1
|
Atwood D, He Z, Miyazaki M, Hailu F, Klawitter J, Edelstein CL. Early treatment with 2-deoxy-d-glucose reduces proliferative proteins in the kidney and slows cyst growth in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease (PKD). Cell Signal 2024; 123:111351. [PMID: 39159908 DOI: 10.1016/j.cellsig.2024.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
In autosomal dominant polycystic kidney disease (ADPKD) there is cyst growth in the kidneys that leads to chronic kidney disease often requiring dialysis or kidney transplantation. There is enhanced aerobic glycolysis (Warburg effect) in the cyst lining epithelial cells that contributes to cyst growth. The glucose mimetic, 2-Deoxy-d-glucose (2-DG) inhibits glycolysis. The effect of early and late administration of 2-DG on cyst growth and kidney function was determined in Pkd1RC/RC mice, a hypomorphic PKD model orthologous to human disease. Early administration of 2-DG resulted in decreased kidney weight, cyst index, cyst number and cyst size, but no change in kidney function. 2-DG decreased proliferation. a major mediator of cyst growth, of cells lining the cyst. Late administration of 2-DG did not have an effect on cyst growth or kidney function. To determine mechanisms of decreased proliferation, an array of mTOR and autophagy proteins was measured in the kidney. 2-DG suppressed autophagic flux in Pkd1RC/RC kidneys and decreased autophagy proteins, ATG3, ATG5 and ATG12-5. 2-DG had no effect on p-mTOR or p-S6 (mTORC1) and decreased p-AMPK. 2-DG decreased p-4E-BP1, p-c-Myc and p-ERK that are known to promote proliferation and cyst growth in PKD. 2-DG decreased p-AKTS473, a marker of mTORC2. So the role of mTORC2 in cyst growth was determined. Knockout of Rictor (mTORC2) in Pkd1 knockout mice did not change the PKD phenotype. In summary, 2-DG decreases proliferation in cells lining the cyst and decreases cyst growth by decreasing proteins that are known to promote proliferation. In conclusion, the present study reinforces the therapeutic potential of 2-DG for use in patients with ADPKD.
Collapse
Affiliation(s)
- Daniel Atwood
- University of Colorado Anschutz Medical Campus, Division of Renal Disease and Hypertension, Aurora, CO, USA
| | - Zhibin He
- University of Colorado Anschutz Medical Campus, Division of Renal Disease and Hypertension, Aurora, CO, USA
| | - Makoto Miyazaki
- University of Colorado Anschutz Medical Campus, Division of Renal Disease and Hypertension, Aurora, CO, USA
| | - Frehiwet Hailu
- University of Colorado Anschutz Medical Campus, Division of Cardiology, Aurora, CO, USA
| | - Jelena Klawitter
- University of Colorado Anschutz Medical Campus, Department of Anesthesiology, Aurora, CO, USA
| | - Charles L Edelstein
- University of Colorado Anschutz Medical Campus, Division of Renal Disease and Hypertension, Aurora, CO, USA.
| |
Collapse
|
2
|
Monteillet L, Perrot G, Evrard F, Miliano A, Silva M, Leblond A, Nguyen C, Terzi F, Mithieux G, Rajas F. Impaired Glucose Metabolism, Primary Cilium Defects, and Kidney Cystogenesis in Glycogen Storage Disease Type Ia. J Am Soc Nephrol 2024:00001751-990000000-00394. [PMID: 39141438 DOI: 10.1681/asn.0000000000000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Key Points
Metabolism adaptations due to glucose-6 phosphate accumulation in glycogen storage disease type Ia kidneys, toward a Warburg-like metabolism, promoted cell proliferation.Metabolic perturbations directly affected primary cilium structure and cystogenesis in glycogen storage disease type Ia kidneys.
Background
Glycogen storage disease type Ia (GSDIa) is a rare metabolic disorder caused by mutations in the catalytic subunit of glucose-6 phosphatase (G6PC1). This leads to severe hypoglycemia, and most young patients with GSDIa develop CKD. The kidney pathology is characterized by the development of cysts, which typically occur at an advanced stage of CKD.
Methods
To elucidate the molecular mechanisms responsible for cyst formation, we characterized renal metabolism, molecular pathways involved in cell proliferation, and primary cilium integrity using mice in which G6pc1 was specifically deleted in the kidney from an in utero stage.
Results
GSDIa mice exhibited kidney fibrosis, high inflammation, and cyst formation, leading to kidney dysfunction. In addition, the loss of G6PC1 led to the ectopic accumulation of glycogen and lipids in the kidneys and a metabolic shift toward a Warburg-like metabolism. This metabolic adaptation was due to an excess of glucose-6 phosphate, which supports cell proliferation, driven by the mitogen-activated protein kinase/extracellular signal–regulated kinases and protein kinase B/mammalian target of rapamycin pathways. Treatment of GSDIa mice with rapamycin, a target of the mammalian target of rapamycin pathway, reduced cell proliferation and kidney damage. Our results also identified lipocalin 2 as a contributor to renal inflammation and an early biomarker of CKD progression in GSDIa mice. Its inactivation partially prevented kidney lesions in GSDIa. Importantly, primary cilium defects were observed in the kidneys of GSDIa mice.
Conclusions
Metabolic adaptations because of glucose-6 phosphate accumulation in GSDIa renal tubules, toward a Warburg-like metabolism, promoted cell proliferation and cyst formation in a similar manner to that observed in various cystic kidney diseases. This was associated with downregulation of primary cilium gene expression and, consequently, altered cilium morphology.
Collapse
Affiliation(s)
- Laure Monteillet
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Gwendoline Perrot
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Félicie Evrard
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Alexane Miliano
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Marine Silva
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Alicia Leblond
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Clément Nguyen
- Université de Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Paris, France
| | - Fabiola Terzi
- Université de Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Paris, France
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| |
Collapse
|
3
|
Jung HJ, Dixon EE, Coleman R, Watnick T, Reiter JF, Outeda P, Cebotaru V, Woodward OM, Welling PA. Polycystin-2-dependent transcriptome reveals early response of autosomal dominant polycystic kidney disease. Physiol Genomics 2023; 55:565-577. [PMID: 37720991 PMCID: PMC11178268 DOI: 10.1152/physiolgenomics.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, Pkd1 and Pkd2, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the Pkd2 gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in Pkd2 knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in Pkd2 knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eryn E Dixon
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Richard Coleman
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Valeriu Cebotaru
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Paul A Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Zhou JX, Torres VE. Autosomal Dominant Polycystic Kidney Disease Therapies on the Horizon. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:245-260. [PMID: 37088527 DOI: 10.1053/j.akdh.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous kidney cysts which leads to kidney failure. ADPKD is responsible for approximately 10% of patients with kidney failure. Overwhelming evidence supports that vasopressin and its downstream cyclic adenosine monophosphate signaling promote cystogenesis, and targeting vasopressin 2 receptor with tolvaptan and other antagonists ameliorates cyst growth in preclinical studies. Tolvaptan is the only drug approved by Food and Drug Administration to treat ADPKD patients at the risk of rapid disease progression. A major limitation of the widespread use of tolvaptan is aquaretic events. This review discusses the potential strategies to improve the tolerability of tolvaptan, the progress on the use of an alternative vasopressin 2 receptor antagonist lixivaptan, and somatostatin analogs. Recent advances in understanding the pathophysiology of PKD have led to new approaches of treatment via targeting different signaling pathways. We review the new pharmacotherapies and dietary interventions of ADPKD that are promising in the preclinical studies and investigated in clinical trials.
