1
|
Current Concepts of Dentinal Hypersensitivity. J Endod 2021; 47:1696-1702. [PMID: 34302871 DOI: 10.1016/j.joen.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Although many clinical studies have reported on the prevalence of dental pain, far fewer studies have focused on the mechanisms of dental pain. This is an important gap because increased understanding of dental pain mechanisms may lead to improved diagnostic tests or therapeutic interventions. The aim of this study was to comprehensively review the literature on the mechanisms of dentinal sensitivity. METHODS PubMed and Ovid were searched for articles that addressed dentinal pain and or pulpal sensitivity. Because of the breadth of research ranging from cellular/molecular studies to clinical trials, a narrative review on the mechanisms of dentinal sensitivity was constructed based on the literature. RESULTS Five various mechanisms for dentinal sensitivity have been proposed: (1) the classic hydrodynamic theory, (2) direct innervation of dentinal tubules, (3) neuroplasticity and sensitization of nociceptors, (4) odontoblasts serving as sensory receptors, and (5) algoneurons. CONCLUSIONS These theories are not mutually exclusive, and it is possible that several of them contribute to dentinal sensitivity. Moreover, pulpal responses to tissue injury may alter the relative contribution of these mechanisms. For example, pulpal inflammation may lead to neuronal sprouting and peripheral sensitization. Knowledge of these mechanisms may prompt the development of therapeutic drugs that aim to disrupt these mechanisms, leading to more effective treatments for pulpal pain.
Collapse
|
2
|
Stundl J, Bertucci PY, Lauri A, Arendt D, Bronner ME. Evolution of new cell types at the lateral neural border. Curr Top Dev Biol 2021; 141:173-205. [PMID: 33602488 DOI: 10.1016/bs.ctdb.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
3
|
Transient Receptor Potential (TRP) Ion Channels in Orofacial Pain. Mol Neurobiol 2021; 58:2836-2850. [PMID: 33515176 DOI: 10.1007/s12035-021-02284-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Orofacial pain, including temporomandibular joint disorders pain, trigeminal neuralgia, dental pain, and debilitating headaches, affects millions of Americans each year with significant population health impact. Despite the existence of a large body of information on the subject, the molecular underpinnings of orofacial pain remain elusive. Two decades of research has identified that transient receptor potential (TRP) ion channels play a crucial role in pathological pain. A number of TRP ion channels are clearly expressed in the trigeminal sensory system and have critical functions in the transduction and pathogenesis of orofacial pain. Although there are many similarities, the orofacial sensory system shows some distinct peripheral and central pain processing and different sensitivities from the spinal sensory system. Relative to the extensive review on TRPs in spinally-mediated pain, the summary of TRPs in trigeminally-mediated pain has not been well-documented. This review focuses on the current experimental evidence involving TRP ion channels, particularly TRPV1, TRPA1, TRPV4, and TRPM8 in orofacial pain, and discusses their possible cellular and molecular mechanisms.
Collapse
|
4
|
Polymodal Activation and Desensitization of TRPV1 Receptor in Human Odontoblasts-Like Cells with Eugenol. Int J Dent 2021; 2020:8813979. [PMID: 33456468 PMCID: PMC7785394 DOI: 10.1155/2020/8813979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
Dentinal hypersensitivity is a frequent reason for dental consultation, and its pathophysiology has not been fully clarified. Previous findings have made it possible to establish a relationship between the cellular sensory capacity and the activation of the polymodal transient receptor potential vanilloid 1 (TRPV1), which is responsible for the nociceptive response and whose desensitization could cause analgesia. Thus, the objective of this study was to determine the expression, localization, and functional activity of TRPV1 in human odontoblasts-like-cells (hOLCs) and the effect of eugenol (EUG) on its activation and desensitization. Human dental pulp stem cells (hDPSCs) were obtained from third molars and were characterized using flow cytometry, and their differentiation potential toward the osteoblastic, chondrogenic, and adipogenic lineages was investigated. Subsequently, the hDPSCs underwent odontogenic differentiation for 7, 14, and 21 days, and their phenotype (odontogenic markers dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP)) was evaluated using immunofluorescence. The TRPV1 gene expression in hOLCs was estimated using RT-qPCR, and its localization was analyzed using immunofluorescence. Half-maximal effective concentration (EC50) from both eugenol (EUG) and capsaicin (CAP) was determined; in addition, receptor activation was evaluated against chemical, thermal, and pH stimuli. For the statistical analysis, a one-way ANOVA with a Tukey post hoc test (p < 0.05) was used. After establishing the in vitro model of hOLCs and the membrane location of TRPV1, its chemical activation with EUG and CAP was demonstrated, as well as its thermal activation at ≥ 43°C and with an acidic (<6) or basic pH (between 9 and 12). Receptor desensitization was achieved after 20 min of exposure to two concentrations of EUG (603.5 and 1000 µM). These findings represent a stepping-stone for the construction of a pulp pain study model oriented toward a therapeutic alternative for the treatment of dentinal hypersensitivity.
Collapse
|
5
|
Lee YS, Park YH, Lee DS, Seo YM, Lee JH, Park JH, Choung HW, Park SH, Shon WJ, Park JC. Tubular Dentin Regeneration Using a CPNE7-Derived Functional Peptide. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4618. [PMID: 33081300 PMCID: PMC7603008 DOI: 10.3390/ma13204618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/31/2023]
Abstract
We aim to examine the effects of a newly developed peptide derived from CPNE7 (Cpne7-DP) in tertiary dentin formation and peritubular space occlusion, and comprehensively evaluate its potential as a bioactive therapeutic agent. Human dental pulp cells (HDPCs) and a mouse pre-odontoblast cell line, MDPC-23, were chosen for in vitro studies to characterize lineage-specific cell responses after Cpne7-DP treatment. Whether Cpne7-DP reproduces the dentin regenerative potential of CPNE7 was tested using a beagle dog model by generating dentinal defects of various degrees in vivo. Peritubular space occlusion was further examined by scanning electron microscopy and microleakage test, while overall mineralization capacity of Cpne7-DP was tested ex vivo. CPNE7 promotes tubular dentin formation under both shallow and deep dentinal defects, and the functional peptide Cpne7-DP induces odontoblast-like differentiation in vitro, mineralization ex vivo, and tubular dentin formation in in vivo beagle dog dentin exposure and pulp exposure models. Moreover, Cpne7-DP leads to peritubular space occlusion and maintains stability under different conditions. We show that CPNE7 and its derivative functional peptide Cpne7-DP promotes dentin regeneration in dentinal defects of various degrees and that the regenerated hard tissue demonstrates the characteristics of true dentin. Limitations of the current dental materials including post-operative hypersensitivity make biological repair of dentin a field of growing interest. Here, we suggest that the dual functions of Cpne7-DP in tubular dentin formation and peritubular space occlusion are promising for the treatment of dentinal loss and sensitivity.
Collapse
Affiliation(s)
- Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology—Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 08826, Korea; (Y.S.L.); (Y.-H.P.); (D.-S.L.)
| | - Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology—Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 08826, Korea; (Y.S.L.); (Y.-H.P.); (D.-S.L.)
| | - Dong-Seol Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology—Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 08826, Korea; (Y.S.L.); (Y.-H.P.); (D.-S.L.)
| | - You-Mi Seo
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul 03080, Korea; (Y.-M.S.); (J.-H.L.); (J.-H.P.)
| | - Ji-Hyun Lee
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul 03080, Korea; (Y.-M.S.); (J.-H.L.); (J.-H.P.)
| | - Joo-Hwang Park
- Regenerative Dental Medicine R and D Center, HysensBio Co., Ltd., Seoul 03080, Korea; (Y.-M.S.); (J.-H.L.); (J.-H.P.)
| | - Han-Wool Choung
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea;
| | - So-Hyun Park
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea; (S.-H.P.); (W.J.S.)
| | - Won Jun Shon
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea; (S.-H.P.); (W.J.S.)
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology—Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, Seoul 08826, Korea; (Y.S.L.); (Y.-H.P.); (D.-S.L.)
| |
Collapse
|
6
|
Liu XX, Tenenbaum HC, Wilder RS, Quock R, Hewlett ER, Ren YF. Pathogenesis, diagnosis and management of dentin hypersensitivity: an evidence-based overview for dental practitioners. BMC Oral Health 2020; 20:220. [PMID: 32762733 PMCID: PMC7409672 DOI: 10.1186/s12903-020-01199-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Though dentin hypersensitivity (DHS) is one of the most common complaints from patients in dental clinics, there are no universally accepted guidelines for differential diagnosis as well as selection of reliable treatment modalities for this condition. The neurosensory mechanisms underlying DHS remain unclear, but fluid movements within exposed dentinal tubules, i.e., the hydrodynamic theory, has been a widely accepted explanation for DHS pain. As several dental conditions have symptoms that mimic DHS at different stages of their progression, diagnosis and treatment of DHS are often confusing, especially for inexperienced dental practitioners. In this paper we provide an up-to-date review on risk factors that play a role in the development and chronicity of DHS and summarize the current principles and strategies for differential diagnosis and management of DHS in dental practices. We will outline the etiology, predisposing factors and the underlying putative mechanisms of DHS, and provide principles and indications for its diagnosis and management. Though desensitization remains to be the first choice for DHS for many dental practitioners and most of desensitizing agents reduce the symptoms of DHS by occluding patent dentinal tubules, the long-term outcome of such treatment is uncertain. With improved understanding of the underlying nociceptive mechanisms of DHS, it is expected that promising novel therapies will emerge and provide more effective relief for patients with DHS.
