1
|
Zhang H, Shah A, Ravandi A. Cardiogenic shock-sex-specific risk factors and outcome differences. Can J Physiol Pharmacol 2024; 102:530-537. [PMID: 38663027 DOI: 10.1139/cjpp-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cardiogenic shock (CS) remains a high-mortality condition despite technological and therapeutic advances. One key to potentially improving CS prognosis is understanding patient heterogeneity and which patients may benefit most from different treatment options, a key element of which is sex differences. While cardiovascular diseases (CVDs) have historically been considered a male-dominant condition, the field is increasingly aware that females are also a substantial portion of the patient population. While estrogen has been implicated in protective roles against CVD and tissue hypoxia, its role in CS remains unclear. Clinically, female CS patients tend to be older, have more severe comorbidities and are more likely to have non-acute myocardial infarction etiologies with preserved ejection fractions. Female CS patients are more likely to receive pharmacotherapy while less likely to receive mechanical circulatory support. There is increased short-term mortality in females, although long-term mortality is similar between the sexes. More sex-specific and age-stratified research needs to be done to fully understand the relevant pathophysiological differences in CS, to better recognize and manage CS patients and reduce its mortality.
Collapse
Affiliation(s)
- Hannah Zhang
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Ashish Shah
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Ravandi
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Yousefzadeh N, Jeddi S. Long-term Ovariectomy Reduces Tolerance of Rats to Myocardial Ischemia-reperfusion Injury. Int J Endocrinol Metab 2023; 21:e135101. [PMID: 38028249 PMCID: PMC10676666 DOI: 10.5812/ijem-135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background The harmful impact of ovariectomy on myocardial ischemia-reperfusion (M/IR) injury has been established in the short term. Objectives In this study, we aimed to investigate the long-term effects of ovariectomy on M/IR injury. Methods Two methods involving dorsolateral skin incisions were used to induce the ovariectomized (OVX) rat model. The rats were divided into 2 groups: Control and OVX (n = 6). At the end of the study, the hearts were isolated and subjected to global ischemia using the Langendorff apparatus. Cardiac function indices (CFIs) were recorded, including left ventricular end-diastolic pressure (LVEDP), peak rates of positive (+dp/dt) and negative (-dp/dt) changes in LV pressure, and LV-developed pressure (LVDP). At the end of the reperfusion period, the hearts were used to measure the size of the infarct, levels of nitric oxide metabolites (NOx), and mRNA expression of NO synthase (NOS) enzymes, including endothelial (eNOS), neuronal (nNOS), and inducible (iNOS). Results Compared to controls, OVX rats had larger infarct size by 51%, higher LVEDP by 29%, and lower recovery of +dp/dt, -dp/dt, and LVDP by 29%, 22%, and 35%, respectively. Furthermore, in heart tissue, rats that underwent OVX had significantly higher concentrations of nitrate, nitrite, and NOx by 79%, 82%, and 83%, respectively. Additionally, these rats had lower mRNA levels of eNOS by 38% and higher mRNA levels of iNOS by 71%. Conclusions The long-term deficiency of estrogen increased the expression of iNOS and decreased the expression of eNOS in the heart tissue of OVX rats. Imbalanced NOS expressions were associated with exacerbated responses to M/IR injury in OVX rats.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Collins HE. Female cardiovascular biology and resilience in the setting of physiological and pathological stress. Redox Biol 2023; 63:102747. [PMID: 37216702 PMCID: PMC10209889 DOI: 10.1016/j.redox.2023.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
For years, females were thought of as smaller men with complex hormonal cycles; as a result, females have been largely excluded from preclinical and clinical research. However, in the last ten years, with the increased focus on sex as a biological variable, it has become clear that this is not the case, and in fact, male and female cardiovascular biology and cardiac stress responses differ substantially. Premenopausal women are protected from cardiovascular diseases, such as myocardial infarction and resultant heart failure, having preserved cardiac function, reduced adverse remodeling, and increased survival. Many underlying biological processes that contribute to ventricular remodeling differ between the sexes, such as cellular metabolism; immune cell responses; cardiac fibrosis and extracellular matrix remodeling; cardiomyocyte dysfunction; and endothelial biology; however, it is unclear how these changes afford protection to the female heart. Although many of these changes are dependent on protection provided by female sex hormones, several of these changes occur independent of sex hormones, suggesting that the nature of these changes is more complex than initially thought. This may be why studies focused on the cardiovascular benefits of hormone replacement therapy in post-menopausal women have provided mixed results. Some of the complexity likely stems from the fact that the cellular composition of the heart is sexually dimorphic and that in the setting of MI, different subpopulations of these cell types are apparent. Despite the documented sex-differences in cardiovascular (patho)physiology, the underlying mechanisms that contribute are largely unknown due to inconsistent findings amongst investigators and, in some cases, lack of rigor in reporting and consideration of sex-dependent variables. Therefore, this review aims to describe current understanding of the sex-dependent differences in the myocardium in response to physiological and pathological stressors, with a focus on the sex-dependent differences that contribute to post-infarction remodeling and resultant functional decline.
Collapse
Affiliation(s)
- Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, Delia B. Baxter Research Building, University of Louisville, 580 S. Preston S, Louisville, KY 40202, USA.
| |
Collapse
|
4
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
5
|
Xiang D, Liu Y, Zhou S, Zhou E, Wang Y. Protective Effects of Estrogen on Cardiovascular Disease Mediated by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5523516. [PMID: 34257804 PMCID: PMC8260319 DOI: 10.1155/2021/5523516] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Perimenopause is an important stage of female senescence. Epidemiological investigation has shown that the incidence of cardiovascular disease in premenopausal women is lower than that in men, and the incidence of cardiovascular disease in postmenopausal women is significantly higher than that in men. This phenomenon reveals that estrogen has a definite protective effect on the cardiovascular system. In the cardiovascular system, oxidative stress is considered important in the pathogenesis of atherosclerosis, myocardial dysfunction, cardiac hypertrophy, heart failure, and myocardial ischemia. From the perspective of oxidative stress, estrogen plays a regulatory role in the cardiovascular system through the estrogen receptor, providing strategies for the treatment of menopausal women with cardiovascular diseases.
Collapse
Affiliation(s)
- Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Wang M, Smith K, Yu Q, Miller C, Singh K, Sen CK. Mitochondrial connexin 43 in sex-dependent myocardial responses and estrogen-mediated cardiac protection following acute ischemia/reperfusion injury. Basic Res Cardiol 2019; 115:1. [PMID: 31741053 DOI: 10.1007/s00395-019-0759-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
Preserving mitochondrial activity is crucial in rescuing cardiac function following acute myocardial ischemia/reperfusion (I/R). The sex difference in myocardial functional recovery has been observed after I/R. Given the key role of mitochondrial connexin43 (Cx43) in cardiac protection initiated by ischemic preconditioning, we aimed to determine the implication of mitochondrial Cx43 in sex-related myocardial responses and to examine the effect of estrogen (17β-estradiol, E2) on Cx43, particularly mitochondrial Cx43-involved cardiac protection following I/R. Mouse primary cardiomyocytes and isolated mouse hearts (from males, females, ovariectomized females, and doxycycline-inducible Tnnt2-controlled Cx43 knockout without or with acute post-ischemic E2 treatment) were subjected to simulated I/R in culture or Langendorff I/R (25-min warm ischemia/40-min reperfusion), respectively. Mitochondrial membrane potential and mitochondrial superoxide production were measured in cardiomyocytes. Myocardial function and infarct size were determined. Cx43 and its isoform, Gja1-20k, were assessed in mitochondria. Immunoelectron microscopy and co-immunoprecipitation were also used to examine mitochondrial Cx43 and its interaction with estrogen receptor-α by E2 in mitochondria, respectively. There were sex disparities in stress-induced cardiomyocyte mitochondrial function. E2 partially restored mitochondrial activity in cardiomyocytes following acute injury. Post-ischemia infusion of E2 improved functional recovery and reduced infarct size with increased Cx43 content and phosphorylation in mitochondria. Ablation of cardiac Cx43 aggravated mitochondrial damage and abolished E2-mediated cardiac protection during I/R. Female mice were more resistant to myocardial I/R than age-matched males with greater protective role of mitochondrial Cx43 in female hearts. Post-ischemic E2 usage augmented mitochondrial Cx43 content and phosphorylation, increased mitochondrial Gja1-20k, and showed cardiac protection.