Collapse
|
5
|
Yu J, Wang G, Chen Z, Wan L, Zhou J, Cai J, Liu X, Wang Y. Deficit of PKHD1L1 in the dentate gyrus increases seizure susceptibility in mice. Hum Mol Genet 2023; 32:506-519. [PMID: 36067019 DOI: 10.1093/hmg/ddac220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023] Open
Abstract
Epilepsy is a chronic neurological disorder featuring recurrent, unprovoked seizures, which affect more than 65 million people worldwide. Here, we discover that the PKHD1L1, which is encoded by polycystic kidney and hepatic disease1-like 1 (Pkhd1l1), wildly distributes in neurons in the central nervous system (CNS) of mice. Disruption of PKHD1L1 in the dentate gyrus region of the hippocampus leads to increased susceptibility to pentylenetetrazol-induced seizures in mice. The disturbance of PKHD1L1 leads to the overactivation of the mitogen-activated protein kinase (MAPK)/extracellular regulated kinase (ERK)-Calpain pathway, which is accompanied by remarkable degradation of cytoplasmic potassium chloride co-transporter 2 (KCC2) level together with the impaired expression and function of membrane KCC2. However, the reduction of membrane KCC2 is associated with the damaged inhibitory ability of the vital GABA receptors, which ultimately leads to the significantly increased susceptibility to epileptic seizures. Our data, thus, indicate for the first time that Pkhd1l1, a newly discovered polycystic kidney disease (PKD) association gene, is required in neurons to maintain neuronal excitability by regulation of KCC2 expression in CNS. A new mechanism of the clinical association between genetic PKD and seizures has been built, which could be a potential therapeutic target for treating PKD-related seizures.
Collapse
Affiliation(s)
- Jiangning Yu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiyun Chen
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Wan
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Rehabilitation Center, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Rehabilitation Center, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jingyi Cai
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Liu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Kelam N, Racetin A, Polović M, Benzon B, Ogorevc M, Vukojević K, Glavina Durdov M, Dunatov Huljev A, Kuzmić Prusac I, Čarić D, Raguž F, Kostić S. Aberrations in FGFR1, FGFR2, and RIP5 Expression in Human Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). Int J Mol Sci 2022; 23:ijms232415537. [PMID: 36555181 PMCID: PMC9779456 DOI: 10.3390/ijms232415537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to explore the spatio-temporal expression patterns of congenital anomalies of kidney and urinary tract (CAKUT) candidate genes, Fibroblast Growth Factor Receptor 1 (FGFR1), Fibroblast Growth Factor Receptor 2 (FGFR2) and Receptor-Interacting Protein Kinase 5 (RIP5), in human fetal kidney development (CTRL) and kidneys affected with CAKUT. Human fetal kidneys from the 22nd to 41st developmental week (duplex, hypoplastic, dysplastic, and controls) were stained with antibodies and analyzed by epifluorescence microscopy and RT-qPCR. The effect of CAKUT candidate genes on kidney nephrogenesis and function is confirmed by statistically significant variations in the spatio-temporal expression patterns of the investigated markers. The nuclear localization of FGFR1, elevated expression score of FGFR1 mRNA, the increased area percentage of FGFR1-positive cells in the kidney cortex, and the overall decrease in the expression after the peak at the 27th developmental week in dysplastic kidneys (DYS), suggest an altered expression pattern and protein function in response to CAKUT pathophysiology. The RT-qPCR analysis revealed a significantly higher FGFR2 mRNA expression score in the CAKUT kidneys compared to the CTRL. This increase could be due to the repair mechanism involving the downstream mediator, Extracellular Signal-Regulated Kinase 1/2 (ERK1/2). The expression of RIP5 during normal human kidney development was reduced temporarily, due to urine production and increased later since it undertakes additional functions in the maturation of the postnatal kidney and homeostasis, while the expression dynamics in CAKUT-affected kidneys exhibited a decrease in the percentage of RIP5-positive cells during the investigated developmental period. Our findings highlight the importance of FGFR1, FGFR2, and RIP5 as markers in normal and pathological kidney development.
Collapse
Affiliation(s)
- Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Mirjana Polović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
- Department of Anatomy, University of Mostar School of Medicine, 88000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +385-21-557-807; Fax: +385-21-557-811
| | | | - Ana Dunatov Huljev
- Department of Pathology, University Hospital Center Split, 21000 Split, Croatia
| | - Ivana Kuzmić Prusac
- Department of Pathology, University Hospital Center Split, 21000 Split, Croatia
| | - Davor Čarić
- Department of Orthopaedics and Traumatology, University Hospital in Split, Spinciceva 1, 21000 Split, Croatia
| | - Fila Raguž
- Department of Nephrology, University Hospital Center Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Sandra Kostić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
7
|
Zhou X, Torres VE. Emerging therapies for autosomal dominant polycystic kidney disease with a focus on cAMP signaling. Front Mol Biosci 2022; 9:981963. [PMID: 36120538 PMCID: PMC9478168 DOI: 10.3389/fmolb.2022.981963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), with an estimated genetic prevalence between 1:400 and 1:1,000 individuals, is the third most common cause of end stage kidney disease after diabetes mellitus and hypertension. Over the last 3 decades there has been great progress in understanding its pathogenesis. This allows the stratification of therapeutic targets into four levels, gene mutation and polycystin disruption, proximal mechanisms directly caused by disruption of polycystin function, downstream regulatory and signaling pathways, and non-specific pathophysiologic processes shared by many other diseases. Dysfunction of the polycystins, encoded by the PKD genes, is closely associated with disruption of calcium and upregulation of cyclic AMP and protein kinase A (PKA) signaling, affecting most downstream regulatory, signaling, and pathophysiologic pathways altered in this disease. Interventions acting on G protein coupled receptors to inhibit of 3',5'-cyclic adenosine monophosphate (cAMP) production have been effective in preclinical trials and have led to the first approved treatment for ADPKD. However, completely blocking cAMP mediated PKA activation is not feasible and PKA activation independently from cAMP can also occur in ADPKD. Therefore, targeting the cAMP/PKA/CREB pathway beyond cAMP production makes sense. Redundancy of mechanisms, numerous positive and negative feedback loops, and possibly counteracting effects may limit the effectiveness of targeting downstream pathways. Nevertheless, interventions targeting important regulatory, signaling and pathophysiologic pathways downstream from cAMP/PKA activation may provide additive or synergistic value and build on a strategy that has already had success. The purpose of this manuscript is to review the role of cAMP and PKA signaling and their multiple downstream pathways as potential targets for emergent therapies for ADPKD.
Collapse
Affiliation(s)
- Xia Zhou
- Mayo Clinic, Department of Nephrology, Rochester, MN, United States
| | | |
Collapse
|
8
|
Walker RV, Maranto A, Palicharla VR, Hwang SH, Mukhopadhyay S, Qian F. Cilia-Localized Counterregulatory Signals as Drivers of Renal Cystogenesis. Front Mol Biosci 2022; 9:936070. [PMID: 35832738 PMCID: PMC9272769 DOI: 10.3389/fmolb.2022.936070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
Primary cilia play counterregulatory roles in cystogenesis-they inhibit cyst formation in the normal renal tubule but promote cyst growth when the function of polycystins is impaired. Key upstream cilia-specific signals and components involved in driving cystogenesis have remained elusive. Recent studies of the tubby family protein, Tubby-like protein 3 (TULP3), have provided new insights into the cilia-localized mechanisms that determine cyst growth. TULP3 is a key adapter of the intraflagellar transport complex A (IFT-A) in the trafficking of multiple proteins specifically into the ciliary membrane. Loss of TULP3 results in the selective exclusion of its cargoes from cilia without affecting their extraciliary pools and without disrupting cilia or IFT-A complex integrity. Epistasis analyses have indicated that TULP3 inhibits cystogenesis independently of the polycystins during kidney development but promotes cystogenesis in adults when polycystins are lacking. In this review, we discuss the current model of the cilia-dependent cyst activation (CDCA) mechanism in autosomal dominant polycystic kidney disease (ADPKD) and consider the possible roles of ciliary and extraciliary polycystins in regulating CDCA. We then describe the limitations of this model in not fully accounting for how cilia single knockouts cause significant cystic changes either in the presence or absence of polycystins. Based on available data from TULP3/IFT-A-mediated differential regulation of cystogenesis in kidneys with deletion of polycystins either during development or in adulthood, we hypothesize the existence of cilia-localized components of CDCA (cCDCA) and cilia-localized cyst inhibition (CLCI) signals. We develop the criteria for cCDCA/CLCI signals and discuss potential TULP3 cargoes as possible cilia-localized components that determine cystogenesis in kidneys during development and in adult mice.