Collapse
Affiliation(s)
- Xiu-Xin Liu
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Ave, Rochester, NY, 14620, USA.,Department of Dentistry, Atlanta VA Medical Center, Atlanta, GA, USA
| | - Howard C Tenenbaum
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca S Wilder
- Office for Professional Development and Faculty Affairs, Adams School of Dentistry, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan Quock
- Department of Restorative Dentistry & Prosthodontics, University of Texas School of Dentistry at Houston, Houston, TX, USA
| | - Edmond R Hewlett
- Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, California, USA
| | - Yan-Fang Ren
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Ave, Rochester, NY, 14620, USA. .,Outreach and Diversity, UCLA School of Dentistry, Los Angeles, California, USA.
| |
Collapse
|
7
|
Niu L, Zhang H, Liu Y, Wang Y, Li A, Liu R, Zou R, Yang Q. Microfluidic Chip for Odontoblasts in Vitro. ACS Biomater Sci Eng 2019; 5:4844-4851. [DOI: 10.1021/acsbiomaterials.9b00743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yan Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
| | - Ruirui Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
| | - Qingzhen Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
8
|
Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci 2019; 20:ijms20030526. [PMID: 30691193 PMCID: PMC6387147 DOI: 10.3390/ijms20030526] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Farhana Yahya
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
9
|
Muramatsu T, Kashiwagi S, Ishizuka H, Matsuura Y, Furusawa M, Kimura M, Shibukawa Y. Alkaline extracellular conditions promote the proliferation and mineralization of a human cementoblast cell line. Int Endod J 2018; 52:639-645. [PMID: 30447154 DOI: 10.1111/iej.13044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023]
Abstract
AIM To investigate the proliferation and mineralization of a human cementoblast cell line under alkaline conditions. METHODOLOGY A human cementoblast cell line was cultured in alkaline media with several pHs (pH 7.6, 8.0 and 8.4) without CO2 . Cell numbers, phospho-p44/42 expression, alkaline phosphatase (ALP) activity and mineralization were evaluated. The significance of differences between groups was assessed using two-way analysis of variance 15 (ANOVA) followed by Bonferroni's multiple comparison test (α = 0.01). RESULTS Cell numbers increased in a time-dependent manner in the high pH medium groups. Western blot analysis revealed the upregulated expression of phospho-p44/42 under alkaline conditions. ALP activity was also increased at pH 8.0 and 8.4. Alizarin red staining revealed increased mineralization in the high pH medium groups. The incorporation of the transient receptor potential ankyrin subfamily member 1 (TRPA1) antagonist HC030031 markedly negated the effect on proliferation and mineralization. CONCLUSIONS Extracellular alkaline conditions promoted the proliferation and mineralization of human cementoblasts in vitro via TRPA1.
Collapse
Affiliation(s)
- T Muramatsu
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - S Kashiwagi
- Department of Endodontics, Tokyo Dental College, Tokyo, Japan
| | - H Ishizuka
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Y Matsuura
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - M Furusawa
- Department of Endodontics, Tokyo Dental College, Tokyo, Japan
| | - M Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Y Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
10
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
11
|
Kojima Y, Higashikawa A, Kimura M, Sato M, Mochizuki H, Ogura K, Sase T, Shinya A, Kobune K, Furuya T, Sato T, Shibukawa Y, Tazaki M. Depolarization-induced Intracellular Free Calcium Concentration Increases Show No Desensitizing Effect in Rat Odontoblasts. THE BULLETIN OF TOKYO DENTAL COLLEGE 2018; 56:131-4. [PMID: 26085001 DOI: 10.2209/tdcpublication.56.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Odontoblasts play an important role in the transduction of the sensory signals underlying dentinal pain. Transmembrane voltage-independent Ca(2+) influx in odontoblasts has been well described. Voltage-dependent Ca(2+) influx has also been reported, but its biophysical properties remain unclear. The aim of the present study was to investigate the desensitizing effect of voltage-dependent Ca(2+) influx in rat odontoblasts by measuring depolarization-induced intracellular free Ca(2+) concentrations ([Ca(2+) ]i ). Odontoblasts on dental pulp slices from newborn rats were acutely isolated and [Ca(2+) ]i measured by using fura-2 fluorescence. Repeated application of extracellular high-K(+) solution (50 mM), which induces membrane depolarization-elicited repeated and transient increases in [Ca(2+) ]i in the presence of extracellular Ca(2+). Increases in depolarization-induced [Ca(2+) ]i showed no significant desensitizing effect (p >0.05; Friedman test). These results suggest that odontoblasts express a voltage-dependent Ca(2+) influx pathway with no desensitizing properties.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Physiology, Tokyo Dental College
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sato M, Ogura K, Kimura M, Nishi K, Ando M, Tazaki M, Shibukawa Y. Activation of Mechanosensitive Transient Receptor Potential/Piezo Channels in Odontoblasts Generates Action Potentials in Cocultured Isolectin B 4-negative Medium-sized Trigeminal Ganglion Neurons. J Endod 2018; 44:984-991.e2. [PMID: 29709295 DOI: 10.1016/j.joen.2018.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. METHODS We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. RESULTS We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X3), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B4-negative medium-sized neurons. Action potentials in these isolectin B4-negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. CONCLUSIONS Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X3 receptors induced an action potential in the Aδ neurons, underlying a sensory generation mechanism of dentinal pain.
Collapse
Affiliation(s)
- Masaki Sato
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Kazuhiro Ogura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Koichi Nishi
- Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Ando
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
13
|
Kojima Y, Kimura M, Higashikawa A, Kono K, Ando M, Tazaki M, Shibukawa Y. Potassium Currents Activated by Depolarization in Odontoblasts. Front Physiol 2017; 8:1078. [PMID: 29311993 PMCID: PMC5742198 DOI: 10.3389/fphys.2017.01078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
Increased intracellular free Ca2+ concentrations elicit plasma membrane depolarization, which leads to the activation of K+ currents. However, the precise properties of K+ currents activated by depolarization in odontoblasts remain to be elucidated. The present study identified biophysical and pharmacological characteristics of time-dependent and voltage-activated K+ currents in freshly dissociated rat odontoblasts using patch-clamp recordings in a whole-cell configuration. Using a holding potential of −70 mV, outwardly rectifying time- and voltage-dependent currents were activated by depolarizing voltage. To record pure K+ conductance, we substituted Cl− in both the extracellular and intracellular solutions with gluconate−. Under these conditions, observation of K+ concentration changes in the extracellular solution showed that reversal potentials of tail currents shifted according to the K+ equilibrium potential. The activation kinetics of outward K+ currents were relatively slow and depended on the membrane potential. Kinetics of steady-state inactivation were fitted by a Boltzmann function. The half-maximal inactivation potential was −38 mV. Tetraethylammonium chloride, 4-aminopyridine, and α-dendrotoxin inhibited outward currents in odontoblasts in a concentration-dependent manner, suggesting that rat odontoblasts express the α-subunit of the time- and voltage-dependent K+ channel (Kv) subtypes Kv1.1, 1.2, and/or 1.6. We further examined the effects of Kv activity on mineralization by alizarin red and von Kossa staining. Continuous application of tetraethylammonium chloride to human odontoblasts grown in a mineralization medium over a 21-day period exhibited a dose-dependent decrease in mineralization efficiency compared to cells without tetraethylammonium chloride. This suggests that odontoblasts functionally express voltage-dependent K+ channels that play important roles in dentin formation.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Ando
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masakzu Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
14
|
Solé-Magdalena A, Martínez-Alonso M, Coronado CA, Junquera LM, Cobo J, Vega JA. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann Anat 2017; 215:20-29. [PMID: 28954208 DOI: 10.1016/j.aanat.2017.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
Odontoblasts are the dental pulp cells responsible for the formation of dentin. In addition, accumulating data strongly suggest that they can also function as sensory cells that mediate the early steps of mechanical, thermic, and chemical dental sensitivity. This assumption is based on the expression of different families of ion channels involved in various modalities of sensitivity and the release of putative neurotransmitters in response to odontoblast stimulation which are able to act on pulp sensory nerve fibers. This review updates the current knowledge on the expression of transient-potential receptor ion channels and acid-sensing ion channels in odontoblasts, nerve fibers innervating them and trigeminal sensory neurons, as well as in pulp cells. Moreover, the innervation of the odontoblasts and the interrelationship been odontoblasts and nerve fibers mediated by neurotransmitters was also revisited. These data might provide the basis for novel therapeutic approaches for the treatment of dentin sensibility and/or dental pain.
Collapse
Affiliation(s)
- A Solé-Magdalena
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - M Martínez-Alonso
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - C A Coronado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - L M Junquera
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Servicio de Cirugía Maxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Cobo
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
15
|
Ohkura M, Ohkura N, Yoshiba N, Yoshiba K, Ida-Yonemochi H, Ohshima H, Saito I, Okiji T. Orthodontic force application upregulated pain-associated prostaglandin-I 2/PGI 2-receptor/TRPV1 pathway-related gene expression in rat molars. Odontology 2017. [PMID: 28631175 DOI: 10.1007/s10266-017-0309-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to analyze the mRNA expression and protein localization of prostaglandin I2 (PGI2) synthase (PGIS), the PGI2 receptor (IP receptor) and transient receptor potential cation channel, subfamily V, member 1 (TRPV1) in force-stimulated rat molars, toward the elucidation of the PGI2-IP receptor-TRPV1 pathway that is in operation in the pulp and possibly associated with orthodontic pain and inflammation. Experimental force was applied to the maxillary first and second molars by inserting an elastic band between them for 6-72 h. PGIS, PTGIR (the IP receptor gene), and TRPV1 mRNA levels in the coronal pulp were analyzed with real-time PCR. PGIS, IP receptor, and TRPV1 proteins were immunostained. The force stimulation induced significant upregulation of PGIS at 6-24 h, and PTGIR and TRPV1 at 6 and 12 h in the pulp. PGIS was immunolocalized in odontoblasts and some fibroblasts in the force-stimulated pulp. The IP receptor and TRPV1 immunoreactivities were detected on odontoblasts and some nerve fibers. It was concluded that PGIS, PTGIR, and TRPV1 in rat molar pulp were significantly upregulated shortly after the force application, and that the IP receptor was co-expressed on TRPV1-expressing nerves and odontoblasts. These findings suggest that the PGI2-IP receptor-TRPV1 pathway is associated with the acute phase of force-induced pulp changes involving odontoblasts and nerves.
Collapse
Affiliation(s)
- Mariko Ohkura
- Division of Orthodontics, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kunihiko Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Isao Saito
- Division of Orthodontics, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
16
|
Que K, He D, Jin Y, Wu L, Wang F, Zhao Z, Yang J, Deng J. Expression of Cannabinoid Type 1 Receptors in Human Odontoblast Cells. J Endod 2016; 43:283-288. [PMID: 27989582 DOI: 10.1016/j.joen.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the functional expression of cannabinoid type 1 (CB1) receptors in human odontoblasts (HODs) and the possible internal mechanism. METHODS In the present study, we examined the molecular and functional expression of the CB1 receptors in cultured HOD-like cells and native HODs obtained from healthy wisdom teeth. RESULTS Immunohistochemistry and immunofluorescence revealed that CB1 receptors localize to native HODs and HOD-like cells, respectively. Both reverse-transcription polymerase chain reaction and Western blot analysis confirmed gene and protein expression of CB1 receptors. The ultrastructural distribution by immunoelectron microscopy also found that CB1 receptors labeled by colloidal gold particles distribute sparsely in the cytoplasm and odontoblastic processes. In functional assays, 2-arachidonyl glycerol, as an agonist of CB receptors, elicited the increase of intracellular fluorescence intensity that could be inhibited by a CB1-specific receptor antagonist rather than a selective CB2 receptor antagonist with fluo-3AM Ca2+ fluorescence. The source of the increase of intracellular fluorescence intensity elicited by CB1 receptors was from extracellular Ca2+ but not intracellular Ca2+ stores. The process of 2-arachidonyl glycerol activating CB1 receptors modulated transient receptor potential vanilloid 1-mediated Ca2+ entry via the cyclic adenosine monophosphate signaling pathway. CONCLUSIONS We conclude that HODs can express functional CB1 receptors that may play an important role in mediating the physiological function in tooth pulp.
Collapse
Affiliation(s)
- Kehua Que
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Dan He
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Ying Jin
- Department of Endodontics, Wuxi Stomatology Hospital, Jiangsu, China
| | - Ligeng Wu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Fang Wang
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zhiying Zhao
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jing Yang
- Department of Implant, Stomatology College of Nan Kai University, Tianjin, China
| | - Jiayin Deng
- Department of Periodontics, College of Stomatology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
17
|
Nishiyama A, Sato M, Kimura M, Katakura A, Tazaki M, Shibukawa Y. Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate. Cell Calcium 2016; 60:341-355. [PMID: 27452727 DOI: 10.1016/j.ceca.2016.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023]
Abstract
Various stimuli to the exposed surface of dentin induce changes in the hydrodynamic force inside the dentinal tubules resulting in dentinal pain. Recent evidences indicate that mechano-sensor channels, such as the transient receptor potential channels, in odontoblasts receive these hydrodynamic forces and trigger the release of ATP to the pulpal neurons, to generate dentinal pain. A recent study, however, has shown that odontoblasts also express glutamate receptors (GluRs). This implies that cells in the dental pulp tissue have the ability to release glutamate, which acts as a functional intercellular mediator to establish inter-odontoblast and odontoblast-trigeminal ganglion (TG) neuron signal communication. To investigate the intercellular signal communication, we applied mechanical stimulation to odontoblasts and measured the intracellular free Ca2+ concentration ([Ca2+]i). During mechanical stimulation in the presence of extracellular Ca2+, we observed a transient [Ca2+]i increase not only in single stimulated odontoblasts, but also in adjacent odontoblasts. We could not observe these responses in the absence of extracellular Ca2+. [Ca2+]i increases in the neighboring odontoblasts during mechanical stimulation of single odontoblasts were inhibited by antagonists of metabotropic glutamate receptors (mGluRs) as well as glutamate-permeable anion channels. In the odontoblast-TG neuron coculture, we observed an increase in [Ca2+]i in the stimulated odontoblasts and TG neurons, in response to direct mechanical stimulation of single odontoblasts. These [Ca2+]i increases in the neighboring TG neurons were inhibited by antagonists for mGluRs. The [Ca2+]i increases in the stimulated odontoblasts were also inhibited by mGluRs antagonists. We further confirmed that the odontoblasts express group I, II, and III mGluRs. However, we could not record any currents evoked from odontoblasts near the mechanically stimulated odontoblast, with or without extracellular Mg2+, indicating that N-methyl-d-aspartic acid receptor does not contribute to inter-odontoblast signal communication. The results suggest that a mechanically stimulated odontoblast is capable of releasing glutamate into the extracellular space via glutamate-permeable anion channels. The released glutamate activates mGluRs on the odontoblasts in an autocrine/paracrine manner, forming an inter-odontoblasts communication, which drives dentin formation via odontoblast-odontoblast signal communication. Glutamate and mGluRs also mediate neurotransmission between the odontoblasts and neurons in the dental pulp to modulate sensory signal transmission for dentinal sensitivity.
Collapse
Affiliation(s)
- A Nishiyama
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - M Sato
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - M Kimura
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - A Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo 101-0061, Japan
| | - M Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Y Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo 101-0061, Japan.
| |
Collapse
|
18
|
Andreev P, Coates MI, Karatajūtė-Talimaa V, Shelton RM, Cooper PR, Wang NZ, Sansom IJ. The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade. PeerJ 2016; 4:e1850. [PMID: 27350896 PMCID: PMC4918221 DOI: 10.7717/peerj.1850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/05/2016] [Indexed: 11/20/2022] Open
Abstract
The Mongolepidida is an Order of putative early chondrichthyan fish, originally erected to unite taxa from the Lower Silurian of Mongolia. The present study reassesses mongolepid systematics through the examination of the developmental, histological and morphological characteristics of scale-based specimens from the Upper Ordovician Harding Sandstone (Colorado, USA) and the Upper Llandovery–Lower Wenlock Yimugantawu (Tarim Basin, China), Xiushan (Guizhou Province, China) and Chargat (north-western Mongolia) Formations. The inclusion of the Mongolepidida within the Class Chondrichthyes is supported on the basis of a suite of scale attributes (areal odontode deposition, linear odontocomplex structure and lack of enamel, cancellous bone and hard-tissue resorption) shared with traditionally recognized chondrichthyans (euchondrichthyans, e.g., ctenacanthiforms). The mongolepid dermal skeleton exhibits a rare type of atubular dentine (lamellin) that is regarded as one of the diagnostic features of the Order within crown gnathostomes. The previously erected Mongolepididae and Shiqianolepidae families are revised, differentiated by scale-base histology and expanded to include the genera Rongolepisand Xinjiangichthys, respectively. A newly described mongolepid species (Solinalepis levis gen. et sp. nov.) from the Ordovician of North America is treated as family incertae sedis, as it possesses a type of basal bone tissue (acellular and vascular) that has yet to be documented in other mongolepids. This study extends the stratigraphic and palaeogeographic range of Mongolepidida and adds further evidence for an early diversification of the Chondrichthyes in the Ordovician Period, 50 million years prior to the first recorded appearance of euchondrichthyan teeth in the Lower Devonian.