Collapse
Affiliation(s)
- Meijing Wang
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.
| | - Kwynlyn Smith
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Qing Yu
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Caroline Miller
- Electron Microscopy Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.,Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
7
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
8
|
Chaudhari S, Cushen SC, Osikoya O, Jaini PA, Posey R, Mathis KW, Goulopoulou S. Mechanisms of Sex Disparities in Cardiovascular Function and Remodeling. Compr Physiol 2018; 9:375-411. [PMID: 30549017 DOI: 10.1002/cphy.c180003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies demonstrate disparities between men and women in cardiovascular disease prevalence, clinical symptoms, treatments, and outcomes. Enrollment of women in clinical trials is lower than men, and experimental studies investigating molecular mechanisms and efficacy of certain therapeutics in cardiovascular disease have been primarily conducted in male animals. These practices bias data interpretation and limit the implication of research findings in female clinical populations. This review will focus on the biological origins of sex differences in cardiovascular physiology, health, and disease, with an emphasis on the sex hormones, estrogen and testosterone. First, we will briefly discuss epidemiological evidence of sex disparities in cardiovascular disease prevalence and clinical manifestation. Second, we will describe studies suggesting sexual dimorphism in normal cardiovascular function from fetal life to older age. Third, we will summarize and critically discuss the current literature regarding the molecular mechanisms underlying the effects of estrogens and androgens on cardiac and vascular physiology and the contribution of these hormones to sex differences in cardiovascular disease. Fourth, we will present cardiovascular disease risk factors that are positively associated with the female sex, and thus, contributing to increased cardiovascular risk in women. We conclude that inclusion of both men and women in the investigation of the role of estrogens and androgens in cardiovascular physiology will advance our understanding of the mechanisms underlying sex differences in cardiovascular disease. In addition, investigating the role of sex-specific factors in the development of cardiovascular disease will reduce sex and gender disparities in the treatment and diagnosis of cardiovascular disease. © 2019 American Physiological Society. Compr Physiol 9:375-411, 2019.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Paresh A Jaini
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel Posey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
9
|
Postischemic application of estrogen ameliorates myocardial damage in an in vivo mouse model. J Surg Res 2018; 231:366-372. [PMID: 30278955 DOI: 10.1016/j.jss.2018.05.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cardioprotection provided by estrogen has been recognized for many years. It is noteworthy that most of these studies employ a means of preinjury application in experimental research and the preventive usage in clinical studies. Compared to pretreatment, postischemic administration of estrogen will be more practical in treating myocardial ischemia. On the other hand, defect in circadian clock gene period2 (Per2) has been shown to aggravate ischemia-induced heart damage. Given that Per2 expression decreases as a consequence of menopause, in this study, we aim to determine (1) potential improvement of myocardial function by postischemic administration of 17β-estradiol (E2) using an in vivo mouse myocardial ischemia/reperfusion (I/R) model and (2) the role of E2 in regulating myocardial Per2 expression following I/R. METHODS Thirty-minute occlusion of left anterior descending artery followed by 24-h reperfusion was performed on adult C57BL ovariectomized female mice. Groups (n = 3-6/group) were as follows: (1) Sham, (2) I/R + vehicle, and (3) I/R + E2. Vehicle or 0.5 mg/kg of E2 was subcutaneously injected right after 30-min ischemia. Following 24-h reperfusion, myocardial function was determined. Heart tissue was collected for analysis of cleaved caspase-3 and Per2 expression by Western blotting, as well as proinflammatory cytokine production (IL-1β, IL-6, and TNF-α) by enzyme-linked immunosorbent assay. RESULTS I/R significantly impaired left ventricular function and increased myocardial levels of active caspase-3, IL-1β, and IL-6. Importantly, postischemic treatment of E2 markedly restored I/R-depressed myocardial function, reduced caspase-3 activation, and decreased proinflammatory cytokine production (IL-1β, IL-6, and TNF-α). Intriguingly, a trend of the decreased Per2 level was observed in ovariectomized female hearts subjected to I/R, whereas E2 treatment upregulated myocardial Per2 expression. CONCLUSIONS Our study represents the initial evidence that postischemic administration of E2 effectively preserves the myocardium against I/R injury and this protective effect of E2 may involve upregulation of Per2 in ischemic heart.
Collapse
|
10
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
11
|
Mu F, Duan J, Bian H, Zhai X, Shang P, Lin R, Zhao M, Hu D, Yin Y, Wen A, Xi M. Metabonomic Strategy for the Evaluation of Chinese Medicine Salvia miltiorrhiza and Dalbergia odorifera Interfering with Myocardial Ischemia/Reperfusion Injury in Rats. Rejuvenation Res 2017; 20:263-277. [PMID: 28093038 DOI: 10.1089/rej.2016.1884] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extract of Salvia miltiorrhiza and Dalbergia Odorifera (SM-DOO) has been traditionally used for the prevention and treatment of cardiovascular diseases. However, information regarding the pharmacodyamic material basis and potential mechanism remain unknown. Male Sprague-Dawley rats were divided into four groups: Sham, Model, Diltiazem, and SM-DOO group, n = 6. Rats were pretreated with homologous drugs for 7 days, and then subjected to 30 minutes of ischemia followed by 180 minutes of reperfusion. Cardioprotection effects of SM-DOO on myocardial ischemia/reperfusion (MI/R) injury rats were examined by hemodynamics, infarct area, histopathology, biochemical indicators, and Western blot analysis. Metabonomics technology was further performed to evaluate the endogenous metabolites profiling systematically. According to the results of pattern recognition analysis, a clear separation of MI/R injury in the Model group and Sham group was achieved and SM-DOO pretreatment group was located much closer to the Sham group than the Model group, which was consistent with results of biochemistry and histopathological assay. Moreover, potential biomarkers were identified to elucidate the drug mechanism of SM-DOO, which may be related with pathways of energy metabolism, especially tricarboxylic acid (TCA) cycle (citric acid) and β-oxidation of fatty acids (3-hydroxybutyric, palmitoleic acid, heptadecanoic acid, and arachidonic acid). In addition, the protein expressions of p-AMPK and p-ACC in the SM-DOO group were significantly elevated, while the levels of carnitine palmitoyl-CoA transferase-1 (CPT-1), p-PDK, and p-PDC were dramatically reduced by SM-DOO. In conclusion, SM-DOO pretreatment could ameliorate MI/R injury by intervening with energy metabolism, especially TCA cycle and β-oxidation of fatty acids. This work showed that the metabonomics method combinate with conventional pharmacological methods is a promising tool in the efficacy and mechanism research of traditional Chinese medicines.
Collapse
Affiliation(s)
- Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Haixu Bian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Xiaohu Zhai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Peijin Shang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Dongmei Hu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| |
Collapse
|
12
|
Dworatzek E, Mahmoodzadeh S. Targeted basic research to highlight the role of estrogen and estrogen receptors in the cardiovascular system. Pharmacol Res 2017; 119:27-35. [PMID: 28119050 DOI: 10.1016/j.phrs.2017.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/18/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Epidemiological, clinical and animal studies revealed that sex differences exist in the manifestation and outcome of cardiovascular disease (CVD). The underlying molecular mechanisms implicated in these sex differences are not fully understood. The reasons for sex differences in CVD are definitely multifactorial, but major evidence points to the contribution of sex steroid hormone, 17β-estradiol (E2), and its receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). In this review, we summarize past and present studies that implicate E2 and ER as important determinants of sexual dimorphism in the physiology and pathophysiology of the heart. In particular, we give an overview of studies aimed to reveal the role of E2 and ER in the physiology of the observed sex differences in CVD using ER knock-out mice. Finally, we discuss recent findings from novel transgenic mouse models, which have provided new information on the sexual dimorphic roles of ER specifically in cardiomyocytes under pathological conditions.
Collapse
Affiliation(s)
- Elke Dworatzek
- Institut of Gender in Medicine and Center for Cardiovascular Research, Charitè-Universitaetsmedizin Berlin, Berlin, Germany; DZHK (German Center for Cardiovascular Research, partner site Berlin), Berlin, Germany
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research, partner site Berlin), Berlin, Germany.
| |
Collapse
|
13
|
Sivasinprasasn S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Estrogenic Impact on Cardiac Ischemic/Reperfusion Injury. J Cardiovasc Transl Res 2016; 9:23-39. [PMID: 26786980 DOI: 10.1007/s12265-016-9675-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
Abstract
The increase in cardiovascular disease and metabolic syndrome incidence following the onset of menopause has highlighted the role of estrogen as a cardiometabolic protective agent. Specifically regarding the heart, estrogen induced an improvement in cardiac function, preserved calcium homeostasis, and inhibited the mitochondrial apoptotic pathway. The beneficial effects of estrogen in relation to cardiac ischemia/reperfusion (I/R) injury, such as reduced infarction and ameliorated post-ischemic recovery, have also been shown. Nevertheless, controversial findings exist and estrogen therapy is reported to be related to a higher rate of thromboembolic events and atrial fibrillation in post-menopausal women. Therefore, greater clarification is needed to evaluate the exact potential of estrogen use in cases of cardiac I/R injury. This article reviews the effects of estrogen, in both acute and chronic treatment, and collates the studies with regard to their in vivo, in vitro, or clinical trial settings in cases of cardiac I/R injury and myocardial infarction.
Collapse
Affiliation(s)
- Sivaporn Sivasinprasasn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
14
|
Menazza S, Murphy E. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circ Res 2016; 118:994-1007. [PMID: 26838792 DOI: 10.1161/circresaha.115.305376] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.
Collapse
Affiliation(s)
- Sara Menazza
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Elizabeth Murphy
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Fairweather D. Sex differences in inflammation during atherosclerosis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 8:49-59. [PMID: 25983559 PMCID: PMC4405090 DOI: 10.4137/cmc.s17068] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is the leading cause of death in the United States and worldwide, yet more men die from atherosclerosis than women, and at a younger age. Women, on the other hand, mainly develop atherosclerosis following menopause, and particularly if they have one or more autoimmune diseases, suggesting that the immune mechanisms that increase disease in men are different from those in women. The key processes in the pathogenesis of atherosclerosis are vascular inflammation, lipid accumulation, intimal thickening and fibrosis, remodeling, and plaque rupture or erosion leading to myocardial infarction and ischemia. Evidence indicates that sex hormones alter the immune response during atherosclerosis, resulting in different disease phenotypes according to sex. Women, for example, respond to infection and damage with increased antibody and autoantibody responses, while men have elevated innate immune activation. This review describes current knowledge regarding sex differences in the inflammatory immune response during atherosclerosis. Understanding sex differences is critical for improving individualized medicine.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
16
|
Kusch A, Schmidt M, Gürgen D, Postpieszala D, Catar R, Hegner B, Davidson MM, Mahmoodzadeh S, Dragun D. 17ß-Estradiol regulates mTORC2 sensitivity to rapamycin in adaptive cardiac remodeling. PLoS One 2015; 10:e0123385. [PMID: 25880554 PMCID: PMC4399939 DOI: 10.1371/journal.pone.0123385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptive cardiac remodeling is characterized by enhanced signaling of mTORC2 downstream kinase Akt. In females, 17ß-estradiol (E2), as well as Akt contribute essentially to sex-related premenopausal cardioprotection. Pharmacologic mTOR targeting with rapamycin is increasingly used for various clinical indications, yet burdened with clinical heterogeneity in therapy responses. The drug inhibits mTORC1 and less-so mTORC2. In male rodents, rapamycin decreases maladaptive cardiac hypertrophy whereas it leads to detrimental dilative cardiomyopathy in females. We hypothesized that mTOR inhibition could interfere with 17β-estradiol (E2)-mediated sexual dimorphism and adaptive cell growth and tested responses in murine female hearts and cultured female cardiomyocytes. Under physiological in vivo conditions, rapamycin compromised mTORC2 function only in female, but not in male murine hearts. In cultured female cardiomyocytes, rapamycin impaired simultaneously IGF-1 induced activation of both mTOR signaling branches, mTORC1 and mTORC2 only in presence of E2. Use of specific estrogen receptor (ER)α- and ERβ-agonists indicated involvement of both estrogen receptors (ER) in rapamycin effects on mTORC1 and mTORC2. Classical feedback mechanisms common in tumour cells with upregulation of PI3K signaling were not involved. E2 effect on Akt-pS473 downregulation by rapamycin was independent of ERK as shown by sequential mTOR and MEK-inhibition. Furthermore, regulatory mTORC2 complex defining component rictor phosphorylation at Ser1235, known to interfere with Akt-substrate binding to mTORC2, was not altered. Functionally, rapamycin significantly reduced trophic effect of E2 on cell size. In addition, cardiomyocytes with reduced Akt-pS473 under rapamycin treatment displayed decreased SERCA2A mRNA and protein expression suggesting negative functional consequences on cardiomyocyte contractility. Rictor silencing confirmed regulation of SERCA2A expression by mTORC2 in E2-cultured female cardiomyocytes. These data highlight a novel modulatory function of E2 on rapamycin effect on mTORC2 in female cardiomyocytes and regulation of SERCA2A expression by mTORC2. Conceivably, rapamycin abrogates the premenopausal “female advantage”.
Collapse
Affiliation(s)
- Angelika Kusch
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Maria Schmidt
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Dennis Gürgen
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Postpieszala
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Björn Hegner
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Merci M. Davidson
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Shokoufeh Mahmoodzadeh
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Duska Dragun
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Zhan S, Fan X, Zhang F, Wang Y, Kang L, Li Z. A proteomic study of Shengmai injection's mechanism on preventing cardiac ischemia-reperfusion injury via energy metabolism modulation. MOLECULAR BIOSYSTEMS 2014; 11:540-8. [PMID: 25427756 DOI: 10.1039/c4mb00161c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Energy metabolism modulation plays an important role in protecting the heart from ischemia-reperfusion (IR) injury. Shengmai injection (SMI) is a Chinese medicine, which is widely used in China to treat ischemic heart diseases with speculated functions of modulating energy metabolism. To uncover the molecular mechanisms underlying the cardioprotective activity of SMI via the modulation of energy metabolism, a proteomic analysis was performed on ischemia-reperfusion (IR) injured hearts of rats in this study. Two-dimensional gel electrophoresis (2-DE) was used to measure the protein expression profiles of heart tissues. Differentially expressed proteins among groups were identified using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS/MS). Western blot analysis was used to validate differentially expressed proteins. Proteomic data revealed 14 major differentially expressed proteins that are related to the energy metabolism. It was found that the glucose oxidation, TCA cycle and ATP synthesis related proteins were consistently up-regulated in SMI treated rats, which is beneficial to aerobic respiration and ATP generation. In contrast, two proteins catalyzing fatty acid β-oxidation were down-regulated, implying the inhibition of this pathway to avoid high oxygen consumption. It is thus concluded that one of the major mechanisms of SMI protection against IR injury was modulation of the myocardial energy metabolism to improve cardiac efficiency through multiple metabolic pathways including stimulating glucose metabolism and inhibiting fatty acid metabolism. It provided potential protein targets for the therapeutic strategy through modulation of the myocardial energy metabolism.
Collapse
Affiliation(s)
- Shuyu Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
18
|
Ostadal B, Ostadal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 2014; 171:541-54. [PMID: 23750471 DOI: 10.1111/bph.12270] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022] Open
Abstract
Ischaemic heart disease (IHD) is the most frequent cause of mortality among men and women. Many epidemiological studies have demonstrated that premenopausal women have a reduced risk for IHD compared with their male counterparts. The incidence of IHD in women increases after menopause, suggesting that IHD is related to declining oestrogen levels. Experimental observations have confirmed the results of epidemiological studies investigating sex-specific differences in cardiac tolerance to ischaemia. Female sex appears also to favourably influence cardiac remodelling after ischaemia/reperfusion injury. Furthermore, sex-related differences in ischaemic tolerance of the adult myocardium can be influenced by interventions during the early phases of ontogenetic development. Detailed mechanisms of these sex-related differences remain unknown; however, they involve the genomic and non-genomic effects of sex steroid hormones, particularly the oestrogens, which have been the most extensively studied. Although the protective effects of oestrogen have many potential therapeutic implications, clinical trials have shown that oestrogen replacement in postmenopausal women may actually increase the incidence of IHD. The results of these trials have illustrated the complexity underlying the mechanisms involved in sex-related differences in cardiac tolerance to ischaemia. Sex-related differences in cardiac sensitivity to ischaemia/reperfusion injury may also influence therapeutic strategies in women with acute coronary syndrome. Women undergo coronary intervention less frequently and a lower proportion of women receive evidence-based therapy compared with men. Although our understanding of this important topic has increased in recent years, there is an urgent need for intensive experimental and clinical research to develop female-specific therapeutic strategies. Only then we will be able to offer patients better evidence-based treatment, a better quality of life and lower mortality.
Collapse
Affiliation(s)
- B Ostadal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
19
|
Evers NM, van den Berg JHJ, Wang S, Melchers D, Houtman R, de Haan LHJ, Ederveen AGH, Groten JP, Rietjens IMCM. Cell proliferation and modulation of interaction of estrogen receptors with coregulators induced by ERα and ERβ agonists. J Steroid Biochem Mol Biol 2014; 143:376-85. [PMID: 24923734 DOI: 10.1016/j.jsbmb.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to investigate modulation of the interaction of the ERα and ERβ with coregulators in the ligand responses induced by estrogenic compounds. To this end, selective ERα and ERβ agonists were characterized for intrinsic relative potency reflected by EC50 and maximal efficacy towards ERα and ERβ mediated response in ER selective reporter gene assays, and subsequently tested for induction of cell proliferation in T47D-ERβ cells with variable ERα/ERβ ratio, and finally for ligand dependent modulation of the interaction of ERα and ERβ with coregulators using the MARCoNI assay, with 154 unique nuclear receptor coregulator peptides derived from 66 different coregulators. Results obtained reveal an important influence of the ERα/ERβ ratio and receptor selectivity of the compounds tested on induction of cell proliferation. ERα agonists activate cell proliferation whereas ERβ suppresses ERα mediated cell proliferation. The responses in the MARCoNI assay reveal that upon ERα or ERβ activation by a specific agonist, the modulation of the interaction of the ERs with coregulators is very similar indicating only a limited number of differences upon ERα or ERβ activation by a specific ligand. Differences in the modulation of the interaction of the ERs with coregulators between the different agonists were more pronounced. Based on ligand dependent differences in the modulation of the interaction of the ERs with coregulators, the MARCoNI assay was shown to be able to classify the ER agonists discriminating between different agonists for the same receptor, a characteristic not defined by the ER selective reporter gene or proliferation assays. It is concluded that the ultimate effect of the model compounds on proliferation of estrogen responsive cells depends on the intrinsic relative potency of the agonist towards ERα and ERβ and the cellular ERα/ERβ ratio whereas differences in the modulation of the interaction of the ERα and ERβ with coregulators contribute to the ligand dependent responses induced by estrogenic compounds.
Collapse
Affiliation(s)
- Nynke M Evers
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands.
| | | | - Si Wang
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands
| | - Diana Melchers
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, the Netherlands
| | - René Houtman
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, the Netherlands
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands
| | - Antwan G H Ederveen
- Pharmacokinetics Pharmacodynamics & Drug Metabolism, MSD, P.O. Box 20, 5340 BH Oss, the Netherlands
| | - John P Groten
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands; PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands
| |
Collapse
|
20
|
Evers NM, Wang S, van den Berg JHJ, Houtman R, Melchers D, de Haan LHJ, Ederveen AGH, Groten JP, Rietjens IMCM. Identification of coregulators influenced by estrogen receptor subtype specific binding of the ER antagonists 4-hydroxytamoxifen and fulvestrant. Chem Biol Interact 2014; 220:222-30. [PMID: 25014417 DOI: 10.1016/j.cbi.2014.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/07/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate modulation of the interaction of ERα and ERβ with coregulators in the ligand dependent responses induced by the ER antagonistic compounds 4OHT and fulvestrant. Comparison with the modulation index (MI) profiles for the ER agonist estradiol (E2) will elucidate whether differences in the (ant)agonist dependent interaction of ERα and ERβ with coregulators expressed in MI profiles contribute to the differences in (ant)agonist responses. To this end, the selected ER antagonistic compounds were first characterized for intrinsic relative potency and efficacy towards ERα and ERβ using ER selective U2OS reporter gene assays, and subsequently tested for ligand dependent modulation of the interaction of ERα and ERβ with coregulators using the MARCoNI assay. Results obtained indicate a preference of 4OHT to antagonize ERβ and find fulvestrant to be less ER specific. MARCoNI assay responses reveal that ERα and ERβ mediated interaction with coregulators expressed in MI profiles are similar for 4OHT and fulvestrant and generally opposite to the MI profile of the ER agonist E2. Hierarchical clustering based on the MI profiles appeared able to clearly discriminate the two compounds with ER antagonistic properties from the ER agonist E2. Taken together the data reveal that modulation of the interaction of ERs with coregulators discriminates ER agonists from antagonists but does not discriminate between the less specific ER antagonist fulvestrant and the preferential ERβ antagonistic compound 4OHT. It is concluded that differences in modulation of the interaction of ERα and ERβ with coregulators contribute to the differences in ligand dependent responses induced by ER agonists and ER antagonists but the importance of the subtle differences in modulation of the interaction of ERs with coregulators between the ER antagonistic compounds 4OHT and fulvestrant for the ultimate biological effect remains to be established.
Collapse
Affiliation(s)
- Nynke M Evers
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | - Si Wang
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | | | - René Houtman
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, The Netherlands
| | - Diana Melchers
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, The Netherlands
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Antwan G H Ederveen
- Pharmacokinetics Pharmacodynamics & Drug Metabolism, MSD, P.O. Box 20, 5340 BH Oss, The Netherlands
| | - John P Groten
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands; PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
21
|
Wang F, Xiao J, Shen Y, Yao F, Chen Y. Estrogen protects cardiomyocytes against lipopolysaccharide by inhibiting autophagy. Mol Med Rep 2014; 10:1509-12. [PMID: 25017426 DOI: 10.3892/mmr.2014.2365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/27/2014] [Indexed: 11/05/2022] Open
Abstract
Autophagy has a significant role in myocardial injury induced by lipopolysaccharide (LPS). Estrogen (E2) has been demonstrated to protect cardiomyocytes against apoptosis; however, it remains to be determined whether it exhibits anti‑autophagic effects. The aim of the present study was to investigate whether estrogen-regulated autophagy attenuates cardiomyocyte injury induced by LPS. The cardiomyocytes of neonatal rats were randomized to the control (Con), LPS and estrogen + LPS groups. The LPS group was treated with 1 µg LPS for 24 h and the estrogen + LPS group was treated with 10‑8 M estrogen 30 min prior to treatment with LPS. Cardiomyocyte autophagy was quantitated by investigating the mRNA and protein level of autophagy‑related genes (Atgs). The mRNA expression of Atg5 and Beclin1 were measured by quantitative polymerase chain reaction and the microtubule‑associated protein light chain 3 (LC3) protein expression was measured by western blot analysis. To demonstrate the cardiomyocyte protection of estrogen, cell vitality and serum lactate dehydrogenase (LDH) levels were measured following LPS treatment. It was identified that LPS induced cardiomyocyte injury, together with the upregulation of Atg5, Beclin1 mRNA and LC3‑II protein. Furthermore, estrogen attenuated the effect of LPS. The present study provides evidence that estrogen has a myocardial protective role against injury induced by LPS by regulating autophagy.
Collapse
Affiliation(s)
- Fengmei Wang
- Department of Obstetrics and Gynaecology, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Yaofeng Shen
- Department of Anesthesiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Feng Yao
- Department of Anesthesiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Yu Chen
- Department of Obstetrics and Gynaecology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
22
|
Robertson S, Thomson AL, Carter R, Stott HR, Shaw CA, Hadoke PWF, Newby DE, Miller MR, Gray GA. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and β1 adrenoreceptors. Part Fibre Toxicol 2014; 11:12. [PMID: 24568236 PMCID: PMC4016506 DOI: 10.1186/1743-8977-11-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/08/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Clinical studies have now confirmed the link between short-term exposure to elevated levels of air pollution and increased cardiovascular mortality, but the mechanisms are complex and not completely elucidated. The present study was designed to investigate the hypothesis that activation of pulmonary sensory receptors and the sympathetic nervous system underlies the influence of pulmonary exposure to diesel exhaust particulate on blood pressure, and on the myocardial response to ischemia and reperfusion. METHODS & RESULTS 6 h after intratracheal instillation of diesel exhaust particulate (0.5 mg), myocardial ischemia and reperfusion was performed in anesthetised rats. Blood pressure, duration of ventricular arrhythmia, arrhythmia-associated death, tissue edema and reperfusion injury were all increased by diesel exhaust particulate exposure. Reperfusion injury was also increased in buffer perfused hearts isolated from rats instilled in vivo, excluding an effect dependent on continuous neurohumoral activation or systemic inflammatory mediators. Myocardial oxidant radical production, tissue apoptosis and necrosis were increased prior to ischemia, in the absence of recruited inflammatory cells. Intratracheal application of an antagonist of the vanilloid receptor TRPV1 (AMG 9810, 30 mg/kg) prevented enhancement of systolic blood pressure and arrhythmia in vivo, as well as basal and reperfusion-induced myocardial injury ex vivo. Systemic β1 adrenoreceptor antagonism with metoprolol (10 mg/kg) also blocked enhancement of myocardial oxidative stress and reperfusion injury. CONCLUSIONS Pulmonary diesel exhaust particulate increases blood pressure and has a profound adverse effect on the myocardium, resulting in tissue damage, but also increases vulnerability to ischemia-associated arrhythmia and reperfusion injury. These effects are mediated through activation of pulmonary TRPV1, the sympathetic nervous system and locally generated oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gillian A Gray
- BHF/ University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
23
|
Cong B, Xu Y, Sheng H, Zhu X, Wang L, Zhao W, Tang Z, Lu J, Ni X. Cardioprotection of 17β-estradiol against hypoxia/reoxygenation in cardiomyocytes is partly through up-regulation of CRH receptor type 2. Mol Cell Endocrinol 2014; 382:17-25. [PMID: 24035863 DOI: 10.1016/j.mce.2013.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/16/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
Estrogens have been suggested to exert cardioprotection through maintaining endogenous cardioprotective mechanisms. In the present study, we investigated whether estrogens protect cardiomyocytes against hypoxia/reoxygenation (H/R) via modulating urocortins (UCNs) and their receptor corticotrophin-releasing hormone receptor type 2 (CRHR2). We found that 17β-estradiol (E2) enhanced UCN cardioprotection against H/R and increased CRHR2 expression in neonatal rat cardiomyocytes. E2 protected cardiomyocytes against H/R, which was impaired by CRHR2 antagonist or knockdown of CRHR2. Estrogen receptor α (ERα) antagonist treatment or ERα knockdown could abolish E2-induced CRHR2 up-regulation. Moreover, knockdown of Sp1 also attenuated E2-induced CRHR2 up-regulation. Ovariectomy resulted in down-regulation of CRHR2 and Sp-1 in myocardium of mice, which was restored by E2 or ERα agonist treatment. These results suggest that estrogens act on ERα to up-regulate CRHR2 expression in cardiomyocytes, thereby enhancing cardioprotection of UCNs against H/R.