Collapse
Affiliation(s)
- Rebecca V. Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Carullo N, Zicarelli MT, Casarella A, Nicotera R, Castagna A, Urso A, Presta P, Andreucci M, Russo E, Bolignano D, Coppolino G. Retarding Progression of Chronic Kidney Disease in Autosomal Dominant Polycystic Kidney Disease with Metformin and Other Therapies: An Update of New Insights. Int J Gen Med 2021; 14:5993-6000. [PMID: 34588803 PMCID: PMC8473846 DOI: 10.2147/ijgm.s305491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent single-gene disorder leading to renal failure. Current therapies are aimed to treat renal and extrarenal complications of ADPKD, but improved knowledge of the pathophysiological mechanisms leading to the generation and growth of cysts has permitted the identification of new drug candidates for clinical trials. Among these, in this review, we will examine above all the role of metformin, hypothesized to be able to activate the AMP-activated protein kinase (AMPK) pathway and potentially modulate some mechanisms implicated in the onset and the growth of the cysts.
Collapse
Affiliation(s)
- Nazareno Carullo
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | | | - Ramona Nicotera
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Alberto Castagna
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Alessandra Urso
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Pierangela Presta
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Davide Bolignano
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
10
|
Di Mise A, Wang X, Ye H, Pellegrini L, Torres VE, Valenti G. Pre-clinical evaluation of dual targeting of the GPCRs CaSR and V2R as therapeutic strategy for autosomal dominant polycystic kidney disease. FASEB J 2021; 35:e21874. [PMID: 34486176 PMCID: PMC9290345 DOI: 10.1096/fj.202100774r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations of PKD1 or PKD2 genes, is characterized by development and growth of cysts causing progressive kidney enlargement. Reduced resting cytosolic calcium and increased cAMP levels associated with the tonic action of vasopressin are two central biochemical defects in ADPKD. Here we show that co‐targeting two GPCRs, the vasopressin V2 receptor (V2R) and the calcium sensing receptor, using the novel V2R antagonist lixivaptan in combination with the calcimimetic R‐568, reduced cyst progression in two animal models of human PKD. Lixivaptan is expected to have a safer liver profile compared to tolvaptan, the only drug approved to delay PKD progression, based on computational model results and initial clinical evidence. PCK rat and Pkd1RC/RC mouse littermates were fed without or with lixivaptan (0.5%) and R‐568 (0.025% for rats and 0.04% for mice), alone or in combination, for 7 (rats) or 13 (mice) weeks. In PCK rats, the combined treatment strongly decreased kidney weight, cyst and fibrosis volumes by 20%, 49%, and 73%, respectively, compared to untreated animals. In Pkd1RC/RC mice, the same parameters were reduced by 20%, 56%, and 69%, respectively. In both cases the combined treatment appeared nominally more effective than the individual drugs used alone. These data point to an intriguing new application for two existing drugs in PKD treatment. The potential for synergy between these two compounds suggested in these animal studies, if confirmed in appropriate clinical investigations, would represent a welcome advancement in the treatment of ADPKD.
Collapse
Affiliation(s)
- Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hong Ye
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
11
|
JNK signaling prevents biliary cyst formation through a CASPASE-8-dependent function of RIPK1 during aging. Proc Natl Acad Sci U S A 2021; 118:2007194118. [PMID: 33798093 PMCID: PMC8000530 DOI: 10.1073/pnas.2007194118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
JNK signaling has been studied intensively in models of liver physiology and disease, but previous studies had focused on young mice. However, it had not been recognized that JNK plays a fundamental role in maintaining liver homeostasis and preventing the formation of biliary cysts in aging mice. These observations call for caution in all long-term pharmacological inhibition strategies targeting the JNK pathway. Finally, our results provide evidence of a molecular link between JNK and the cell-death mediator RIPK1. The specific overexpression of RIPK1 in cysts of a subset of patients with polycystic liver disease suggests that RIPK1 might be mechanistically involved in the pathogenesis of human biliary cysts. The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.
Collapse
|
12
|
Prabhakar A, González B, Dionne H, Basu S, Cullen PJ. Spatiotemporal control of pathway sensors and cross-pathway feedback regulate a differentiation MAPK pathway in yeast. J Cell Sci 2021; 134:jcs258341. [PMID: 34347092 PMCID: PMC8353523 DOI: 10.1242/jcs.258341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways control cell differentiation and the response to stress. In Saccharomyces cerevisiae, the MAPK pathway that controls filamentous growth (fMAPK) shares components with the pathway that regulates the response to osmotic stress (HOG). Here, we show that the two pathways exhibit different patterns of activity throughout the cell cycle. The different patterns resulted from different expression profiles of genes encoding mucin sensors that regulate the pathways. Cross-pathway regulation from the fMAPK pathway stimulated the HOG pathway, presumably to modulate fMAPK pathway activity. We also show that the shared tetraspan protein Sho1p, which has a dynamic localization pattern throughout the cell cycle, induced the fMAPK pathway at the mother-bud neck. A Sho1p-interacting protein, Hof1p, which also localizes to the mother-bud neck and regulates cytokinesis, also regulated the fMAPK pathway. Therefore, spatial and temporal regulation of pathway sensors, and cross-pathway regulation, control a MAPK pathway that regulates cell differentiation in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
13
|
Cordido A, Nuñez-Gonzalez L, Martinez-Moreno JM, Lamas-Gonzalez O, Rodriguez-Osorio L, Perez-Gomez MV, Martin-Sanchez D, Outeda P, Chiaravalli M, Watnick T, Boletta A, Diaz C, Carracedo A, Sanz AB, Ortiz A, Garcia-Gonzalez MA. TWEAK Signaling Pathway Blockade Slows Cyst Growth and Disease Progression in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2021; 32:1913-1932. [PMID: 34155062 PMCID: PMC8455272 DOI: 10.1681/asn.2020071094] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/06/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease (ADPKD), cyst development and enlargement lead to ESKD. Macrophage recruitment and interstitial inflammation promote cyst growth. TWEAK is a TNF superfamily (TNFSF) cytokine that regulates inflammatory responses, cell proliferation, and cell death, and its receptor Fn14 (TNFRSF12a) is expressed in macrophage and nephron epithelia. METHODS To evaluate the role of the TWEAK signaling pathway in cystic disease, we evaluated Fn14 expression in human and in an orthologous murine model of ADPKD. We also explored the cystic response to TWEAK signaling pathway activation and inhibition by peritoneal injection. RESULTS Meta-analysis of published animal-model data of cystic disease reveals mRNA upregulation of several components of the TWEAK signaling pathway. We also observed that TWEAK and Fn14 were overexpressed in mouse ADPKD kidney cysts, and TWEAK was significantly high in urine and cystic fluid from patients with ADPKD. TWEAK administration induced cystogenesis and increased cystic growth, worsening the phenotype in a murine ADPKD model. Anti-TWEAK antibodies significantly slowed the progression of ADPKD, preserved renal function, and improved survival. Furthermore, the anti-TWEAK cystogenesis reduction is related to decreased cell proliferation-related MAPK signaling, decreased NF-κB pathway activation, a slight reduction of fibrosis and apoptosis, and an indirect decrease in macrophage recruitment. CONCLUSIONS This study identifies the TWEAK signaling pathway as a new disease mechanism involved in cystogenesis and cystic growth and may lead to a new therapeutic approach in ADPKD.