Collapse
Affiliation(s)
- Plamen Andreev
- School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham , United Kingdom
| | - Michael I Coates
- Department of Organismal Biology and Anatomy, University of Chicago , Chicago , United States
| | | | - Richard M Shelton
- School of Dentistry, University of Birmingham , Birmingham , United Kingdom
| | - Paul R Cooper
- School of Dentistry, University of Birmingham , Birmingham , United Kingdom
| | - Nian-Zhong Wang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences , Beijing , China
| | - Ivan J Sansom
- School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|
19
|
Kimura M, Sase T, Higashikawa A, Sato M, Sato T, Tazaki M, Shibukawa Y. High pH-Sensitive TRPA1 Activation in Odontoblasts Regulates Mineralization. J Dent Res 2016; 95:1057-64. [PMID: 27084672 DOI: 10.1177/0022034516644702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Calcium hydroxide and mineral trioxide aggregate are widely used for indirect and direct pulp capping and root canal filling. Their dissociation into Ca(2+) and OH(-) in dental pulp creates an alkaline environment, which activates reparative/reactionary dentinogenesis. However, the mechanisms by which odontoblasts detect the pH of the extracellular environment remain unclear. We examined the alkali-sensitive intracellular Ca(2+) signaling pathway in rat odontoblasts. In the presence or absence of extracellular Ca(2+), application of alkaline solution increased intracellular Ca(2+) concentration, or [Ca(2+)]i Alkaline solution-induced [Ca(2+)]i increases depended on extracellular pH (8.5 to 10.5) in both the absence and the presence of extracellular Ca(2+) The amplitude was smaller in the absence than in the presence of extracellular Ca(2+) Each increase in [Ca(2+)]i, activated by pH 7.5, 8.5, or 9.5, depended on extracellular Ca(2+) concentration; the equilibrium binding constant for extracellular Ca(2+) concentration decreased as extracellular pH increased (1.04 mM at pH 7.5 to 0.11 mM at pH 9.5). Repeated applications of alkaline solution did not have a desensitizing effect on alkali-induced [Ca(2+)]i increases and inward currents. In the presence of extracellular Ca(2+), alkaline solution-induced [Ca(2+)]i increases were suppressed by application of an antagonist of transient receptor potential ankyrin subfamily member 1 (TRPA1) channels. Ca(2+) exclusion efficiency during alkaline solution-induced [Ca(2+)]i increases was reduced by a Na(+)-Ca(2+) exchanger antagonist. Alizarin red and von Kossa staining revealed increased mineralization levels under repeated high pH stimulation, whereas the TRPA1 antagonist strongly reduced this effect. These findings indicate that alkaline stimuli-such as the alkaline environment inside dental pulp treated with calcium hydroxide or mineral trioxide aggregate-activate Ca(2+) mobilization via Ca(2+) influx mediated by TRPA1 channels and intracellular Ca(2+) release in odontoblasts. High pH-sensing mechanisms in odontoblasts are important for activating dentinogenesis induced by an alkaline environment.
Collapse
Affiliation(s)
- M Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - T Sase
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - A Higashikawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - M Sato
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - T Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - M Tazaki
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Y Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
20
|
Sato M, Furuya T, Kimura M, Kojima Y, Tazaki M, Sato T, Shibukawa Y. Intercellular Odontoblast Communication via ATP Mediated by Pannexin-1 Channel and Phospholipase C-coupled Receptor Activation. Front Physiol 2015; 6:326. [PMID: 26617529 PMCID: PMC4639624 DOI: 10.3389/fphys.2015.00326] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected from rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate with each other by diffusible chemical substance(s), we investigated the chemical intercellular communication among cells from mouse odontoblast cell lines following mechanical stimulation. A single cell was stimulated using a glass pipette filled with standard extracellular solution. We measured intracellular free Ca(2+) concentration ([Ca(2+)]i) by fura-2 in stimulated cells, as well as in cells located nearby. Direct mechanical stimulation to a single odontoblast increased [Ca(2+)]i, which showed sensitivity to capsazepine. In addition, we observed increases in [Ca(2+)]i not only in the mechanically stimulated odontoblast, but also in nearby odontoblasts. We could observe mechanical stimulation-induced increase in [Ca(2+)]i in a stimulated human embryo kidney (HEK) 293 cell, but not in nearby HEK293 cells. The increase in [Ca(2+)]i in nearby odontoblasts, but not in the stimulated odontoblast, was inhibited by adenosine triphosphate (ATP) release channel (pannexin-1) inhibitor in a concentration- and spatial-dependent manner. Moreover, in the presence of phospholipase C (PLC) inhibitor, the increase in [Ca(2+)]i in nearby odontoblasts, following mechanical stimulation of a single odontoblast, was abolished. We could record some inward currents evoked from odontoblasts near the stimulated odontoblast, but the currents were observed in only 4.8% of the recorded odontoblasts. The results of this study showed that ATP is released via pannexin-1, from a mechanically stimulated odontoblast, which transmits a signal to nearby odontoblasts by predominant activation of PLC-coupled nucleotide receptors.
Collapse
Affiliation(s)
- Masaki Sato
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | - Tadashi Furuya
- Department of Physiology, Tokyo Dental College Tokyo, Japan ; Department of Crown and Bridge Prosthodontics, Tokyo Dental College Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | - Yuki Kojima
- Department of Physiology, Tokyo Dental College Tokyo, Japan
| | | | - Toru Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College Tokyo, Japan
| | | |
Collapse
|
21
|
Tokuda M, Tatsuyama S, Fujisawa M, Morimoto-Yamashita Y, Kawakami Y, Shibukawa Y, Torii M. Dentin and pulp sense cold stimulus. Med Hypotheses 2015; 84:442-4. [PMID: 25665859 DOI: 10.1016/j.mehy.2015.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Dentin hypersensitivity is a common symptom, and recent convergent evidences have reported transient receptor potential (TRP) channels in odontoblasts act as mechanical and thermal molecular sensor, which detect stimulation applied on the exposed dentin surface, to drive multiple odontoblastic cellular functions, such as sensory transduction and/or dentin formation. In the present study, we confirmed expression of TRP melastatin subfamily member-8 (TRPM8) channels in primary cultured cells derived from human dental pulp cells (HPCs) and mouse odontoblast-lineage cells (OLCs) as well as in dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP) positive acutely isolated rat odontoblasts from dental pulp tissue slice culture by immunohistochemical analyses. In addition, we detected TRPM8 channel expression on HPCs and OLCs by RT-PCR and Western blotting analyses. These results indicated that both odontoblasts and dental pulp cells express TRPM8 channels in rat, mouse and human, and therefore we hypothesize they may contribute as cold sensor in tooth.
Collapse
Affiliation(s)
- Masayuki Tokuda
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Shoko Tatsuyama
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Mari Fujisawa
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yoko Morimoto-Yamashita
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yoshiko Kawakami
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | - Mistuso Torii
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
22
|
Kwon M, Baek SH, Park CK, Chung G, Oh SB. Single-cell RT-PCR and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts. Arch Oral Biol 2014; 59:1266-71. [PMID: 25150531 DOI: 10.1016/j.archoralbio.2014.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/15/2014] [Accepted: 07/19/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Hydrostatic force applied to tooth pulp has long been suspected to be the direct cause of dental pain. However, the molecular and cellular identity of the transducer of the mechanical force in teeth is not clear. Growing number of literatures suggested that odontoblasts, secondary to its primary role as formation of tooth structure, might function as a cellular mechanical transducer in teeth. DESIGN In order to determine whether odontoblasts could play a crucial role in transduction of hydrostatic force applied to dental pulp into electrical impulses, current study investigated the expression of stretch-activated transient receptor potential (TRP) channels in acutely isolated odontoblasts from adult rats by single cell reverse transcriptase polymerase chain reaction and immunocytochemical analysis. RESULTS As the result, expression of TRPM7 (melastatin 7) was observed in majority (87%) of odontoblasts while mRNAs for TRPC1 (canonical 1), TRPC6 (canonical 6) and TRPV4 (vanilloid 4) were detected in small subpopulations of odontoblasts. TRPM3 (melastatin 3) was not detected in our experimental set-up. Immunocytochemical analysis further revealed TRPM7 expression at protein level. CONCLUSION Expression of the mechanosensitive TRP channels provides additional evidence that supports the sensory roles of odontoblasts. Given that TRPM7 is a mechanosensitive ion channel with a kinase activity that plays a role in Mg(2+) homeostasis, it is possible that TRPM7 expressed in odontoblasts might play a central role in mineralization during dentin formation.