Collapse
Affiliation(s)
- Binhai Cong
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Yongjun Xu
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Hui Sheng
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyan Zhu
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Long Wang
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Wei Zhao
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Zhiping Tang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jianqiang Lu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xin Ni
- Department of Physiology, The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
24
|
Mahmoodzadeh S, Leber J, Zhang X, Jaisser F, Messaoudi S, Morano I, Furth PA, Dworatzek E, Regitz-Zagrosek V. Cardiomyocyte-specific Estrogen Receptor Alpha Increases Angiogenesis, Lymphangiogenesis and Reduces Fibrosis in the Female Mouse Heart Post-Myocardial Infarction. ACTA ACUST UNITED AC 2014; 5:153. [PMID: 24977106 DOI: 10.4172/2157-7013.1000153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Experimental studies showed that 17β-estradiol (E2) and activated Estrogen Receptors (ER) protect the heart from ischemic injury. However, the underlying molecular mechanisms are not well understood. To investigate the role of ER-alpha (ERα) in cardiomyocytes in the setting of myocardial ischemia, we generated transgenic mice with cardiomyocyte-specific overexpression of ERα (ERα-OE) and subjected them to Myocardial Infarction (MI). At the basal level, female and male ERα-OE mice showed increased Left Ventricular (LV) mass, LV volume and cardiomyocyte length. Two weeks after MI, LV volume was significantly increased and LV wall thickness decreased in female and male WT-mice and male ERα-OE, but not in female ERα-OE mice. ERα-OE enhanced expression of angiogenesis and lymphangiogenesis markers (Vegf, Lyve-1), and neovascularization in the peri-infarct area in both sexes. However, attenuated level of fibrosis and higher phosphorylation of JNK signaling pathway could be detected only in female ERα-OE after MI. In conclusion, our study indicates that ERα protects female mouse cardiomyocytes from the sequelae of ischemia through induction of neovascularization in a paracrine fashion and impaired fibrosis, which together may contribute to the attenuation of cardiac remodelling.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany
| | - Joachim Leber
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany
| | - Xiang Zhang
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany.,Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | - Ingo Morano
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Priscilla A Furth
- Departments of Oncology and Medicine and the Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Elke Dworatzek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
25
|
Cong B, Zhu X, Cao B, Xiao J, Wang Z, Ni X. Estrogens protect myocardium against ischemia/reperfusion insult by up-regulation of CRH receptor type 2 in female rats. Int J Cardiol 2013; 168:4755-60. [DOI: 10.1016/j.ijcard.2013.07.231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 11/25/2022]
|
26
|
Kolovou GD, Mavrogeni S. Estrogen receptor activation, TNF-α, and endothelial dysfunction: can we keep our interest in estrogens awake? Angiology 2013; 65:9-11. [PMID: 23716725 DOI: 10.1177/0003319712474946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Genovefa D Kolovou
- 1Out Patient Clinics and Preventive Cardiology, LDL apheresis service, Onassis Cardiac Surgery Center Athens, Greece
| | | |
Collapse
|
27
|
Arias-Loza PA, Muehlfelder M, Pelzer T. Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch 2013; 465:739-46. [DOI: 10.1007/s00424-013-1247-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 01/21/2023]
|
28
|
Mahmoodzadeh S, Fliegner D, Dworatzek E. Sex differences in animal models for cardiovascular diseases and the role of estrogen. Handb Exp Pharmacol 2013:23-48. [PMID: 23027444 DOI: 10.1007/978-3-642-30726-3_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical findings show sex differences in the manifestation of a number of cardiovascular diseases (CVD). However, the underlying molecular mechanisms are incompletely understood. Multiple animal models suggest sex differences in the manifestation of CVD, and provide strong experimental evidence that different major pathways are regulated in a sex-specific manner. In most animal studies females display a lower mortality, less severe hypertrophy, and better preserved cardiac function compared with male counterparts. The data support the hypothesis that female sex and/or the sex hormone estrogen (17β-estradiol; E2) may contribute to the sexual dimorphism in the heart and to a better outcome of cardiac diseases in females. To improve our understanding of the sex-based molecular and cellular mechanisms of CVD and to develop new therapeutic strategies, the use of appropriate animal models is essential. This review highlights recent findings from animal models relevant for studying the mechanisms of sexual dimorphisms in the healthy and diseased heart, focusing on physiological hypertrophy (exercise), pathological hypertrophy (volume and pressure overload induced hypertrophy), and heart failure (myocardial infarction). Furthermore, the potential effects of E2 in these models will be discussed.
Collapse
|
29
|
Sandra N, Ester P, Marie-Agnès P, Robert M, Olivier H. The DHEA metabolite 7β-hydroxy-epiandrosterone exerts anti-estrogenic effects on breast cancer cell lines. Steroids 2012; 77:542-51. [PMID: 22342541 DOI: 10.1016/j.steroids.2012.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 12/23/2022]
Abstract
7β-Hydroxy-epiandrosterone (7β-OH-EpiA), an endogenous androgenic derivative of dehydroepiandrosterone, has previously been shown to exert anti-inflammatory action in vitro and in vivo via a shift from prostaglandin E2 (PGE2) to 15-deoxy-Δ(12,14)-PGJ2 production. This modulation in prostaglandin production was obtained with low concentrations of 7β-OH-EpiA (1-100nM) and suggested that it might act through a specific receptor. Inflammation and prostaglandin synthesis is important in the development and survival of estrogen-dependent mammary cancers. Estrogen induced PGE2 production and cell proliferation via its binding to estrogen receptors (ERs) in these tumors. Our objective was to test the effects of 7β-OH-EpiA on the proliferation (by counting with trypan blue exclusion), cell cycle and cell apoptosis (by flow cytometry) of breast cancer cell lines MCF-7 (ERα+, ERβ+, G-protein coupled receptor 30: GPR30+) and MDA-MB-231 (ERα-, ERβ+, GPR30+) and to identify a potential target of this steroid in these cell lineages (by transactivations) and in the nuclear ER-negative SKBr3 cells (GPR30+) (by proliferation assays). 7β-OH-EpiA exerted anti-estrogenic effects in MCF-7 and MDA-MB-231 cells associated with cell proliferation inhibition and cell cycle arrest. Moreover, transactivation and proliferation with ER agonists assays indicated that 7β-OH-EpiA interacted with ERβ. Data from proliferation assays on the MCF-7, MDA-MB-231 and SKBr3 cell lines suggested that 7β-OH-EpiA may also act through the membrane GPR30 receptor. These results support that this androgenic steroid acts as an anti-estrogenic compound. Moreover, this is the first evidence that low doses of androgenic steroid exert antiproliferative effects in these mammary cancer cells. Further investigations are needed to improve understanding of the observed actions of endogenous 7β-OH-EpiA.
Collapse
Affiliation(s)
- Niro Sandra
- Laboratoire de Biologie, EA3199, Conservatoire national des arts et métiers, 75003 Paris, France
| | | | | | | | | |
Collapse
|
30
|
Portbury AL, Ronnebaum SM, Zungu M, Patterson C, Willis MS. Back to your heart: ubiquitin proteasome system-regulated signal transduction. J Mol Cell Cardiol 2012; 52:526-37. [PMID: 22085703 PMCID: PMC3294005 DOI: 10.1016/j.yjmcc.2011.10.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 12/19/2022]
Abstract
Awareness of the regulation of cell signaling by post-translational ubiquitination has emerged over the past 2 decades. Like phosphorylation, post-translational modification of proteins with ubiquitin can result in the regulation of numerous cellular functions, for example, the DNA damage response, apoptosis, cell growth, and the innate immune response. In this review, we discuss recently published mechanisms by which the ubiquitin proteasome system regulates key signal transduction pathways in the heart, including MAPK JNK, calcineurin, FOXO, p53, and estrogen receptors α and β. We then explore how ubiquitin proteasome system-specific regulation of these signal transduction pathways plays a role in the pathophysiology of common cardiac diseases, such as cardiac hypertrophy, heart failure, ischemia reperfusion injury, and diabetes. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Andrea L. Portbury
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
| | - Sarah M. Ronnebaum
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
| | - Makhosazane Zungu
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
- Departments of Cell and Developmental Biology, Medicine, and Pharmacology, University of North Carolina, Chapel Hill, NC
| | - Monte S. Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
31
|
Puzianowska-Kuźnicka M. ESR1 in myocardial infarction. Clin Chim Acta 2012; 413:81-7. [DOI: 10.1016/j.cca.2011.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
|
32
|
Deschamps AM, Murphy E, Sun J. Estrogen receptor activation and cardioprotection in ischemia reperfusion injury. Trends Cardiovasc Med 2011; 20:73-8. [PMID: 21130949 DOI: 10.1016/j.tcm.2010.05.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Premenopausal females have a comparably lower incidence of cardiovascular disease than their male counterparts. Although estrogen and activation of estrogen receptors (ERs) have been found to contribute to female protection, the complex mechanisms involved are unclear. Besides altering gene transcription, estrogen could elicit its cardioprotective effect via ER-mediated nongenomic signaling pathways. In addition to the two classic nuclear ER isoforms, ERα and ERβ, a G-protein coupled ER (GPR30 or GPER) has been found to be expressed in cardiomyocytes and plays an acute cardioprotective role in ischemia reperfusion injury. By using isoform-specific ER knockout mouse models and/or their specific modulators, the mechanisms of the different ERs involved in cardioprotection have been explored. In this review, we will focus on the signaling pathways leading to cardioprotection in ischemia reperfusion injury after ER activation and discuss the possibility and promise of specific ER modulators to treat ischemic heart diseases.
Collapse
Affiliation(s)
- Anne M Deschamps
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Lappano R, Recchia AG, De Francesco EM, Angelone T, Cerra MC, Picard D, Maggiolini M. The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. PLoS One 2011; 6:e16631. [PMID: 21304949 PMCID: PMC3031608 DOI: 10.1371/journal.pone.0016631] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/27/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The hydroxylated derivatives of cholesterol, such as the oxysterols, play important roles in lipid metabolism. In particular, 25-hydroxycholesterol (25 HC) has been implicated in a variety of metabolic events including cholesterol homeostasis and atherosclerosis. 25 HC is detectable in human plasma after ingestion of a meal rich in oxysterols and following a dietary cholesterol challenge. In addition, the levels of oxysterols, including 25 HC, have been found to be elevated in hypercholesterolemic serum. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate that the estrogen receptor (ER) α mediates gene expression changes and growth responses induced by 25 HC in breast and ovarian cancer cells. Moreover, 25 HC exhibits the ERα-dependent ability like 17 β-estradiol (E2) to inhibit the up-regulation of HIF-1α and connective tissue growth factor by hypoxic conditions in cardiomyocytes and rat heart preparations and to prevent the hypoxia-induced apoptosis. CONCLUSIONS/SIGNIFICANCE The estrogen action exerted by 25 HC may be considered as an additional factor involved in the progression of breast and ovarian tumors. Moreover, the estrogen-like activity of 25 HC elicited in the cardiovascular system may play a role against hypoxic environments.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmaco-Biology, University of Calabria, Rende, Italy
| | | | | | - Tommaso Angelone
- Department of Cell Biology, University of Calabria, Rende, Italy
| | | | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Genève, Switzerland
| | - Marcello Maggiolini
- Department of Pharmaco-Biology, University of Calabria, Rende, Italy
- * E-mail:
| |
Collapse
|
34
|
Favre J, Gao J, Henry JP, Remy-Jouet I, Fourquaux I, Billon-Gales A, Thuillez C, Arnal JF, Lenfant F, Richard V. Endothelial Estrogen Receptor α Plays an Essential Role in the Coronary and Myocardial Protective Effects of Estradiol in Ischemia/Reperfusion. Arterioscler Thromb Vasc Biol 2010; 30:2562-7. [DOI: 10.1161/atvbaha.110.213637] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Julie Favre
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Ji Gao
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Jean-Paul Henry
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Isabelle Remy-Jouet
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Isabelle Fourquaux
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Audrey Billon-Gales
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Christian Thuillez
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Jean-François Arnal
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Françoise Lenfant
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| | - Vincent Richard
- From the Department of Pharmacology, Institut National de la Santé et de la Recherche Médicale U644 and Rouen University Hospital (J.F., J.G., J.-P.H., I.R.-J., C.T., and V.R.), Institute for Biomedical Research Institut Fédératif de Recherches, University of Rouen, France; INSERM U858 (J.F., A.B.-G., J.-F.A., and F.L.), Institut de Médecine Moléculaire de Rangueil, University of Toulouse III, Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie (I.F.), Faculty of
| |
Collapse
|
35
|
Roles of estrogen receptors alpha and beta in sexually dimorphic neuroprotection against glutamate toxicity. Neuroscience 2010; 170:1261-9. [PMID: 20732393 DOI: 10.1016/j.neuroscience.2010.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/24/2010] [Accepted: 08/11/2010] [Indexed: 02/05/2023]
Abstract
Although most agree that 17β-estradiol is neuroprotective via a variety of mechanisms, less is known about the role that biological sex plays in receptor-mediated estradiol neuroprotection. To address this issue we isolated primary cortical neurons from rat pups sorted by sex and assessed the ability of estradiol to protect the neurons from death induced by glutamate. Five-minute pretreatment with 10-50 nM 17β-estradiol protected female but not male neurons from glutamate toxicity 24 h later. Both estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) are expressed in these cultures. Experiments using an ERα selective agonist or antagonist indicate that this receptor is important for neuroprotection in female cortical neurons. The ERβ selective agonist conveys a small degree of neuroprotection to both male and female cortical neurons. Interestingly, we found that 17α estradiol and the novel membrane estrogen receptor (mER) agonist STX, but not bovine serum albumin conjugated estradiol or the GPR30 agonist G1 were neuroprotective in both male and female neurons. Taken together these data highlight a role for ERα in sexually dimorphic neuroprotection.
Collapse
|
36
|
Liu H, Pedram A, Kim JK. Oestrogen prevents cardiomyocyte apoptosis by suppressing p38α-mediated activation of p53 and by down-regulating p53 inhibition on p38β. Cardiovasc Res 2010; 89:119-28. [PMID: 20724307 DOI: 10.1093/cvr/cvq265] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS we have previously shown that 17-β-estradiol (E2) protects cardiomyocytes exposed to simulated ischaemia-reperfusion (I/R) by differentially regulating pro-apoptotic p38α mitogen-activated protein kinase (p38α MAPK) and pro-survival p38β. However, little is known about how E2 modulation of these kinases alters apoptotic signalling. An attractive downstream target is p53, a well-known mediator of apoptosis and a substrate of p38α MAPK. The aim of this study was to determine whether the cytoprotective actions of oestrogen involve regulation of p53 via cardiac p38 MAPKs. METHODS AND RESULTS cultured rat cardiomyocytes underwent hypoxia followed by reoxygenation (H/R) to simulate I/R. We found that inhibiting p53 significantly reduced apoptosis. Phosphorylation of p53 at serine 15 [p-p53(S15)] increased after H/R in a p38α MAPK- and reactive oxygen species (ROS)-dependent manner. E2 at 10 nM effectively inhibited p-p53(S15) and mitochondrial translocation of p53. Blocking p53 led to augmented p38β activity and attenuated ROS, suggesting suppression of this antioxidant kinase by p53. The use of a specific agonist for each oestrogen receptor (ER) isoform, ERα and ERβ, demonstrated that both isoforms participate in preventing cell death by inhibiting p53 in the mitochondria-centred apoptotic processes. CONCLUSION our results demonstrate that during H/R stress, cardiomyocytes undergo p53-dependent apoptosis following phosphorylation of p53 by p38α MAPK, leading to p38β suppression. E2 protects cardiomyocytes by inhibiting p38α-p53 signalling in apoptosis.
Collapse
Affiliation(s)
- Han Liu
- Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
37
|
Voloshenyuk TG, Gardner JD. Estrogen improves TIMP-MMP balance and collagen distribution in volume-overloaded hearts of ovariectomized females. Am J Physiol Regul Integr Comp Physiol 2010; 299:R683-93. [PMID: 20504902 DOI: 10.1152/ajpregu.00162.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies demonstrate that 17beta-estradiol limits chronic volume overload-induced hypertrophy and improves heart function in ovariectomized rats. One possible cardioprotective mechanism involves the interaction between estrogen, estrogen receptors, and proteins of the extracellular matrix (ECM). The impact of estrogen deficiency and replacement on left ventricular (LV) hypertrophy and ECM protein expression was studied using five female rat groups: intact sham-operated, ovariectomized sham-operated, intact with volume overload, ovariectomized with volume overload, and ovariectomized with volume overload treated with estrogen. After 8 wk, LV protein extracts were evaluated by Western blot analysis for matrix metalloproteinase-2 (MMP-2) and MMP-9, MT1-MMP, tissue inhibitors of MMPs (TIMP)-1, TIMP-2, TIMP-3 and TIMP-4, collagens type I and III, and estrogen receptor alpha and beta expression. MMP proteolytic activity was assessed by zymography. All volume-overloaded groups exhibited LV hypertrophy, which was associated with a loss of interstitial collagen and perivascular fibrosis. After 8 wk of volume overload, 70% of ovariectomized rats developed heart failure, in contrast to only one intact rat. A downregulation of MMP-2, estrogen receptor-alpha (ERalpha), and ERbeta, and upregulation of MMP-9 and MT1-MMP were found in the volume-overloaded hearts of ovariectomized rats. Estrogen treatment improved TIMP-2/MMP-2 and TIMP-1/MMP-9 protein balance, restored ERalpha expression, and prevented MMP-9 activation, perivascular collagen accumulation and development of heart failure. However, estrogen did not fully restore ERbeta expression and did not prevent the increase of MMP-9 expression or loss of interstitial collagen. These results support that estrogen limits undesirable ECM remodeling and LV dilation, in part, through modulation of ECM protein expression in volume-overloaded hearts of ovariectomized rats.
Collapse
Affiliation(s)
- Tetyana G Voloshenyuk
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
38
|
Minutolo F, Macchia M, Katzenellenbogen BS, Katzenellenbogen JA. Estrogen receptor β ligands: Recent advances and biomedical applications. Med Res Rev 2009; 31:364-442. [DOI: 10.1002/med.20186] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Bakan V, Ciralik H, Tolun FI, Atli Y, Mil A, Oztürk S. Protective effect of erythropoietin on torsion/detorsion injury in rat model. J Pediatr Surg 2009; 44:1988-94. [PMID: 19853760 DOI: 10.1016/j.jpedsurg.2009.02.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of the study is to investigate the effects of erythropoietin on torsion/detorsion injury in rats. METHODS Forty rats were divided randomly into 5 groups: group I (sham, S), sham operation; group II (torsion/detorsion 1, T/D(1)), 3 hours ischemia and 1 hour reperfusion; group III (torsion/detorsion 2, T/D(2)), 3 hours ischemia and 48 hours reperfusion; group IV (erythropoietin 1, EPO(1)), 3 hours ischemia, 1 hour reperfusion, and a single dose of EPO; and group V (erythropoietin 2, EPO(2)), 3 hours ischemia, 48 hours reperfusion, and 2 doses of EPO. Malondialdehyde (MDA) and nitric oxide (NO) levels and activities of superoxide dismutase and catalase were measured. Tissue damage to ovarian tissue was scored by histologic examination. Data were compared among groups with parametric tests. RESULTS The MDA levels in the S and EPO groups were significantly lower than the T/D groups (P < .001). Catalase and superoxide dismutase activities, and NO levels in the S and EPO groups were significantly higher than in the T/D groups (P < .05). Ovarian tissue damage in the S and EPO groups was significantly less than in the T/D groups (P < .05). Levels of all biochemical markers and ovarian tissue damage scores were similar among the S, EPO(1), and EPO(2) groups (P > .05). CONCLUSION Erythropoietin attenuates ischemia-reperfusion injury when given during the acute phase of ovarian torsion-detorsion in a rat model.
Collapse
Affiliation(s)
- Vedat Bakan
- Faculty of Medicine, Department of Pediatric Surgery, Sutcu Imam University, Kahramanmaras 46100, Turkey.
| | | | | | | | | | | |
Collapse
|
40
|
Gender Differences in Cardiac Ischemic Injury and Protection—Experimental Aspects. Exp Biol Med (Maywood) 2009; 234:1011-9. [DOI: 10.3181/0812-mr-362] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This review summarizes some available information on gender differences of myocardial injury with particular attention to experimental approach. It has been observed that significant gender differences exist already in normal heart. They involve among others cardiac growth, contractile function, calcium metabolism and function of mitochondria. Differences, characteristic of the normal myocardium, generate the logical presumption of the different reaction of the male and female heart to various pathogenic factors. Most of the experimental studies confirm the clinical observations: increased resistance of the female heart to ischemia/reperfusion injury was shown in dogs, rats, mice and rabbits. Furthermore, gender differences in the ischemic tolerance of the adult myocardium can be influenced by interventions (e.g. hypoxia) imposed during the early phases of ontogenetic development. The already high tolerance of the adult female heart can be increased by adaptation to chronic hypoxia and ischemic preconditioning. It seems that the protective effect depends on age: it was absent in young, highly tolerant heart but it appeared with the decrease of natural resistance during aging. Both experimental and clinical studies have indicated that female gender influences favorably also the remodeling and the adaptive response to myocardial infarction. It follows from the data available that male and female heart differs significantly in many parameters under both physiological and pathological conditions. Detailed molecular and cellular mechanisms of these differences are still unknown; they involve genomic and non-genomic effects of sex steroid hormones, particularly the most frequently studied estrogens. The cardiovascular system is, however, influenced not only by estrogens but also by other sex hormones, e.g. androgens. Moreover, steroid hormone receptors do not act alone but interact with a broad array of co-regulatory proteins to alter transcription. The differences are so important that they deserve serious consideration in clinical practice in search for proper diagnostic and therapeutic procedures.
Collapse
|