Collapse
Affiliation(s)
- Adrian Cordido
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Nuñez-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Julio M. Martinez-Moreno
- Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Olaya Lamas-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Laura Rodriguez-Osorio
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Diego Martin-Sanchez
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Patricia Outeda
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marco Chiaravalli
- Division of Genetics and Cell Biology, Molecular Basis of Cystic Kidney Disorders Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–San Raffaele Scientific Institute, Milan, Italy
| | - Terry Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Candido Diaz
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Nephrology Service, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Center in Network of Rare Diseases (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana B. Sanz
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Alberto Ortiz
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Miguel A. Garcia-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
14
|
Dissecting the Involvement of Ras GTPases in Kidney Fibrosis. Genes (Basel) 2021; 12:genes12060800. [PMID: 34073961 PMCID: PMC8225075 DOI: 10.3390/genes12060800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Many different regulatory mechanisms of renal fibrosis are known to date, and those related to transforming growth factor-β1 (TGF-β1)-induced signaling have been studied in greater depth. However, in recent years, other signaling pathways have been identified, which contribute to the regulation of these pathological processes. Several studies by our team and others have revealed the involvement of small Ras GTPases in the regulation of the cellular processes that occur in renal fibrosis, such as the activation and proliferation of myofibroblasts or the accumulation of extracellular matrix (ECM) proteins. Intracellular signaling mediated by TGF-β1 and Ras GTPases are closely related, and this interaction also occurs during the development of renal fibrosis. In this review, we update the available in vitro and in vivo knowledge on the role of Ras and its main effectors, such as Erk and Akt, in the cellular mechanisms that occur during the regulation of kidney fibrosis (ECM synthesis, accumulation and activation of myofibroblasts, apoptosis and survival of tubular epithelial cells), as well as the therapeutic strategies for targeting the Ras pathway to intervene on the development of renal fibrosis.
Collapse
|
15
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
16
|
Ishii K, Kobayashi H, Taguchi K, Guan N, Li A, Tong C, Davidoff O, Tran PV, Sharma M, Chandel NS, Kapp ME, Fogo AB, Brooks CR, Haase VH. Kidney epithelial targeted mitochondrial transcription factor A deficiency results in progressive mitochondrial depletion associated with severe cystic disease. Kidney Int 2020; 99:657-670. [PMID: 33159962 DOI: 10.1016/j.kint.2020.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Abnormal mitochondrial function is a well-recognized feature of acute and chronic kidney diseases. To gain insight into the role of mitochondria in kidney homeostasis and pathogenesis, we targeted mitochondrial transcription factor A (TFAM), a protein required for mitochondrial DNA replication and transcription that plays a critical part in the maintenance of mitochondrial mass and function. To examine the consequences of disrupted mitochondrial function in kidney epithelial cells, we inactivated TFAM in sine oculis-related homeobox 2-expressing kidney progenitor cells. TFAM deficiency resulted in significantly decreased mitochondrial gene expression, mitochondrial depletion, inhibition of nephron maturation and the development of severe postnatal cystic disease, which resulted in premature death. This was associated with abnormal mitochondrial morphology, a reduction in oxygen consumption and increased glycolytic flux. Furthermore, we found that TFAM expression was reduced in murine and human polycystic kidneys, which was accompanied by mitochondrial depletion. Thus, our data suggest that dysregulation of TFAM expression and mitochondrial depletion are molecular features of kidney cystic disease that may contribute to its pathogenesis.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hanako Kobayashi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kensei Taguchi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nan Guan
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andraia Li
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carmen Tong
- Department Pediatric Urology, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Olena Davidoff
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhulika Sharma
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago, Illinois, USA
| | - Meghan E Kapp
- Department of Pathology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Agnes B Fogo
- The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Pathology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Craig R Brooks
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
17
|
Awad AM, Saleh MA, Abu-Elsaad NM, Ibrahim TM. Erlotinib can halt adenine induced nephrotoxicity in mice through modulating ERK1/2, STAT3, p53 and apoptotic pathways. Sci Rep 2020; 10:11524. [PMID: 32661331 PMCID: PMC7359038 DOI: 10.1038/s41598-020-68480-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is a failed regenerative process that facilitates chronic kidney disease progression. The current study was designed to study the effect of erlotinib, a receptor tyrosine kinase inhibitor, on the progression of renal fibrosis. The study included four groups of mice: control group; adenine group: received adenine (0.2% w/w) daily with food for 4 weeks; erlotinib group: received 80 mg/kg/day erlotinib orally (6 ml/kg/day, 1.3% w/v suspension in normal saline 0.9%) for 4 weeks; adenine + erlotinib group: received adenine and erlotinib concurrently. Kidney function and antioxidant biomarkers were measured. Renal expression of Bcl2 and p53 and histopathological changes (tubular injury and renal fibrosis) were scored. Renal tissue levels of transforming growth factor-β1, p-ERK1/2 and p-STAT3 were measured. Results obtained showed significant decrease (P < 0.001) in serum creatinine, urea and uric acid in erlotinib + adenine group. Level of malondialdehyde was decreased significantly (P < 0.001) while reduced glutathione and catalase levels were increased (P < 0.01) by erlotinib concurrent administration. Erlotinib markedly reduced fibrosis and tubular injury and decreased TGF-β1, p-ERK1/2 and p-STAT3 (P < 0.5). In addition, expression level of Bcl-2 was elevated (P < 0.001) while that of p53-was reduced compared to adenine alone. Erlotinib can attenuate renal fibrosis development and progression through anti-fibrotic, antioxidant and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Ahmed M Awad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Mansoura, Eldakahlia, 35516, Egypt
| | - Mohamed A Saleh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Mansoura, Eldakahlia, 35516, Egypt.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nashwa M Abu-Elsaad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Mansoura, Eldakahlia, 35516, Egypt.
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Mansoura, Eldakahlia, 35516, Egypt
| |
Collapse
|
18
|
Takenaka T, Kobori H, Inoue T, Miyazaki T, Suzuki H, Nishiyama A, Ishii N, Hayashi M. Klotho supplementation ameliorates blood pressure and renal function in DBA/2-pcy mice, a model of polycystic kidney disease. Am J Physiol Renal Physiol 2020; 318:F557-F564. [PMID: 31928223 DOI: 10.1152/ajprenal.00299.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Klotho interacts with various membrane proteins such as receptors for transforming growth factor-β (TGF-β) and insulin-like growth factor (IGF). Renal expression of klotho is diminished in polycystic kidney disease (PKD). In the present study, the effects of klotho supplementation on PKD were assessed. Recombinant human klotho protein (10 μg·kg-1·day-1) or a vehicle was administered daily by subcutaneous injection to 6-wk-old mice with PKD (DBA/2-pcy). Blood pressure was measured using tail-cuff methods. After 2 mo, mice were killed, and the kidneys were harvested for analysis. Exogenous klotho protein supplementation reduced kidney weight, cystic area, systolic blood pressure, renal angiotensin II levels, and 8-epi-PGF2α excretion (P < 0.05). Klotho protein supplementation enhanced glomerular filtration rate, renal expression of superoxide dismutase, and klotho itself (P < 0.05). Klotho supplementation attenuated renal expressions of TGF-β and collagen type I and diminished renal abundance of Twist, phosphorylated Akt, and mammalian target of rapamycin (P < 0.05). Pathological examination revealed that klotho decreased the fibrosis index and nuclear staining of Smad in PKD kidneys (P < 0.05). Our data indicate that klotho protein supplementation ameliorates the renin-angiotensin system, reducing blood pressure in PKD mice. Furthermore, the present results implicate klotho supplementation in the suppression of Akt/mammalian target of rapamycin signaling, slowing cystic expansion. Finally, our findings suggest that klotho protein supplementation attenuated fibrosis at least partly by inhibiting epithelial mesenchymal transition in PKD.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- International University of Health and Welfare, Minato, Tokyo
| | - Hiroyuki Kobori
- International University of Health and Welfare, Minato, Tokyo
| | | | | | | | | | - Naohito Ishii
- Kitasato University, Sagamihara, Kanagawa, Tokyo, Japan
| | | |
Collapse
|
19
|
Zahid R, Akram M, Rafique E. Prevalence, risk factors and disease knowledge of polycystic kidney disease in Pakistan. Int J Immunopathol Pharmacol 2020; 34:2058738420966083. [PMID: 33125856 PMCID: PMC7607775 DOI: 10.1177/2058738420966083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Polycystic kidneys disease refers to cyst(s) formation in kidneys with severe consequences of end stage renal disease thus have higher mortality. It is a common genetic disease occurring either as autosomal dominant polycystic kidney (ADPKD) or autosomal recessive polycystic kidney disease (ARPKD) with prevalence rates of 1/1000 and 1/40,000 respectively. Dominant forms presenting in later (>30) while recessive in earlier ages (infancy) and affecting both sexes and almost all race. The patient experiences many renal as well as extra-renal manifestations with marked hypertension and cyst formation in other organs predominantly in liver. Due to genetic basis, positive family history is considered as major risk factor. Ultrasonography remains the main stay of diagnosis along with family history, by indicating increased renal size and architectural modifications. Initially disease remains asymptomatic, later on symptomatic treatment is suggested with surgical interventions like cyst decortications or drainage. Dialysis proved to be beneficial in end stage renal disease. However renal transplantation is the treatment of choice.
Collapse
Affiliation(s)
- Rabia Zahid
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ejaz Rafique
- Department of Microbiology, University of Lahore, Lahore, Pakistan
| |
Collapse
|
20
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2019; 67:109497. [PMID: 31830556 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
21
|
Wu ZY, Chiu CL, Lo E, Lee YRJ, Yamada S, Lo SH. Hyperactivity of Mek in TNS1 knockouts leads to potential treatments for cystic kidney diseases. Cell Death Dis 2019; 10:871. [PMID: 31740667 PMCID: PMC6861224 DOI: 10.1038/s41419-019-2119-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/28/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
Cystic kidney disease is the progressive development of multiple fluid-filled cysts that may severely compromise kidney functions and lead to renal failure. TNS1 (tensin-1) knockout mice develop cystic kidneys and die from renal failure. Here, we have established TNS1-knockout MDCK cells and applied 3D culture system to investigate the mechanism leading to cyst formation. Unlike wild-type MDCK cells, which form cysts with a single lumen, TNS1-knockout cysts contain multiple lumens and upregulated Mek/Erk activities. The multiple lumen phenotype and Mek/Erk hyperactivities are rescued by re-expression of wild-type TNS1 but not the TNS1 mutant lacking a fragment essential for its cell–cell junction localization. Furthermore, Mek inhibitor treatments restore the multiple lumens back to single lumen cysts. Mek/Erk hyperactivities are also detected in TNS1-knockout mouse kidneys. Treatment with the Mek inhibitor trametinib significantly reduces the levels of interstitial infiltrates, fibrosis and dilated tubules in TNS1-knockout kidneys. These studies establish a critical role of subcellular localization of TNS1 in suppressing Mek/Erk signaling and maintaining lumenogenesis, and provide potential therapeutic strategies by targeting the Mek/Erk pathway for cystic kidney diseases.
Collapse
Affiliation(s)
- Zong-Ye Wu
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA, 95817, USA
| | - Chun-Lung Chiu
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA, 95817, USA
| | - Ethan Lo
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA, 95817, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
22
|
Keshari S, Sipayung AD, Hsieh CC, Su LJ, Chiang YR, Chang HC, Yang WC, Chuang TH, Chen CL, Huang CM. IL-6/p-BTK/p-ERK signaling mediates calcium phosphate-induced pruritus. FASEB J 2019; 33:12036-12046. [PMID: 31365830 DOI: 10.1096/fj.201900016rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uremic pruritus with elevated levels of calcium phosphate (CaP) in skin is a common symptom in patients with chronic kidney disease (CKD). In this study, we demonstrate that intradermal injection of CaP into mice triggered scratching by up-regulating the IL-6 in skin and phosphorylation of ERKs in dorsal root ganglion (DRG) in a dose-dependent manner. IL-6 is essential because the CaP-induced up-regulation of phosphorylated (p)-ERK in DRG was considerably reduced in the IL-6 knockout mice. Microarray analysis in conjunction with real-time PCR revealed a higher mRNA expression of Bruton's tyrosine kinase (BTK) gene in DRG after CaP injection. The inhibition of BTK by ibrutinib noticeably diminish the CaP-induced up-regulation of IL-6 and p-ERK in mice. A high amount of IL-6 was detected in itchy skin and blood of patients with CKD. The expressions of p-BTK and p-ERK in DRG primary cells reached maximum levels at 1 and 10 min, respectively, after treatment of recombinant IL-6 and were significantly reduced by treatment of IL-6 along with ibrutinib. The mechanism by which the CaP-induced pruritus mediated by the IL-6/p-BTK/p-ERK signaling was revealed.-Keshari, S., Sipayung, A. D., Hsieh, C.-C., Su, L.-J., Chiang, Y.-R., Chang, H.-C., Yang, W.-C., Chuang, T.-H., Chen, C.-L., Huang, C.-M. IL-6/p-BTK/p-ERK signaling mediates calcium phosphate-induced pruritus.
Collapse
Affiliation(s)
- Sunita Keshari
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | - Ching-Chuan Hsieh
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Yun-Ru Chiang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | | | - Wu-Chang Yang
- Division of Nephrology, Landseed Hospital, Taoyuan, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Lung Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.,Division of Nephrology, Landseed Hospital, Taoyuan, Taiwan
| | - Chun-Ming Huang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.,Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.,Department of Dermatology, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
23
|
Conduit SE, Hakim S, Feeney SJ, Ooms LM, Dyson JM, Abud HE, Mitchell CA. β-catenin ablation exacerbates polycystic kidney disease progression. Hum Mol Genet 2019; 28:230-244. [PMID: 30265301 DOI: 10.1093/hmg/ddy309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/24/2018] [Indexed: 11/14/2022] Open
Abstract
Polycystic kidney disease (PKD) results from excessive renal epithelial cell proliferation, leading to the formation of large fluid filled cysts which impair renal function and frequently lead to renal failure. Hyperactivation of numerous signaling pathways is hypothesized to promote renal epithelial cell hyperproliferation including mTORC1, extracellular signal-regulated kinase (ERK) and WNT signaling. β-catenin and its target genes are overexpressed in some PKD models and expression of activated β-catenin induces cysts in mice; however, β-catenin murine knockout studies indicate it may also inhibit cystogenesis. Therefore, it remains unclear whether β-catenin is pro- or anti-cystogenic and whether its role is canonical WNT signaling-dependent. Here, we investigate whether β-catenin deletion in a PKD model with hyperactived β-catenin signaling affects disease progression to address whether increased β-catenin drives PKD. We used renal epithelial cell specific Inpp5e-null PKD mice which we report exhibit increased β-catenin and target gene expression in the cystic kidneys. Surprisingly, co-deletion of β-catenin with Inpp5e in renal epithelial cells exacerbated polycystic kidney disease and renal failure compared to Inpp5e deletion alone, but did not normalize β-catenin target gene expression. β-catenin/Inpp5e double-knockout kidneys exhibited increased cyst initiation, cell proliferation and MEK/ERK signaling compared to Inpp5e-null, associated with increased fibrosis, which may collectively contribute to accelerated disease. Therefore, increased β-catenin and WNT target gene expression are not necessarily cyst promoting. Rather β-catenin may play a dual and context-dependent role in PKD and in the presence of other cyst-inducing mutations (Inpp5e-deletion); β-catenin loss may exacerbate disease in a WNT target gene-independent manner.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sandra Hakim
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sandra J Feeney
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jennifer M Dyson
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helen E Abud
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Malekshahabi T, Khoshdel Rad N, Serra AL, Moghadasali R. Autosomal dominant polycystic kidney disease: Disrupted pathways and potential therapeutic interventions. J Cell Physiol 2019; 234:12451-12470. [PMID: 30644092 DOI: 10.1002/jcp.28094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic inherited renal cystic disease that occurs in different races worldwide. It is characterized by the development of a multitude of renal cysts, which leads to massive enlargement of the kidney and often to renal failure in adulthood. ADPKD is caused by a mutation in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Recent studies showed that cyst formation and growth result from deregulation of multiple cellular pathways like proliferation, apoptosis, metabolic processes, cell polarity, and immune defense. In ADPKD, intracellular cyclic adenosine monophosphate (cAMP) promotes cyst enlargement by stimulating cell proliferation and transepithelial fluid secretion. Several interventions affecting many of these defective signaling pathways have been effective in animal models and some are currently being tested in clinical trials. Moreover, the stem cell therapy can improve nephropathies and according to studies were done in this field, can be considered as a hopeful therapeutic approach in future for PKD. This study provides an in-depth review of the relevant molecular pathways associated with the pathogenesis of ADPKD and their implications in development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Talieh Malekshahabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Andreas L Serra
- Department of Internal Medicine and Nephrology, Klinik Hirslanden, Zurich, Switzerland
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
25
|
Toteda G, Vizza D, Lupinacci S, Perri A, Scalise MF, Indiveri C, Puoci F, Parisi OI, Lofaro D, La Russa A, Gigliotti P, Leone F, Pochini L, Bonofiglio R. Olive leaf extract counteracts cell proliferation and cyst growth in an in vitro model of autosomal dominant polycystic kidney disease. Food Funct 2018; 9:5925-5935. [PMID: 30375624 DOI: 10.1039/c8fo01481g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive enlargement of kidney cysts, leading to chronic kidney disease. Since the available treatment for ADPKD is limited, there is emerging interest for natural compounds as potential therapeutic candidates. The aim of our study was to investigate whether an olive leaf extract may be able to counteract the cyst growth in an in vitro model of ADPKD. We treated WT9-12 cells with an olive leaf extract (OLE). In monolayer culture we evaluated cell viability by the MTT assay, protein expression by western-blot analysis and apoptosis by DNA laddering and TUNEL assays. For functional studies we used transient transfection and ChIP assays. Intracellular calcium measurement was performed with a spectrofluorimeter using a fluorescent probe. 3D-cell-culture was used for cyst growth studies. OLE reduced the WT9-12 cell growth rate and affected intracellular signaling due to high c-AMP levels, as OLE reduced PKA levels, enhanced p-AKT, restored B-Raf-inactivation and down-regulated p-ERK. We elucidated the molecular mechanism by which OLE, via Sp1, transactivates the p21WAF1/Cip1 promoter, whose levels are down-regulated by mutated PKD1. We demonstrated that p-AKT up-regulation also played a crucial role in the OLE-induced anti-apoptotic effect and that OLE ameliorated intracellular calcium levels, the primary cause of ADPKD. Finally, using a 3D-cell-culture model we observed that OLE reduced the cyst size. Therefore, multifaceted OLE may be considered a new therapeutic approach for ADPKD treatment.
Collapse
Affiliation(s)
- G Toteda
- Kidney and Transplantation Research Center Annunziata Hospital, Cosenza, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nakajima T, Okayama H, Ashizawa M, Noda M, Aoto K, Saito M, Monma T, Ohki S, Shibata M, Takenoshita S, Kono K. Augmentation of antibody-dependent cellular cytotoxicity with defucosylated monoclonal antibodies in patients with GI-tract cancer. Oncol Lett 2017; 15:2604-2610. [PMID: 29434980 DOI: 10.3892/ol.2017.7556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Enhancement of antibody-dependent cellular cytotoxicity (ADCC) with some modalities may be a promising approach to enhance the efficacy of therapeutic monoclonal antibodies (mAbs). It has previously been demonstrated that the removal of fucose from antibody oligosaccharides (defucosylation) leads to augmentation of ADCC activity. To establish clinically relevant evidence of this procedure, the present study evaluated trastuzumab- and cetuximab-mediated ADCC by comparing defucosylated mAbs with conventional mAbs using peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from 20 patients with gastrointestinal tract cancer and 10 healthy volunteers. ADCCs were measured using PBMCs as effector cells and two gastric cancer cell lines as target cells. ADCCs were significantly enhanced with defucosylated mAbs compared with conventional mAbs using PBMC from the healthy donors and patients with cancer. The results confirmed that the cetuximab- and trastuzumab-mediated ADCCs in advanced disease were impaired in comparison to those in early disease or healthy individuals. However, when the defucosylated mAbs were used instead of the conventional mAbs, the ADCC activities in the advanced cases were almost comparable with those in early disease or healthy individuals. Furthermore, the expression of ADCC associated molecules were modified toward immunosuppressive status with a mitogen-activated protein kinase inhibitor in vitro, the conventional cetuximab- and trastuzumab-mediated ADCC was downregulated, and the defucosylated mAbs overcome the downregulation of ADCC. In conclusion, defucosylated therapeutic mAbs may enhance ADCC activities in patients with cancer, which may lead to more effective anti-cancer treatments.
Collapse
Affiliation(s)
- Takahiro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Mai Ashizawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Masaru Noda
- Department of Breast Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Keita Aoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomoyuki Monma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Masahiko Shibata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Seiichi Takenoshita
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
27
|
Ma M, Gallagher AR, Somlo S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harb Perspect Biol 2017; 9:a028209. [PMID: 28320755 PMCID: PMC5666631 DOI: 10.1101/cshperspect.a028209] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a disease of defective tissue homeostasis resulting in active remodeling of nephrons and bile ducts to form fluid-filled sacs called cysts. The causal genes PKD1 and PKD2 encode transmembrane proteins polycystin 1 (PC1) and polycystin 2 (PC2), respectively. Together, the polycystins localize to the solitary primary cilium that protrudes from the apical surface of most kidney tubule cells and is thought to function as a privileged compartment that the cell uses for signal integration of sensory inputs. It has been proposed that PC1 and PC2 form a receptor-channel complex that detects external stimuli and transmit a local calcium-mediated signal, which may control a multitude of cellular processes by an as-yet unknown mechanism. Genetic studies using mouse models of cilia and polycystin dysfunction have shown that polycystins regulate an unknown cilia-dependent signal that is normally part of the homeostatic maintenance of nephron structure. ADPKD ensues when this pathway is dysregulated by absence of polycystins from intact cilia, but disruption of cilia also disrupts this signaling mechanism and ameliorates ADPKD even in the absence of polycystins. Understanding the role of cilia and ciliary signaling in ADPKD is challenging, but success will provide saltatory advances in our understanding of how tubule structure is maintained in healthy kidneys and how disruption of polycystin or cilia function leads to the pathological tissue remodeling process underlying ADPKD.
Collapse
Affiliation(s)
- Ming Ma
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| |
Collapse
|
28
|
Ganoderma triterpenes retard renal cyst development by downregulating Ras/MAPK signaling and promoting cell differentiation. Kidney Int 2017; 92:1404-1418. [PMID: 28709639 DOI: 10.1016/j.kint.2017.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 01/02/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenetic disease characterized by the progressive development of renal cysts with further need for effective therapy. Here our aim was to investigate the effect of Ganoderma triterpenes (GT) on the development of kidney cysts. Importantly, GT attenuated cyst development in two mouse models of ADPKD with phenotypes of severe cystic kidney disease. Assays for tubulogenesis showed that GT promoted epithelial tubule formation in MDCK cells, suggesting a possible effect on epithelial cell differentiation. The role of GT in regulating key signaling pathways involved in the pathogenesis of PKD was further investigated by immune blotting. This showed that GT specifically downregulated the activation of the Ras/MAPK signaling pathway both in vitro and in vivo without detectable effect on the mTOR pathway. This mechanism may be involved in GT downregulating intracellular cAMP levels. Screening of 15 monomers purified from GT for their effects on cyst development indicated that CBLZ-7 (ethyl ganoderate C2) had a potent inhibitory effect on cyst development in vitro. Additionally, like GT, CBLZ-7 was able to downregulate forskolin-induced activation of the Ras/MAPK pathway. Thus, GT and its purified monomer CBLZ-7 may be potential therapeutic regents for treating ADPKD.
Collapse
|
29
|
Makhlough A, Shekarchian S, Moghadasali R, Einollahi B, Hosseini SE, Jaroughi N, Bolurieh T, Baharvand H, Aghdami N. Safety and tolerability of autologous bone marrow mesenchymal stromal cells in ADPKD patients. Stem Cell Res Ther 2017; 8:116. [PMID: 28535817 PMCID: PMC5442691 DOI: 10.1186/s13287-017-0557-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is a genetic ciliopathy disease characterized by progressive formation and enlargement of cysts in multiple organs. The kidneys are particularly affected and patients may eventually develop end-stage renal disease (ESRD). We hypothesize that bone marrow mesenchymal stromal cells (BMMSCs) are renotropic and may improve kidney function via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. In this study, we aim to assess the safety and tolerability of a BMMSC infusion in ADPKD patients. Methods We performed a single-arm phase I clinical trial with a 12-month follow-up. This study enrolled six eligible ADPKD patients with an estimated glomerular filtration rate (eGFR) of 25–60 ml/min/1.73 m2. Patients received autologous cultured BMMSCs (2 × 106 cells/kg) through the cubital vein according to our infusion protocol. We investigated safety issues and kidney function during the follow-up visits, and compared the findings to baseline and 1 year prior to the intervention. Results There were no patients lost to follow-up. We observed no cell-related adverse events (AE) and serious adverse events (SAE) after 12 months of follow-up. The mean eGFR value of 33.8 ± 5.3 ml/min/1.73 m2 1 year before cell infusion declined to 26.7 ± 3.1 ml/min/1.73 m2 at baseline (P = 0.03) and 25.8 ± 6.2 ml/min/1.73 m2 at the 12-month follow-up visit (P = 0.62). The mean serum creatinine (SCr) level of 2 ± 0.3 mg/dl 1 year before the infusion increased to 2.5 ± 0.4 mg/dl at baseline (P = 0.04) and 2.5 ± 0.6 mg/dl at the 12-month follow-up (P = 0.96). This indicated significant changes between the differences of these two periods (12 months before infusion to baseline, and 12 months after infusion to baseline) in SCr (P = 0.05), but not eGFR (P = 0.09). Conclusions This trial demonstrated the safety and tolerability of an intravenous transplantation of autologous BMMSCs. BMMSC efficacy in ADPKD patients should be investigated in a randomized placebo-controlled trial with a larger population, which we intend to perform. Trial registration ClinicalTrials.gov, NCT02166489. Registered on June 14, 2014. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0557-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atieh Makhlough
- Department of Nephrology, Molecular and Cell Biology Research Center, Sari University of Medical Sciences, Sari, Iran
| | - Soroosh Shekarchian
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Baqiyatallah Hospital, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jaroughi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tina Bolurieh
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
30
|
Rogers KA, Moreno SE, Smith LA, Husson H, Bukanov NO, Ledbetter SR, Budman Y, Lu Y, Wang B, Ibraghimov-Beskrovnaya O, Natoli TA. Differences in the timing and magnitude of Pkd1 gene deletion determine the severity of polycystic kidney disease in an orthologous mouse model of ADPKD. Physiol Rep 2016; 4:4/12/e12846. [PMID: 27356569 PMCID: PMC4926022 DOI: 10.14814/phy2.12846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Development of a disease‐modifying therapy to treat autosomal dominant polycystic kidney disease (ADPKD) requires well‐characterized preclinical models that accurately reflect the pathology and biochemical changes associated with the disease. Using a Pkd1 conditional knockout mouse, we demonstrate that subtly altering the timing and extent of Pkd1 deletion can have a significant impact on the origin and severity of kidney cyst formation. Pkd1 deletion on postnatal day 1 or 2 results in cysts arising from both the cortical and medullary regions, whereas deletion on postnatal days 3–8 results in primarily medullary cyst formation. Altering the extent of Pkd1 deletion by modulating the tamoxifen dose produces dose‐dependent changes in the severity, but not origin, of cystogenesis. Limited Pkd1 deletion produces progressive kidney cystogenesis, accompanied by interstitial fibrosis and loss of kidney function. Cyst growth occurs in two phases: an early, rapid growth phase, followed by a later, slow growth period. Analysis of biochemical pathway changes in cystic kidneys reveals dysregulation of the cell cycle, increased proliferation and apoptosis, activation of Mek‐Erk, Akt‐mTOR, and Wnt‐β‐catenin signaling pathways, and altered glycosphingolipid metabolism that resemble the biochemical changes occurring in human ADPKD kidneys. These pathways are normally active in neonatal mouse kidneys until repressed around 3 weeks of age; however, they remain active following Pkd1 deletion. Together, this work describes the key parameters to accurately model the pathological and biochemical changes associated with ADPKD in a conditional mouse model.
Collapse
Affiliation(s)
- Kelly A Rogers
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Sarah E Moreno
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Laurie A Smith
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Hervé Husson
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Nikolay O Bukanov
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Steven R Ledbetter
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Yeva Budman
- Department of Analytical Research and Development, Sanofi Corporation, Waltham, Massachusetts
| | - Yuefeng Lu
- Department of Biostatistics and Programming, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Bing Wang
- Department of Analytical Research and Development, Sanofi Corporation, Waltham, Massachusetts
| | | | - Thomas A Natoli
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| |
Collapse
|
31
|
de Stephanis L, Bonon A, Varani K, Lanza G, Gafà R, Pinton P, Pema M, Somlo S, Boletta A, Aguiari G. Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells. Clin Exp Nephrol 2016; 21:203-211. [PMID: 27278932 DOI: 10.1007/s10157-016-1289-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND ADPKD is a renal pathology caused by mutations of PKD1 and PKD2 genes, which encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 plays an important role regulating several signal transducers, including cAMP and mTOR, which are involved in abnormal cell proliferation of ADPKD cells leading to the development and expansion of kidney cysts that are a typical hallmark of this disease. Therefore, the inhibition of both pathways could potentiate the reduction of cell proliferation enhancing benefits for ADPKD patients. METHODS The inhibition of cAMP- and mTOR-related signalling was performed by Cl-IB-MECA, an agonist of A3 receptors, and rapamycin, respectively. Protein kinase activity was evaluated by immunoblot and cell growth was analyzed by direct cell counting. RESULTS The activation of A3AR by the specific agonist Cl-IB-MECA causes a marked reduction of CREB, mTOR, and ERK phosphorylation in kidney tissues of Pkd1 flox/-: Ksp-Cre polycystic mice and reduces cell growth in ADPKD cell lines, but not affects the kidney weight. The combined sequential treatment with rapamycin and Cl-IB-MECA in ADPKD cells potentiates the reduction of cell proliferation compared with the individual compound by the inhibition of CREB, mTOR, and ERK kinase activity. Conversely, the simultaneous application of these drugs counteracts their effect on cell growth, because the inhibition of ERK kinase activity is lost. CONCLUSION The double treatment with rapamycin and Cl-IB-MECA may have synergistic effects on the inhibition of cell proliferation in ADPKD cells suggesting that combined therapies could improve renal function in ADPKD patients.
Collapse
Affiliation(s)
- Lucia de Stephanis
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy
| | - Anna Bonon
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Giovanni Lanza
- Section of Pathological Anatomy and Molecular Diagnostic, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Roberta Gafà
- Section of Pathological Anatomy and Molecular Diagnostic, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/b, 44121, Ferrara, Italy
| | - Monika Pema
- Dibit 1 San Raffaele, via Olgettina 60, 20132, Milan, Italy
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Gianluca Aguiari
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy.
| |
Collapse
|
32
|
Seixas C, Choi SY, Polgar N, Umberger NL, East MP, Zuo X, Moreiras H, Ghossoub R, Benmerah A, Kahn RA, Fogelgren B, Caspary T, Lipschutz JH, Barral DC. Arl13b and the exocyst interact synergistically in ciliogenesis. Mol Biol Cell 2016; 27:308-20. [PMID: 26582389 PMCID: PMC4713133 DOI: 10.1091/mbc.e15-02-0061] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022] Open
Abstract
Arl13b belongs to the ADP-ribosylation factor family within the Ras superfamily of regulatory GTPases. Mutations in Arl13b cause Joubert syndrome, which is characterized by congenital cerebellar ataxia, hypotonia, oculomotor apraxia, and mental retardation. Arl13b is highly enriched in cilia and is required for ciliogenesis in multiple organs. Nevertheless, the precise role of Arl13b remains elusive. Here we report that the exocyst subunits Sec8, Exo70, and Sec5 bind preferentially to the GTP-bound form of Arl13b, consistent with the exocyst being an effector of Arl13b. Moreover, we show that Arl13b binds directly to Sec8 and Sec5. In zebrafish, depletion of arl13b or the exocyst subunit sec10 causes phenotypes characteristic of defective cilia, such as curly tail up, edema, and abnormal pronephric kidney development. We explored this further and found a synergistic genetic interaction between arl13b and sec10 morphants in cilia-dependent phenotypes. Through conditional deletion of Arl13b or Sec10 in mice, we found kidney cysts and decreased ciliogenesis in cells surrounding the cysts. Moreover, we observed a decrease in Arl13b expression in the kidneys from Sec10 conditional knockout mice. Taken together, our results indicate that Arl13b and the exocyst function together in the same pathway leading to functional cilia.
Collapse
Affiliation(s)
- Cecília Seixas
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Soo Young Choi
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Noemi Polgar
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813
| | - Nicole L Umberger
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30022
| | - Michael P East
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30022
| | - Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Hugo Moreiras
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille, INSERM, UMR7258, 13009 Marseille, France
| | - Alexandre Benmerah
- INSERM UMR 1163, Laboratory of Inherited Kidney Diseases, 75015 Paris, France Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30022
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30022
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425 Department of Medicine, RHJ Veterans Affairs Medical Center, Charleston, SC 29425
| | - Duarte C Barral
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
33
|
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common inherited disorders. It is the fourth leading cause of renal replacement and renal failure worldwide. Mutations in PKD1 or PKD2 cause ADPKD. Patients with ADPKD show progressive growth of renal cysts filled with cystic fluid, leading to end-stage renal disease (ESRD) and renal failure by their sixth decade of life. Currently, there are no curative treatments for ADPKD. Therefore, patients require dialysis or kidney transplantation. To date, researchers have elucidated many of the mechanisms that cause ADPKD and developed many methods to diagnose the disease. ADPKD is related to growth factors, signaling pathways, cell proliferation, apoptosis, inflammation, the immune system, structural abnormalities, epigenetic mechanisms, microRNAs, and so on. Various therapies have been reported to slow the progression of ADPKD and alleviate its symptoms.
Collapse
|
34
|
Validation of Effective Therapeutic Targets for ADPKD Using Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 933:71-84. [DOI: 10.1007/978-981-10-2041-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Ciliary subcompartments and cysto-proteins. Anat Sci Int 2015; 92:207-214. [DOI: 10.1007/s12565-015-0302-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
|
36
|
Nutter FH, Haylor JL, Khwaja A. Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis. PLoS One 2015; 10:e0137321. [PMID: 26415098 PMCID: PMC4586140 DOI: 10.1371/journal.pone.0137321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/15/2015] [Indexed: 11/27/2022] Open
Abstract
Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1.
Collapse
Affiliation(s)
- Faith Hannah Nutter
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, England
- * E-mail:
| | - John L. Haylor
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, England
| | - Arif Khwaja
- Sheffield Kidney Institute, Northern General Hospital, Sheffield, England
| |
Collapse
|
37
|
Seeger-Nukpezah T, Geynisman DM, Nikonova AS, Benzing T, Golemis EA. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol 2015; 11:515-34. [PMID: 25870008 PMCID: PMC5902186 DOI: 10.1038/nrneph.2015.46] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Centre for Integrated Oncology, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Daniel M Geynisman
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anna S Nikonova
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Centre for Molecular Medicine Cologne, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Erica A Golemis
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
38
|
Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Suzuki K, Nakamura M, Ueno K, Watanabe K. Naringenin ameliorates daunorubicin induced nephrotoxicity by mitigating AT1R, ERK1/2-NFκB p65 mediated inflammation. Int Immunopharmacol 2015; 28:154-9. [PMID: 26072060 DOI: 10.1016/j.intimp.2015.05.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/26/2015] [Accepted: 05/31/2015] [Indexed: 12/27/2022]
Abstract
Inflammation and oxidative stress play important roles in the progression of renal damage. The natural polyphenol naringenin is known to exert potent antioxidant and anti-inflammatory effects. In this study, we have investigated the effect of naringenin on kidney dysfunction, fibrosis, endoplasmic reticulum (ER) stress, angiotensin II type I receptor (AT1R) expression and inflammation in daunorubicin (DNR) induced nephrotoxicity model. Nephrotoxicity was induced in rats by intravenous injection of DNR at a cumulative dose of 9 mg/kg. After 1 week, naringenin (20mg/kg/day. p.o) was administered daily for 6 weeks. Biochemical studies were performed to evaluate renal function. Western blotting was performed to measure the protein levels of AT1R, endothelin (ET)1, ET receptor type A (ETAR), extracellular signal-regulated kinase (ERK)1/2, nuclear factor (NF)κB p65, peroxisome proliferator activated receptor (PPAR)γ, oxidative/ER stress, apoptosis, and inflammatory markers in the kidney of DNR treated rats. Histopathological analysis was done using hemotoxylin eosin and Masson trichrome stained renal sections to investigate the structural abnormalities and fibrosis. DNR treated rats suffered from nephrotoxicity as evidenced by worsened renal function, increased blood urea nitrogen, serum creatinine levels in renal tissues and histopathogical abnormalities. Treatment with naringenin mitigated these changes. Furthermore, naringenin up regulated PPARγ and down regulated AT1R, ET1, ETAR, p-ERK1/2, p-NFκB p65, ER stress, apoptosis, and inflammatory markers. Our results suggest that naringenin has an ability to improve renal function and attenuates AT1R, ERK1/2-NFκB p65 signaling pathway in DNR induced nephrotoxicity in rats.
Collapse
Affiliation(s)
- Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Rajarajan Amirthalingam Thandavarayan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vigneshwaran Pitchaimani
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Rejina Afrin
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Meilei Harima
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Hiroshi Suzuki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Kenji Suzuki
- Department of Gastroenterology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan
| | - Masahiko Nakamura
- Department of Cardiology, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi Kofu, Yamanashi 400-8506, Japan
| | - Kazuyuki Ueno
- Department of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan.
| |
Collapse
|
39
|
Leonhard WN, Zandbergen M, Veraar K, van den Berg S, van der Weerd L, Breuning M, de Heer E, Peters DJM. Scattered Deletion of PKD1 in Kidneys Causes a Cystic Snowball Effect and Recapitulates Polycystic Kidney Disease. J Am Soc Nephrol 2015; 26:1322-33. [PMID: 25361818 PMCID: PMC4446864 DOI: 10.1681/asn.2013080864] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
In total, 1 in 1000 individuals carries a germline mutation in the PKD1 or PKD2 gene, which leads to autosomal dominant polycystic kidney disease (ADPKD). Cysts can form early in life and progressively increase in number and size during adulthood. Extensive research has led to the presumption that somatic inactivation of the remaining allele initiates the formation of cysts, and the progression is further accelerated by renal injury. However, this hypothesis is primarily on the basis of animal studies, in which the gene is inactivated simultaneously in large percentages of kidney cells. To mimic human ADPKD in mice more precisely, we reduced the percentage of Pkd1-deficient kidney cells to 8%. Notably, no pathologic changes occurred for 6 months after Pkd1 deletion, and additional renal injury increased the likelihood of cyst formation but never triggered rapid PKD. In mildly affected mice, cysts were not randomly distributed throughout the kidney but formed in clusters, which could be explained by increased PKD-related signaling in not only cystic epithelial cells but also, healthy-appearing tubules near cysts. In the majority of mice, these changes preceded a rapid and massive onset of severe PKD that was remarkably similar to human ADPKD. Our data suggest that initial cysts are the principal trigger for a snowball effect driving the formation of new cysts, leading to the progression of severe PKD. In addition, this approach is a suitable model for mimicking human ADPKD and can be used for preclinical testing.
Collapse
Affiliation(s)
| | | | | | | | - Louise van der Weerd
- Departments of Human Genetics, Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
40
|
Aguilar-Alonso FA, Solano JD, Vargas-Olvera CY, Pacheco-Bernal I, Pariente-Pérez TO, Ibarra-Rubio ME. MAPKs’ status at early stages of renal carcinogenesis and tumors induced by ferric nitrilotriacetate. Mol Cell Biochem 2015; 404:161-70. [PMID: 25724684 DOI: 10.1007/s11010-015-2375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
|
41
|
Tao S, Kakade VR, Woodgett JR, