1
|
Aristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, Duque-Ossman JJ, Abreu-Lomba A. SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. Am J Cardiovasc Drugs 2024; 24:707-718. [PMID: 39179723 DOI: 10.1007/s40256-024-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a heightened risk of cardiovascular and renal complications. While glycemic control remains essential, newer therapeutic options, such as SGLT2 inhibitors, offer additional benefits beyond glucose reduction. This review delves into the mechanisms underlying the cardio-renal protective effects of SGLT2 inhibitors. By inducing relative hypoglycemia, these agents promote ketogenesis, optimize myocardial energy metabolism, and reduce lipotoxicity. Additionally, SGLT2 inhibitors exert renoprotective actions by enhancing renal perfusion, attenuating inflammation, and improving iron metabolism. These pleiotropic effects, including modulation of blood pressure, reduction of uric acid, and improved endothelial function, collectively contribute to the cardiovascular and renal benefits observed with SGLT2 inhibitor therapy. This review will provide clinicians with essential knowledge, understanding, and a clear recollection of this pharmacological group's mechanism of action.
Collapse
Affiliation(s)
- David Aristizábal-Colorado
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico
| | - Martín Ocampo-Posada
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Faculty of Health, Pontificia Universidad Javeriana, Cali, Colombia
- Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Universidad Javeriana, Cali, Colombia
| | - Wilfredo Antonio Rivera-Martínez
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Department of Endocrinology, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - David Corredor-Rengifo
- Department of Internal Medicine, Universidad Libre, Cali, Colombia
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
| | - Jorge Rico-Fontalvo
- Department of Nephrology. Faculty of Medicine, Universidad Simón Bolívar, Barranquilla, Colombia
- Latin American Society of Nephrology and Arterial Hypertension (SLANH), Panama City, Panamá
| | - Juan Esteban Gómez-Mesa
- Interamerican Society of Cardiology (SIAC), Mexico City, Mexico.
- Cardiology Department, Fundación Valle del Lili, Cali, Colombia.
- Department of Health Sciences, Universidad Icesi, Cali, Colombia.
| | - John Jairo Duque-Ossman
- Universidad Del Quindío, Armenia, Colombia
- Latin American Federation of Endocrinology (FELAEN), Armenia, Colombia
| | - Alin Abreu-Lomba
- Internal Medicine Research Group, Universidad Libre, Cali, Colombia
- Endocrinology Department, Clínica Imbanaco, Cali, Colombia
| |
Collapse
|
2
|
Kume S, Packer M. SGLT2 inhibitors act as metabolic transducers to restore healthy nutrient deprivation and surplus signaling in the kidney. Kidney Int 2024; 105:1172-1176. [PMID: 38777403 DOI: 10.1016/j.kint.2024.01.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Ostu, Shiga, Japan.
| | - Milton Packer
- Baylor University Medical Center, Dallas, Texas, USA; Imperial College, London, UK.
| |
Collapse
|
3
|
Marrone G, Cornali K, Di Lauro M, Ceravolo MJ, Di Marco L, Manca di Villahermosa S, Mitterhofer AP, Noce A. Innovative Treatments to Counteract Endothelial Dysfunction in Chronic Kidney Disease Patients. Biomedicines 2024; 12:1085. [PMID: 38791047 PMCID: PMC11117580 DOI: 10.3390/biomedicines12051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
In chronic kidney disease (CKD) patients, several risk factors contribute to the development of endothelial dysfunction (ED), which can be described as an alteration in the cell structure or in the function of the endothelium. Among the well-known CKD-related risk factors capable of altering the production of endothelium-derived relaxing factors, we include asymmetric dimethylarginine increase, reduced dimethylarginine dimethylamine hydrolase enzyme activity, low-grade chronic systemic inflammation, hyperhomocysteinemia, oxidative stress, insulin resistance, alteration of calcium phosphorus metabolism, and early aging. In this review, we also examined the most important techniques useful for studying ED in humans, which are divided into indirect and direct methods. The direct study of coronary endothelial function is considered the gold standard technique to evaluate if ED is present. In addition to the discussion of the main pharmacological treatments useful to counteract ED in CKD patients (namely sodium-glucose cotransporter 2 inhibitors and mineralocorticoid receptor antagonist), we elucidate innovative non-pharmacological treatments that are successful in accompanying the pharmacological ones. Among them, the most important are the consumption of extra virgin olive oil with high intake of minor polar compounds, adherence to a plant-dominant, low-protein diet (LPD), an adaptive physical activity program and, finally, ketoanalogue administration in combination with the LPD or the very low-protein diet.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
| | - Maria Josè Ceravolo
- Nephrology and Dialysis Unit, Department of Systems Medicine, University Hospital of Rome Tor Vergata, 00133 Rome, Italy
| | - Luca Di Marco
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
| | - Simone Manca di Villahermosa
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
- Nephrology and Dialysis Unit, Department of Systems Medicine, University Hospital of Rome Tor Vergata, 00133 Rome, Italy
| | - Anna Paola Mitterhofer
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
- Nephrology and Dialysis Unit, Department of Systems Medicine, University Hospital of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy (K.C.); (L.D.M.); (S.M.d.V.); (A.P.M.)
