highly effective against tumors in mice. This compound did not influence hybrid receptor formation. Thus, NVP-AEW541 may have significant therapeutic utility in human GI carcinomas both alone and in combination with chemotherapy.
Collapse
Affiliation(s)
- Wenhua Piao
- First Department of Internal Medicine, Sapporo Medical University, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci U S A 2008; 105:8387-92. [PMID: 18550829 DOI: 10.1073/pnas.0803383105] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A subset of gastrointestinal stromal tumors (GISTs) lack gain-of-function mutations in c-KIT and PDGFRalpha. These so-called wild-type (WT) GISTs tend to be less responsive to imatinib-based therapies and have a poor prognosis. We identified amplification of IGF1R in a SNP analysis of GIST and thus studied its potential as a therapeutic target in WT and mutant GIST. Expression of IGF1R and downstream effectors in clinical GIST samples was examined by using immunoblots and immunohistochemistry. The roles of IGF1R signaling in GIST and viability were analyzed by using NVP-AEW541, an inhibitor of IGF1R, alone and in combination with imatinib, or via siRNA silencing of IGF1R. IGF1R was strongly overexpressed, and IGF1R amplification was detected at a significantly higher frequency in WT GISTs, including a pediatric WT GIST, compared with mutant GISTs (P = 0.0173 and P = 0.0163, respectively). Inhibition of IGF1R activity in vitro with NVP-AEW541 or down-regulation of expression with siIGF1R led to cytotoxicity and induced apoptosis in GIST cell lines via AKT and MAPK signaling. Combination of NVP-AEW541 and imatinib in GIST cell lines induced a strong cytotoxicity response. Our results reveal that IGF1R is amplified and the protein is overexpressed in WT and pediatric GISTs. We also demonstrate that the aberrant expression of IGF1R may be associated with oncogenesis in WT GISTs and suggest an alternative and/or complementary therapeutic regimen in the clinical management of all GISTs, especially in a subset of tumors that respond less favorably to imatinib-based therapy.
Collapse
|
41
|
Höpfner M, Schuppan D, Scherübl H. Treatment of gastrointestinal neuroendocrine tumors with inhibitors of growth factor receptors and their signaling pathways: recent advances and future perspectives. World J Gastroenterol 2008; 14:2461-73. [PMID: 18442192 PMCID: PMC2708356 DOI: 10.3748/wjg.14.2461] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/15/2008] [Indexed: 02/06/2023] Open
Abstract
The limited efficacy of conventional cytotoxic treatment regimes for advanced gastrointestinal neuroendocrine cancers emphasizes the need for novel and more effective medical treatment options. Recent findings on the specific biological features of this family of neoplasms has led to the development of new targeted therapies, which take into account the high vascularization and abundant expression of specific growth factors and cognate tyrosine kinase receptors. This review will briefly summarize the status and future perspectives of antiangiogenic, mTOR- or growth factor receptor-based pharmacological approaches for the innovative treatment of gastrointestinal neuroendocrine tumors. In view of the multitude of novel targeted approaches, the rationale for innovative combination therapies, i.e. combining growth factor (receptor)-targeting agents with chemo- or biotherapeutics or with other novel anticancer drugs such as HDAC or proteasome inhibitors will be taken into account.
Collapse
|
42
|
Zitzmann K, Vlotides G, Göke B, Auernhammer CJ. PI(3)K-Akt-mTOR pathway as a potential therapeutic target in neuroendocrine tumors. Expert Rev Endocrinol Metab 2008; 3:207-222. [PMID: 30764093 DOI: 10.1586/17446651.3.2.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Constitutive activation of PI(3)K-Akt-mTOR signaling is a frequently occurring event in human cancer and has also been detected in the majority of neuroendocrine tumors (NETs) of the gastroenteropancreatic system. Molecular analysis of NETs suggests, that in addition to mutations in certain tumor-suppressor genes (e.g., PTEN), multiple autocrine growth factor loops contribute to hyperactive PI(3)K-Akt-mTOR signaling, thus promoting unrestricted proliferation and resistance to apoptosis. These insights opened new perspectives for targeted therapy in NETs. In particular, several novel small-molecule inhibitors of tyrosine and serine/threonine kinases have demonstrated potent anti-tumor activity. This review will summarize current knowledge on PI(3)K-Akt-mTOR signaling, its role in proliferation and apoptosis, as well as novel therapeutic approaches targeting PI(3)K-Akt-mTOR pathway components in NET disease.