Collapse
Affiliation(s)
- Minsoo Kwon
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sang Hoon Baek
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chul-Kyu Park
- Department of Physiology, Graduate School of Medicine, Gachon University, Incheon 406-799, Republic of Korea
| | - Gehoon Chung
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Pain Cognitive Function Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Seog Bae Oh
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Pain Cognitive Function Research Center, Seoul National University, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Egbuniwe O, Grover S, Duggal AK, Mavroudis A, Yazdi M, Renton T, Di Silvio L, Grant AD. TRPA1 and TRPV4 activation in human odontoblasts stimulates ATP release. J Dent Res 2014; 93:911-7. [PMID: 25062738 DOI: 10.1177/0022034514544507] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mechanism of pain in dentine hypersensitivity is poorly understood but proposed to result from the activation of dental sensory neurons in response to dentinal fluid movements. Odontoblasts have been suggested to contribute to thermal and mechanosensation in the tooth via expression of transient receptor potential (TRP) channels. However, a mechanism by which odontoblasts could modulate neuronal activity has not been demonstrated. In this study, we investigated functional TRP channel expression in human odontoblast-like cells and measured ATP release in response to TRP channel activation. Human immortalized dental pulp cells were driven toward an odontoblast phenotype by culture in conditioned media. Functional expression of TRP channels was determined with reverse transcription polymerase chain reaction and ratiometric calcium imaging with Fura-2. ATP release was measured using a luciferin-luciferase assay. Expression of mRNA for TRPA1, TRPV1, and TRPV4 but not TRPM8 was detected in odontoblasts by reverse transcription polymerase chain reaction. Expression of TRPV4 protein was detected by Western blotting and immunocytochemistry. The TRPA1 agonists allyl isothiocyanate and cinnamaldehyde and the TRPV4 agonist GSK1016790A caused a concentration-dependent increase in intracellular Ca(2+) concentration that was inhibited by the selective antagonists HC030031, AP18, and HC067047, respectively. In contrast, exposure to the TRPV1 agonist capsaicin or the TRPM8 agonist icilin had no effect on intracellular Ca(2+) concentration. Treatment with allyl isothiocyanate, cinnamaldehyde, or GSK1016790A caused an increase in ATP concentration in culture medium that was abolished by preincubation with TRP channel antagonists. These data demonstrate that activation of TRPA1 and TRPV4 channels in human odontoblast-like cells can stimulate ATP release. We were unable to confirm the presence of thermosensitive TRPV1 and TRPM8 that has previously been reported in odontoblasts.
Collapse
Affiliation(s)
- O Egbuniwe
- Biomaterials, Tissue Engineering, and Imaging, King's College London, London, UK Department of Oral Surgery, Dental Institute, King's College London, London, UK
| | - S Grover
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - A K Duggal
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - A Mavroudis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - M Yazdi
- Department of Oral Surgery, Dental Institute, King's College London, London, UK
| | - T Renton
- Department of Oral Surgery, Dental Institute, King's College London, London, UK
| | - L Di Silvio
- Biomaterials, Tissue Engineering, and Imaging, King's College London, London, UK
| | - A D Grant
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
24
|
Ricucci D, Loghin S, Lin LM, Spångberg LSW, Tay FR. Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process? J Dent 2014; 42:1156-70. [PMID: 25008021 DOI: 10.1016/j.jdent.2014.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/19/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Conceptually, two types of tertiary dentine may be produced in response to caries and environmental irritations: "reactionary dentine" that is secreted by existing primary odontoblasts and "reparative dentine", formed after the death of the odontoblasts by proliferation and differentiation of progenitor cells into odontoblast-like cells. Because histologic evidence for tubular dentine generated by newly differentiated odontoblast-like cells is lacking in human teeth, the present study examined pulpal cellular changes associated with caries/restorations, in the presence or absence of pulpal exposures. METHODS Ninety-six extracted human teeth were histologically processed and serial sectioned for light microscopy: 65 contained untreated enamel/dentine caries; 20 were heavily restored and 11 had carious exposures managed by direct pulp-capping. RESULTS Sparsely distributed, irregularly arranged dentinal tubules were identified from the tertiary dentine formed in teeth with unexposed medium/deep caries and in restored teeth; those tubules were continuous with the tubules of secondary dentine; in some cases, tubules were absent. The palisade odontoblast layer was reduced to a single layer of flattened cells. In direct pulp-capping of pulp exposures, the defects were repaired by the deposition of an amorphous dystrophic calcified tissue that resembled pulp stones more than dentine, sometimes entrapping pulpal remnants. This atubular hard tissue was lined by fibroblasts and collagen fibrils. CONCLUSIONS Histological evidence from the present study indicates that reparative dentinogenesis cannot be considered as a regenerative process since the so-formed hard tissue lacks tubular features characteristic of genuine dentine. Rather, this process represents a repair response that produces calcified scar tissues by pulpal fibroblasts. CLINICAL SIGNIFICANCE Formation of hard tissue in the dental pulp after the death of the primary odontoblasts has often been regarded by clinicians as regeneration of dentine. If the objective of the clinical procedures involved is to induce healing, reduce dentine hypersensitivity, or minimise future bacteria exposure, such procedures may be regarded as clinical success. However, current clinical treatment procedures are not adept at regenerating physiological dentne because the tissues formed in the dental pulp are more likely the result of repair responses via the formation of calcified scar tissues.
Collapse
Affiliation(s)
| | | | - Louis M Lin
- Department of Endodontics, New York University, New York, USA
| | - Larz S W Spångberg
- Division of Endodontology, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Franklin R Tay
- Department of Endodontics, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
25
|
Houshmandi M, Ye P, Hunter N. Glial network responses to polymicrobial invasion of dentin. Caries Res 2014; 48:534-48. [PMID: 24993646 DOI: 10.1159/000360610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
This study investigated the distribution patterns of glial networks disclosed by reactivity for glial fibrillary acidic protein (GFAP) and S100B in healthy and carious human teeth. The objective was to determine the assembly and collapse of glial networks in response to encroaching infection. 15 healthy and 37 carious posterior teeth from adults were studied. Immediately after extraction, teeth were cleaned and vertically split and the half with pulp fixed and prepared for resin or frozen sections. Sections were stained with toluidine blue and for immunofluorescence, with observation by confocal laser microscopy and analysis by ImageJ software. Carious teeth were subdivided into three groups according to degree of carious involvement: microbial penetration through enamel (stage A), extension into dentin (stage B) and advanced penetration into dentin but without invasion of underlying pulp tissue (stage C). In stage A lesions there was marked increase in glial networks in dental pulp tissue that extended beyond the zone of microbial invasion. This response was maintained in stage B lesions. In advanced stage C lesions these networks were degraded in the zone of invasion in association with failure to contain infection. Cells expressing the glial markers GFAP and S100B showed a response to initial microbial invasion of dentin by increase in number and altered anatomical arrangement. The late stage of dentinal caries was marked by collapse of these networks in the region adjacent to advancing bacteria. This behaviour is important for understanding and explaining the defensive response of the neurosensory peripheral dental pulp apparatus to infection.
Collapse
Affiliation(s)
- Mojgan Houshmandi
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead Hospital, Westmead, N.S.W., Australia
| | | | | |
Collapse
|
26
|
Shibukawa Y, Sato M, Kimura M, Sobhan U, Shimada M, Nishiyama A, Kawaguchi A, Soya M, Kuroda H, Katakura A, Ichinohe T, Tazaki M. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch 2014; 467:843-63. [PMID: 24939701 DOI: 10.1007/s00424-014-1551-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/16/2014] [Accepted: 06/05/2014] [Indexed: 01/09/2023]
Abstract
Various stimuli induce pain when applied to the surface of exposed dentin. However, the mechanisms underlying dentinal pain remain unclear. We investigated intercellular signal transduction between odontoblasts and trigeminal ganglion (TG) neurons following direct mechanical stimulation of odontoblasts. Mechanical stimulation of single odontoblasts increased the intracellular free calcium concentration ([Ca(2+)]i) by activating the mechanosensitive-transient receptor potential (TRP) channels TRPV1, TRPV2, TRPV4, and TRPA1, but not TRPM8 channels. In cocultures of odontoblasts and TG neurons, increases in [Ca(2+)]i were observed not only in mechanically stimulated odontoblasts, but also in neighboring odontoblasts and TG neurons. These increases in [Ca(2+)]i were abolished in the absence of extracellular Ca(2+) and in the presence of mechanosensitive TRP channel antagonists. A pannexin-1 (ATP-permeable channel) inhibitor and ATP-degrading enzyme abolished the increases in [Ca(2+)]i in neighboring odontoblasts and TG neurons, but not in the stimulated odontoblasts. G-protein-coupled P2Y nucleotide receptor antagonists also inhibited the increases in [Ca(2+)]i. An ionotropic ATP (P2X3) receptor antagonist inhibited the increase in [Ca(2+)]i in neighboring TG neurons, but not in stimulated or neighboring odontoblasts. During mechanical stimulation of single odontoblasts, a connexin-43 blocker did not have any effects on the [Ca(2+)]i responses observed in any of the cells. These results indicate that ATP, released from mechanically stimulated odontoblasts via pannexin-1 in response to TRP channel activation, transmits a signal to P2X3 receptors on TG neurons. We suggest that odontoblasts are sensory receptor cells and that ATP released from odontoblasts functions as a neurotransmitter in the sensory transduction sequence for dentinal pain.
Collapse
|
27
|
Tsumura M, Sobhan U, Sato M, Shimada M, Nishiyama A, Kawaguchi A, Soya M, Kuroda H, Tazaki M, Shibukawa Y. Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts. PLoS One 2013; 8:e82233. [PMID: 24358160 PMCID: PMC3864925 DOI: 10.1371/journal.pone.0082233] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
Odontoblasts produce dentin during development, throughout life, and in response to pathological conditions by sensing stimulation of exposed dentin. The functional properties and localization patterns of transient receptor potential (TRP) melastatin subfamily member 8 (TRPM8) and ankyrin subfamily member 1 (TRPA1) channels in odontoblasts remain to be clarified. We investigated the localization and the pharmacological, biophysical, and mechano-sensitive properties of TRPM8 and TRPA1 channels in rat odontoblasts. Menthol and icilin increased the intracellular free Ca(2+) concentration ([Ca(2+)]i). Icilin-, WS3-, or WS12-induced [Ca(2+)]i increases were inhibited by capsazepine or 5-benzyloxytriptamine. The increase in [Ca(2+)]i elicited by allyl isothiocyanate (AITC) was inhibited by HC030031. WS12 and AITC exerted a desensitizing effect on [Ca(2+)]i increase. Low-temperature stimuli elicited [Ca(2+)]i increases that are sensitive to both 5-benzyloxytriptamine and HC030031. Hypotonic stimulation-induced membrane stretch increased [Ca(2+)]i; HC030031 but not 5-benzyloxytriptamine inhibited the effect. The results suggest that TRPM8 channels in rat odontoblasts play a role in detecting low-temperature stimulation of the dentin surface and that TRPA1 channels are involved in sensing membrane stretching and low-temperature stimulation. The results also indicate that odontoblasts act as mechanical and thermal receptor cells, detecting the stimulation of exposed dentin to drive multiple cellular functions, such as sensory transduction.
Collapse
Affiliation(s)
- Maki Tsumura
- Department of Physiology, Tokyo Dental College, Chiba, Japan
| | - Ubaidus Sobhan
- Department of Physiology, Tokyo Dental College, Chiba, Japan
- Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masaki Sato
- Department of Physiology, Tokyo Dental College, Chiba, Japan
| | - Miyuki Shimada
- Department of Clinical Oral Health Science, Tokyo Dental College, Tokyo, Japan
| | - Akihiro Nishiyama
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba, Japan
| | - Aya Kawaguchi
- Department of Dental Anesthesiology, Tokyo Dental College, Chiba, Japan
| | - Manabu Soya
- Department of Dental Anesthesiology, Tokyo Dental College, Chiba, Japan
| | - Hidetaka Kuroda
- Department of Anesthesiology and Pain Relief Center, University of Tokyo Hospital, Tokyo, Japan
| | - Masakazu Tazaki
- Department of Physiology, Tokyo Dental College, Chiba, Japan
| | | |
Collapse
|
28
|
Tjäderhane L, Koivumäki S, Pääkkönen V, Ilvesaro J, Soini Y, Salo T, Metsikkö K, Tuukkanen J. Polarity of Mature Human Odontoblasts. J Dent Res 2013; 92:1011-6. [DOI: 10.1177/0022034513504783] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Odontoblast polarization is based on histological appearance as columnar cells with asymmetric disposition of organelles and plasma membrane domains. However, little is known about the odontoblast plasma membrane organization. We investigated odontoblast membrane polarity using influenza virus hemagglutinin and vesicular stomatitis virus glycoprotein as model proteins in mature human odontoblast organ culture. We also examined the distribution patterns of aquaporin 4 and 5, which are basolateral and apical proteins in epithelial cells, respectively. Confocal microscopy immunofluorescence and electron microscopy demonstrated that the apical markers located at the surface toward pulp and basolateral markers located at the plasma membrane of odontoblast processes. Therefore, odontoblast plasma membrane polarity was different from that in epithelial cells. Also, certain lectins stained odontoblast processes while others stained the soma, reflecting the different natures of their membrane domains. Strong ZO-1 and weaker claudin expression suggest weak tight junctions in the odontoblasts. TGF-β1 showed a tendency to reinstate the expression of selected TJ genes, indicating that TGF-β1 may control odontoblast cell layer integrity by controlling tight junction protein expression.
Collapse
Affiliation(s)
- L. Tjäderhane
- Institute of Dentistry, University of Oulu, Finland
- Oulu University Hospital, Finland
- Institute of Dentistry, University of Turku, Finland
| | - S. Koivumäki
- Institute of Dentistry, University of Oulu, Finland
- Oulu University Hospital, Finland
| | - V. Pääkkönen
- Institute of Dentistry, University of Oulu, Finland
| | | | - Y. Soini
- Oulu University Hospital, Finland
- Departments of Pathology, Universities of Oulu and Eastern Finland, Finland
| | - T. Salo
- Institute of Dentistry, University of Oulu, Finland
- Oulu University Hospital, Finland
| | - K. Metsikkö
- Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Finland
| | - J. Tuukkanen
- Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Finland
| |
Collapse
|
29
|
Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands. Cell Tissue Res 2013; 354:507-19. [DOI: 10.1007/s00441-013-1691-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/26/2013] [Indexed: 01/27/2023]
|
30
|
Hypotonic-induced Stretching of Plasma Membrane Activates Transient Receptor Potential Vanilloid Channels and Sodium–Calcium Exchangers in Mouse Odontoblasts. J Endod 2013; 39:779-87. [DOI: 10.1016/j.joen.2013.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/22/2022]
|
31
|
Utreras E, Prochazkova M, Terse A, Gross J, Keller J, Iadarola MJ, Kulkarni AB. TGF-β1 sensitizes TRPV1 through Cdk5 signaling in odontoblast-like cells. Mol Pain 2013; 9:24. [PMID: 23668392 PMCID: PMC3680294 DOI: 10.1186/1744-8069-9-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Odontoblasts are specialized cells that form dentin and they are believed to be sensors for tooth pain. Transforming growth factor-β1 (TGF-β1), a pro-inflammatory cytokine expressed early in odontoblasts, plays an important role in the immune response during tooth inflammation and infection. TGF-β1 is also known to participate in pain signaling by regulating cyclin-dependent kinase 5 (Cdk5) in nociceptive neurons of the trigeminal and dorsal root ganglia. However, the precise role of TGF-β1 in tooth pain signaling is not well characterized. The aim of our present study was to determine whether or not in odontoblasts Cdk5 is functionally active, if it is regulated by TGF-β1, and if it affects the downstream pain receptor, transient receptor potential vanilloid-1 (TRPV1). Results We first determined that Cdk5 and p35 are indeed expressed in an odontoblast-enriched primary preparation from murine teeth. For the subsequent analysis, we used an odontoblast-like cell line (MDPC-23) and found that Cdk5 is functionally active in these cells and its kinase activity is upregulated during cell differentiation. We found that TGF-β1 treatment potentiated Cdk5 kinase activity in undifferentiated MDPC-23 cells. SB431542, a specific inhibitor of TGF-β1 receptor 1 (Tgfbr1), when co-administered with TGF-β1, blocked the induction of Cdk5 activity. TGF-β1 treatment also activated the ERK1/2 signaling pathway, causing an increase in early growth response-1 (Egr-1), a transcription factor that induces p35 expression. In MDPC-23 cells transfected with TRPV1, Cdk5-mediated phosphorylation of TRPV1 at threonine-407 was significantly increased after TGF-β1 treatment. In contrast, SB431542 co-treatment blocked TRPV1 phosphorylation. Moreover, TGF-β1 treatment enhanced both proton- and capsaicin-induced Ca2+ influx in TRPV1-expressing MDPC-23 cells, while co-treatment with either SB431542 or roscovitine blocked this effect. Conclusions Cdk5 and p35 are expressed in a murine odontoblast-enriched primary preparation of cells from teeth. Cdk5 is also functionally active in odontoblast-like MDPC-23 cells. TGF-β1 sensitizes TRPV1 through Cdk5 signaling in MDPC-23 cells, suggesting the direct involvement of odontoblasts and Cdk5 in dental nociceptive pain transduction.