- Nephrology and Dialysis Unit, Department of Systems Medicine, University Hospital of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
4
|
Packer M. Hyperuricemia and Gout Reduction by SGLT2 Inhibitors in Diabetes and Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2024; 83:371-381. [PMID: 38199714 DOI: 10.1016/j.jacc.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 01/12/2024]
Abstract
Gout is characterized by increased production of purines (through the pentose phosphate pathway), which is coupled with reduced renal or intestinal excretion of urate. Concurrent upregulation of nutrient surplus signaling (mammalian target of rapamycin and hypoxia-inducible factor-1a) and downregulation of nutrient deprivation signaling (sirtuin-1 and adenosine monophosphate-activated protein kinase) redirects glucose toward anabolic pathways (rather than adenosine triphosphate production), thus promoting heightened oxidative stress and cardiomyocyte and proximal tubular dysfunction, leading to cardiomyopathy and kidney disease. Hyperuricemia is a marker (rather than a driver) of these cellular stresses. By inducing a state of starvation mimicry in a state of nutrient surplus, sodium-glucose cotransporter-2 inhibitors decrease flux through the pentose phosphate pathway (thereby attenuating purine and urate synthesis) while promoting renal urate excretion. These convergent actions exert a meaningful effect to lower serum uric acid by ≈0.6 to 1.5 mg/dL and to reduce the risk of gout by 30% to 50% in large-scale clinical trials.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, Texas, USA; Imperial College, London, United Kingdom.
| |
Collapse
|
5
|
Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail 2023; 25:1199-1212. [PMID: 37434410 DOI: 10.1002/ejhf.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023] Open
Abstract
The development of the foetal heart is driven by increased glucose uptake and activation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1α (HIF-1α), which drives glycolysis. In contrast, the healthy adult heart is governed by sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), which promote fatty-acid oxidation and the substantial mitochondrial ATP production required for survival in a high-workload normoxic environment. During cardiac injury, the heart recapitulates the foetal signalling programme, which (although adaptive in the short term) is highly deleterious if sustained for long periods of time. Prolonged increases in glucose uptake in cardiomyocytes under stress leads to increased flux through the hexosamine biosynthesis pathway; its endproduct - uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) - functions as a critical nutrient surplus sensor. UDP-GlcNAc drives the post-translational protein modification known as O-GlcNAcylation, which rapidly and reversibly modifies thousands of intracellular proteins. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which adds or removes GlcNAc (N-acetylglucosamine), respectively, from target proteins. Recapitulation of foetal programming in heart failure (regardless of diabetes) is accompanied by marked increases in O-GlcNAcylation, both experimentally and clinically. Heightened O-GlcNAcylation in the heart leads to impaired calcium kinetics and contractile derangements, arrhythmias related to activation of voltage-gated sodium channels and Ca2+ /calmodulin-dependent protein kinase II, mitochondrial dysfunction, and maladaptive hypertrophy, microvascular dysfunction, fibrosis and cardiomyopathy. These deleterious effects can be prevented by suppression of O-GlcNAcylation, which can be achieved experimentally by upregulation of AMPK and SIRT1 or by pharmacological inhibition of OGT or stimulation of OGA. The effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the heart are accompanied by reduced O-GlcNAcylation, and their cytoprotective effects are reportedly abrogated if their action to suppress O-GlcNAcylation is blocked. Such an action may represent one of the many mechanisms by which enhanced AMPK and SIRT1 signalling following SGLT2 inhibition leads to cardiovascular benefits. These observations, taken collectively, suggest that UDP-GlcNAc functions as a critical nutrient surplus sensor (which acting in concert with mTOR and HIF-1α) can promote the development of cardiomyopathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|