Collapse
Affiliation(s)
- Kathrin Zitzmann
- a Department of Internal Medicine II - Grosshadern, Ludwig-Maximilians- University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | - George Vlotides
- b Department of Medicine, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, CA 90048, USA.
| | - Burkhard Göke
- c Department of Internal Medicine II - Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | - Christoph J Auernhammer
- d Department of Internal Medicine II - Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| |
Collapse
|
43
|
Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A, Vigneri R. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 2008; 114:23-37. [PMID: 18465356 DOI: 10.1080/13813450801969715] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is evidence, both in vitro and in vivo, that receptor tyrosine kinases play a key role in the formation and progression of human cancer. In particular, the insulin-like growth factor receptor (IGF-IR), a tyrosine kinase receptor for IGF-I and IGF-II, has been well documented in cell culture, animal studies, and humans to play a role in malignant transformation, progression, protection from apoptosis, and metastasis. In addition, the hormone insulin (which is very closely related to the IGFs) and its tyrosine kinase receptor (the IR, which is very closely related to the IGR-IR) have been documented both in vitro and in vivo to play a key role in cancer biology. Indeed, several epidemiological studies have shown that insulin resistance status, characterized by hyperinsulinaemia, is associated with an increased risk for a number of malignancies, including carcinomas of the breast, prostate, colon and kidney. Recent data have elucidated some molecular mechanisms by which IR is involved in cancer. IR is over-expressed in several human malignancies. Interestingly, one of the two IR isoform (IR-A) is especially over-expressed in cancer. IR-A is the IR foetal isoform and has the peculiar characteristic to bind not only insulin but also IGF-II. In addition, the IR contributes to formation of hybrid receptors with the IGF-IR (HR). By binding to hybrid receptors, insulin may stimulate specific IGF-IR signalling pathways. Over-expression of IR-A is, therefore, a major mechanism of IGF system over-activation in cancer. In this respect, IR-A isoform and hybrid receptors should be regarded as potential molecular targets, in addition to IGF-IR, for novel anti-cancer therapy. These findings may have important implications for both the prevention and treatment of common human malignancies. They underline the concept that hyperinsulinaemia, associated with insulin resistance and obesity, should be treated by changes in life style and/or pharmacological approaches to avoid an increased risk for cancer. Moreover, native insulin and insulin analogue administration should be carefully evaluated in terms of the possible increase in cancer risk.
Collapse
Affiliation(s)
- Francesco Frasca
- Department of Internal Medicine, Endocrinology Unit, University of Catania, Via Palermo 636, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Höpfner M, Schuppan D, Scherübl H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. World J Gastroenterol 2008; 14:1-14. [PMID: 18176955 PMCID: PMC2673371 DOI: 10.3748/wjg.14.1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Growth factors and their corresponding receptors are commonly overexpressed and/or dysregulated in many cancers including hepatocellular cancer (HCC). Clinical trials indicate that growth factor receptors and their related signalling pathways play important roles in HCC cancer etiology and progression, thus providing rational targets for innovative cancer therapies. A number of strategies including monoclonal antibodies, tyrosine kinase inhibitors (“small molecule inhibitors”) and antisense oligonucleotides have already been evaluated for their potency to inhibit the activity and downstream signalling cascades of these receptors in HCC. First clinical trials have also shown that multi-kinase inhibition is an effective novel treatment strategy in HCC. In this respect sorafenib, an inhibitor of Raf-, VEGF- and PDGF-signalling, is the first multi-kinase inhibitor that has been approved by the FDA for the treatment of advanced HCC. Moreover, the serine-threonine kinase of mammalian target of rapamycin (mTOR) upon which the signalling of several growth factor receptors converge plays a central role in cancer cell proliferation. mTOR inhibition of HCC is currently also being studied in preclinical trials. As HCCs represent hypervascularized neoplasms, inhibition of tumour vessel formation via interfering with the VEGF/VEGFR system is another promising approach in HCC treatment. This review will summarize the current status of the various growth factor receptor-based treatment strategies and in view of the multitude of novel targeted approaches, the rationale for combination therapies for advanced HCC treatment will also be taken into account.
Collapse
|
45
|
Tao Y, Pinzi V, Bourhis J, Deutsch E. Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway--therapeutic perspectives in cancer. ACTA ACUST UNITED AC 2007; 4:591-602. [PMID: 17898809 DOI: 10.1038/ncponc0934] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/30/2007] [Indexed: 12/31/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway is implicated in the development of cancer. High levels of circulating IGF1 and certain genetic polymorphisms of IGF1 and IGFBP3 are associated with an increased risk of several common cancers. The IGF1 receptor (IGF1R) has been shown to be expressed in a wide range of tumors, and IGF1R signaling is crucial for tumor transformation and the survival of malignant cells. Several monoclonal antibodies and small-molecule inhibitors have been tested in preclinical studies and early-phase clinical studies. IGF1R signaling interferes with numerous growth factors and receptors such as VEGF and EGFR. In the experimental system, IGF1R signaling has been found to correlate with resistance to therapies based on the inhibition of EGFR and HER2. This Review highlights the most relevant studies in this exciting area of research, focusing in particular on the role of IGF1R in resistance to other receptor-targeted therapies for cancer.
Collapse
Affiliation(s)
- Yungan Tao
- Institute Gustave-Roussy and the Department of Radiation Oncology of Cancer Hospital, Fu Dan University, Shanghai, China
| | | | | | | |
Collapse
|
46
|
Lv W, Chen L. Current status and recent developments in molecular targeted therapy against gastric cancer. Shijie Huaren Xiaohua Zazhi 2007; 15:2672-2678. [DOI: 10.11569/wcjd.v15.i25.2672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies of the digestive system and is a major cause of cancer death in China. Recent improvements in both surgical techniques and adjuvant/neoadjuvant chemotherapy, radiotherapy or both have increased the survival rate of patients with early-stage disease. However, most patients with GC have advanced disease at diagnosis. Thus, despite recent advances, these patients still do poorly. Understanding the molecular pathways that characterize cell growth, cell cycle, apoptosis, angiogenesis and invasion has enabled us to use new approaches to treat this disease in clinical situations. These therapeutic strategies include epidermal growth factor receptor inhibitors, angiogenesis inhibitors, cell cycle inhibitors, apoptosis promoters and matrix metalloproteinase inhibitors. This review presents a brief introduction to the current status and advancement of molecular targeted therapies in the treatment of GC.
Collapse
|
47
|
Chan JA, Kulke MH. Emerging therapies for the treatment of patients with advanced neuroendocrine tumors. Expert Opin Emerg Drugs 2007; 12:253-70. [PMID: 17604500 DOI: 10.1517/14728214.12.2.253] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Patients with neuroendocrine tumors may pursue a number of treatment options, but there is little consensus on a single, standard treatment approach. Somatostatin analogs are generally administered to patients with symptoms of hormonal secretion, and are often highly effective in this regard. However, the administration of somatostatin analogs is only rarely associated with tumor regression, and randomized trials demonstrating a survival benefit associated with their use have not been performed. Selected patients with hepatic metastases may undergo surgical debulking, embolization or other ablative therapies. The clinical benefit associated with administration of systemic agents such as IFN-alpha or cytotoxic chemotherapy has been limited. With the possible exception of streptozocin-based therapy in patients with pancreatic neuroendocrine tumors, the widespread use of standard cytotoxic regimens has been limited by their relatively modest antitumor activity, as well as concerns regarding their potential toxicity. The modest efficacy seen with these agents in patients with advanced neuroendocrine tumors has led to great interest in the development of novel treatment approaches. One such approach is the use of radiolabeled somatostatin analogs. Recently, agents targeting the VEGF pathway and mammalian target of rapamycin have also shown promise in patients with advanced neuroendocrine tumors. Ongoing randomized studies should help better define the role these agents will play in the future treatment of patients with this disease.
Collapse
Affiliation(s)
- Jennifer A Chan
- Dana-Farber Cancer Institute, Department of Medical Oncology, 44 Binney Street, Boston, MA 02115, USA.
| | | |
Collapse
|
48
|
Abstract
Patients with metastatic gastrointestinal neuroendocrine tumors have traditionally been faced with few effective treatment options. Somatostatin analogs often successfully control symptoms of hormonal hypersecretion but seldom result in tumor regression. Some patients with hepatic metastases are also candidates for ablative therapies such as surgical debulking or embolization. The role of systemic agents such as interferon alfa or cytotoxic chemotherapy remains ill defined. The more prevalent use of these modalities has been restricted by low tumor response rates and the potential for toxicity. Novel agents, including radiolabeled somatostatin analogs, inhibitors of the vascular endothelial growth factor pathway, and inhibitors of mammalian target of rapamycin, have shown promising activity in recent clinical studies. Continued investigation of these agents should render a better understanding of their efficacy in patients with advanced neuroendocrine tumors.
Collapse
Affiliation(s)
- Matthew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Kurmasheva RT, Houghton PJ. IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta Rev Cancer 2006; 1766:1-22. [PMID: 16844299 DOI: 10.1016/j.bbcan.2006.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 02/07/2023]
Abstract
The type-I and -II insulin-like growth factors (IGF-I, II) are now established as survival- or proliferation-factors in many in vitro systems. Of note IGFs provide trophic support for multiple cell types or organ cultures explanted from various species, and delay the onset of programmed cell death (apoptosis) through the mitochondrial (intrinsic pathway) or by antagonizing activation of cytotoxic cytokine signaling (extrinsic pathway). In some instances, IGFs protect against other forms of death such as necrosis or autophagy. The effect of IGFs on cell survival appears to be context specific, being determined both by the cell origin (tissue specific) and the cellular stress that induces loss of cellular viability. In many human cancers, there is a strong association with dysregulated IGF signaling, and this association has been extensively reviewed recently. IGF-regulation is also disrupted in childhood cancers as a consequence of chromosomal translocations. IGFs are implicated also in acute renal failure, traumatic injury to brain tissue, and cardiac disease. This article focuses on the role of IGFs and their cellular signaling pathways that provide survival signals in stressed cells.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105-2794, USA
| | | |
Collapse
|
50
|
Abstract
The fascinating, but often unpredictable, biology of neuroendocrine tumors (NETs) make the management of these malignancies a real challenge. The more recent development of high-throughput genomic and proteomic techniques, have opened a window to an increased knowledge of the biology of NETs. This review will discuss genes thought to play a role in the context of NE tumor biology, with particularly attention to those that may be potential new diagnostic and prognostic markers, as well as therapeutic targets. NETs constitute a heterogeneous group of neoplasm that may arise in virtually every topographic localization in the body, as a consequence of malignant transformation of various types of NE cells. Since NETs arising in the gastroenteropancreatic (GEP) or bronchopulmonary system are by far the most common, this review focuses on these entities, but lines are drawn to other NETs as well. Although large-scale gene expression analysis undoubtly have raised interesting new hypothesis concerning genes thought to play a role in tumor biology, discrepancies observed between studies and various platforms used, emphasizes the need to not only standardize the way microarray data are reported, but also to introduce standards in sample taking, processing and study design. In addition, the recognition of the complexity of the human proteome, with regard to generation of multiple isoforms from one gene, has created additional challenges. However,some goals have been reached already, as new knowledge has been translated into development of novel promising therapeutics.
Collapse
Affiliation(s)
- Eva Hofsli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim N-7489, Norway.
| |
Collapse
|