Collapse
Affiliation(s)
- Elias Utreras
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 130, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ivashkin E, Adameyko I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. EvoDevo 2013; 4:12. [PMID: 23575111 PMCID: PMC3626940 DOI: 10.1186/2041-9139-4-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery.
Collapse
Affiliation(s)
- Evgeniy Ivashkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 1 A1, Stockholm 17177, Sweden.
| | | |
Collapse
|
33
|
Simon S, Smith AJ, Lumley PJ, Cooper PR, Berdal A. The pulp healing process: from generation to regeneration. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/etp.12019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Hall BK, Gillis JA. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J Anat 2013; 222:19-31. [PMID: 22414251 PMCID: PMC3552412 DOI: 10.1111/j.1469-7580.2012.01495.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2012] [Indexed: 01/15/2023] Open
Abstract
Urochordates (ascidians) have recently supplanted cephalochordates (amphioxus) as the extant sister taxon of vertebrates. Given that urochordates possess migratory cells that have been classified as 'neural crest-like'- and that cephalochordates lack such cells--this phylogenetic hypothesis may have significant implications with respect to the origin of the neural crest and neural crest-derived skeletal tissues in vertebrates. We present an overview of the genes and gene regulatory network associated with specification of the neural crest in vertebrates. We then use these molecular data--alongside cell behaviour, cell fate and embryonic context--to assess putative antecedents (latent homologues) of the neural crest or neural crest cells in ascidians and cephalochordates. Ascidian migratory mesenchymal cells--non-pigment-forming trunk lateral line cells and pigment-forming 'neural crest-like cells' (NCLC)--are unlikely latent neural crest cell homologues. Rather, Snail-expressing cells at the neural plate of border of urochordates and cephalochordates likely represent the extent of neural crest elaboration in non-vertebrate chordates. We also review evidence for the evolutionary origin of two neural crest-derived skeletal tissues--cartilage and dentine. Dentine is a bona fide vertebrate novelty, and dentine-secreting odontoblasts represent a cell type that is exclusively derived from the neural crest. Cartilage, on the other hand, likely has a much deeper origin within the Metazoa. The mesodermally derived cellular cartilages of some protostome invertebrates are much more similar to vertebrate cartilage than is the acellular 'cartilage-like' tissue in cephalochordate pharyngeal arches. Cartilage, therefore, is not a vertebrate novelty, and a well-developed chondrogenic program was most likely co-opted from mesoderm to the neural crest along the vertebrate stem. We conclude that the neural crest is a vertebrate novelty, but that neural crest cells and their derivatives evolved and diversified in a step-wise fashion--first by elaboration of neural plate border cells, then by the innovation or co-option of new or ancient metazoan cell fates.
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
35
|
Directed glia-assisted angiogenesis in a mature neurosensory structure: Pericytes mediate an adaptive response in human dental pulp that maintains blood-barrier function. J Comp Neurol 2012; 520:3803-26. [DOI: 10.1002/cne.23162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Kim YS, Jung HK, Kwon TK, Kim CS, Cho JH, Ahn DK, Bae YC. Expression of Transient Receptor Potential Ankyrin 1 in Human Dental Pulp. J Endod 2012; 38:1087-92. [DOI: 10.1016/j.joen.2012.04.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 01/11/2023]
|
37
|
Ichikawa H, Kim HJ, Shuprisha A, Shikano T, Tsumura M, Shibukawa Y, Tazaki M. Voltage-dependent sodium channels and calcium-activated potassium channels in human odontoblasts in vitro. J Endod 2012; 38:1355-62. [PMID: 22980177 DOI: 10.1016/j.joen.2012.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Transmembrane ionic signaling regulates many cellular processes in both physiological and pathologic settings. In this study, the biophysical properties of voltage-dependent Na(+) channels in odontoblasts derived from human dental pulp (HOB cells) were investigated together with the effect of bradykinin on intracellular Ca(2+) signaling and expression of Ca(2+)-activated K(+) channels. METHODS Ionic channel activity was characterized by using whole-cell patch-clamp recording and fura-2 fluorescence. RESULTS Mean resting membrane potential in the HOB cells was -38 mV. Depolarizing steps from a holding potential of -80 mV activated transient voltage-dependent inward currents with rapid activation/inactivation properties. At a holding potential of -50 mV, no inward current was recorded. Fast-activation kinetics exhibited dependence on membrane potential, whereas fast-inactivation kinetics did not. Steady-state inactivation was described by a Boltzmann function with a half-maximal inactivation potential of -70 mV, indicating that whereas the channels were completely inactivated at physiological resting membrane potential, they could be activated when the cells were hyperpolarized. Inward currents disappeared in Na(+)-free extracellular solution. Bradykinin activated intracellular Ca(2+)-releasing and influx pathways. When the HOB cells were clamped at a holding potential of -50 mV, outward currents were recorded at positive potentials, indicating sensitivity to inhibitors of intermediate-conductance Ca(2+)-activated K(+) channels. CONCLUSIONS Human odontoblasts expressed voltage-dependent Na(+) channels, bradykinin receptors, and Ca(2+)-activated K(+) channels, which play an important role in driving cellular functions by channel-receptor signal interaction and membrane potential regulation.
Collapse
Affiliation(s)
- Hideki Ichikawa
- Department of Physiology, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Tjäderhane L, Haapasalo M. The dentin-pulp border: a dynamic interface between hard and soft tissues. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Fujisawa M, Tokuda M, Morimoto-Yamashita Y, Tatsuyama S, Arany S, Sugiyama T, Kitamura C, Shibukawa Y, Torii M. Hyperosmotic Stress Induces Cell Death in an Odontoblast-lineage Cell Line. J Endod 2012; 38:931-5. [DOI: 10.1016/j.joen.2012.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
40
|
Tsumura M, Sobhan U, Muramatsu T, Sato M, Ichikawa H, Sahara Y, Tazaki M, Shibukawa Y. TRPV1-mediated calcium signal couples with cannabinoid receptors and sodium-calcium exchangers in rat odontoblasts. Cell Calcium 2012; 52:124-36. [PMID: 22656960 DOI: 10.1016/j.ceca.2012.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/24/2012] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Abstract
Odontoblasts are involved in the transduction of stimuli applied to exposed dentin. Although expression of thermo/mechano/osmo-sensitive transient receptor potential (TRP) channels has been demonstrated, the properties of TRP vanilloid 1 (TRPV1)-mediated signaling remain to be clarified. We investigated physiological and pharmacological properties of TRPV1 and its functional coupling with cannabinoid (CB) receptors and Na(+)-Ca(2+) exchangers (NCXs) in odontoblasts. Anandamide (AEA), capsaicin (CAP), resiniferatoxin (RF) or low-pH evoked Ca(2+) influx. This influx was inhibited by capsazepine (CPZ). Delay in time-to-activation of TRPV1 channels was observed between application of AEA or CAP and increase in [Ca(2+)](i). In the absence of extracellular Ca(2+), however, an immediate increase in [Ca(2+)](i) was observed on administration of extracellular Ca(2+), followed by activation of TRPV1 channels. Intracellular application of CAP elicited inward current via opening of TRPV1 channels faster than extracellular application. With extracellular RF application, no time delay was observed in either increase in [Ca(2+)](i) or inward current, indicating that agonist binding sites are located on both extra- and intracellular domains. KB-R7943, an NCX inhibitor, yielded an increase in the decay time constant during TRPV1-mediated Ca(2+) entry. Increase in [Ca(2+)](i) by CB receptor agonist, 2-arachidonylglycerol, was inhibited by CB1 receptor antagonist or CPZ, as well as by adenylyl cyclase inhibitor. These results showed that TRPV1-mediated Ca(2+) entry functionally couples with CB1 receptor activation via cAMP signaling. Increased [Ca(2+)](i) by TRPV1 activation was extruded by NCXs. Taken together, this suggests that cAMP-mediated CB1-TRPV1 crosstalk and TRPV1-NCX coupling play an important role in driving cellular functions following transduction of external stimuli to odontoblasts.
Collapse
Affiliation(s)
- Maki Tsumura
- Oral Health Science Center hrc8, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Spugnini EP, Baldi A, Buglioni S, Carocci F, de Bazzichini GM, Betti G, Pantaleo I, Menicagli F, Citro G, Fais S. Lansoprazole as a rescue agent in chemoresistant tumors: a phase I/II study in companion animals with spontaneously occurring tumors. J Transl Med 2011; 9:221. [PMID: 22204495 PMCID: PMC3264547 DOI: 10.1186/1479-5876-9-221] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 12/28/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The treatment of human cancer has been seriously hampered for decades by resistance to chemotherapeutic drugs. Mechanisms underlying this resistance are far from being entirely known. A very efficient mechanism of tumor resistance to drugs is related to the modification of tumour microenvironment through changes in the extracellular and intracellular pH. The acidification of tumor microenvironment depends on proton pumps that actively pump protons outside the cells, mostly to avoid intracellular acidification. In fact, we have shown in pre-clinical settings as pre-treatment with proton-pumps inhibitors (PPI) increase tumor cell and tumor responsiveness to chemotherapeutics. In this study pet with spontaneously occurring cancer proven refractory to conventional chemotherapy have been recruited in a compassionate study. METHODS Thirty-four companion animals (27 dogs and 7 cats) were treated adding to their chemotherapy protocols the pump inhibitor lansoprazole at high dose, as suggested by pre-clinical experiments. Their responses have been compared to those of seventeen pets (10 dogs and 7 cats) whose owners did not pursue any other therapy than continuing the currently ongoing chemotherapy protocols. RESULTS The drug was overall well tolerated, with only four dogs experiencing side effects due to gastric hypochlorhydria consisting with vomiting and or diarrhea. In terms of overall response twenty-three pets out of 34 had partial or complete responses (67.6%) the remaining patients experienced no response or progressive disease however most owners reported improved quality of life in most of the non responders. On the other hand, only three animals in the control group (17%) experienced short lived partial responses (1-3 months duration) while all the others died of progressive disease within two months. CONCLUSIONS high dose proton pump inhibitors have been shown to induce reversal of tumor chemoresistance as well as improvement of the quality of life in pets with down staged cancer and in the majority of the treated animals PPI were well tolerated. Further studies are warranted to assess the efficacy of this strategy in patients with advanced cancers in companion animals as well as in humans.
Collapse
|
42
|
Human odontoblasts express functional thermo-sensitive TRP channels: Implications for dentin sensitivity. Pain 2011; 152:2211-2223. [DOI: 10.1016/j.pain.2010.10.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/22/2010] [Accepted: 10/12/2010] [Indexed: 11/19/2022]
|
43
|
Farahani RM, Simonian M, Hunter N. Blueprint of an ancestral neurosensory organ revealed in glial networks in human dental pulp. J Comp Neurol 2011; 519:3306-26. [DOI: 10.1002/cne.22701] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Magloire H. Odontoblast and dentin thermal sensitivity. Pain 2011; 152:2191-2192. [PMID: 21377799 DOI: 10.1016/j.pain.2011.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Henry Magloire
- Institut de Génomique fonctionnelle de Lyon, Equipe "Physiopathologie de l'odontoblaste", UMR CNRS 5242, Ecole Normale Supérieure, 46 Allée d'Italie, 69364 Lyon, Cedex 08, France
| |
Collapse
|
45
|
Solé-Magdalena A, Revuelta EG, Menénez-Díaz I, Calavia MG, Cobo T, García-Suárez O, Pérez-Piñera P, De Carlos F, Cobo J, Vega JA. Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins. Microsc Res Tech 2010; 74:457-63. [DOI: 10.1002/jemt.20931] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 07/31/2010] [Indexed: 02/03/2023]
|
46
|
Tsumura M, Okumura R, Tatsuyama S, Ichikawa H, Muramatsu T, Matsuda T, Baba A, Suzuki K, Kajiya H, Sahara Y, Tokuda M, Momose Y, Tazaki M, Shimono M, Shibukawa Y. Ca2+ Extrusion via Na+-Ca2+ Exchangers in Rat Odontoblasts. J Endod 2010; 36:668-74. [DOI: 10.1016/j.joen.2010.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/06/2010] [Accepted: 01/15/2010] [Indexed: 11/16/2022]
|
47
|
Shibukawa Y, Tsumura M, Sato M, Ichikawa H, Momose Y, Tazaki M. Ca2+ Channels in Odontoblasts. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Son A, Yang Y, Hong J, Lee S, Shibukawa Y, Shin D. Odontoblast TRP Channels and Thermo/Mechanical Transmission. J Dent Res 2009; 88:1014-9. [DOI: 10.1177/0022034509343413] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Odontoblasts function as mechanosensory receptors because of the expression of mechanosensitive channels in these cells. However, it is unclear if odontoblasts direct the signal transmission evoked by heat/cold or osmotic changes. This study investigated the effects of heat/cold or osmotic changes on calcium signaling and the functional expression of the thermo/mechanosensitive transient receptor potential (TRP) channels in primary cultured mouse odontoblastic cells, with the use of RT-PCR, fluorometric calcium imaging, and electrophysiology. TRPV1, TRPV2, TRPV3, TRPV4, and TRPM3 mRNA was expressed, but TRPM8 and TRPA1 mRNA was not. The receptor-specific stimulation of TRPV1-3 (heat-sensing receptors) and TRPV4/ TRPM3 (mechanic receptors) caused increases in the intracellular calcium concentration. Moreover, the channel activities of TRPV1-4 and TRPM3 were confirmed by a whole-cell patch-clamp technique. These results suggest that primary cultured mouse odontoblasts express heat/mechanosensitive TRP channels and play a role in the underlying mechanisms of thermo/mechanosensitive sensory transmission.
Collapse
Affiliation(s)
- A.R. Son
- Department of Oral Biology, Brain Korea 21 Project, Yonsei University
College of Dentistry, 134 Sinchon-dong Seodaemon-gu, Seoul, 120-752, Korea; and
- Department of Physiology, Tokyo Dental College, Chiba 261-8502,
Japan
| | - Y.M. Yang
- Department of Oral Biology, Brain Korea 21 Project, Yonsei University
College of Dentistry, 134 Sinchon-dong Seodaemon-gu, Seoul, 120-752, Korea; and
- Department of Physiology, Tokyo Dental College, Chiba 261-8502,
Japan
| | - J.H. Hong
- Department of Oral Biology, Brain Korea 21 Project, Yonsei University
College of Dentistry, 134 Sinchon-dong Seodaemon-gu, Seoul, 120-752, Korea; and
- Department of Physiology, Tokyo Dental College, Chiba 261-8502,
Japan
| | - S.I. Lee
- Department of Oral Biology, Brain Korea 21 Project, Yonsei University
College of Dentistry, 134 Sinchon-dong Seodaemon-gu, Seoul, 120-752, Korea; and
- Department of Physiology, Tokyo Dental College, Chiba 261-8502,
Japan
| | - Y. Shibukawa
- Department of Oral Biology, Brain Korea 21 Project, Yonsei University
College of Dentistry, 134 Sinchon-dong Seodaemon-gu, Seoul, 120-752, Korea; and
- Department of Physiology, Tokyo Dental College, Chiba 261-8502,
Japan
| | - D.M. Shin
- Department of Oral Biology, Brain Korea 21 Project, Yonsei University
College of Dentistry, 134 Sinchon-dong Seodaemon-gu, Seoul, 120-752, Korea; and
- Department of Physiology, Tokyo Dental College, Chiba 261-8502,
Japan
| |
Collapse
|
49
|
Expression of metabotropic glutamate receptor mGluR5 in human dental pulp. J Endod 2009; 35:690-4. [PMID: 19410084 DOI: 10.1016/j.joen.2009.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 01/23/2023]
Abstract
Accumulating evidence indicates that the metabotropic glutamate receptor mGluR5 is involved in the peripheral mechanisms of inflammatory nociception. To investigate whether mGluR5 may mediate the inflammatory pain and thermal hyperalgesia in the dental pulp, we examined the expression of mGluR5 and transient receptor potential vanilloid 1 (TRPV1) in human dental pulp by immunohistochemistry and electron microscopy; mGluR5-immunopositive (+) axons were observed in nerve bundles and branched extensively within the peripheral coronal pulp. Most of the mGluR5+ axons were unmyelinated. A large fraction of these axons (36.5%) were immunostained for TRPV1. Immunoreactivity for mGluR5 and TRPV1 was also observed in odontoblasts. These results support the possibility that the nerve fibers in the dental pulp mediate inflammatory pain and thermal hyperalgesia through coactivation of mGluR5 and TRPV1 and also suggest a possible role for odontoblasts in the transduction of nociceptive signals via mGluR5-mediated mechanism.
Collapse
|
50
|
Magloire H, Couble ML, Thivichon-Prince B, Maurin JC, Bleicher F. Odontoblast: a mechano-sensory cell. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:416-24. [DOI: 10.1002/jez.b.21264] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|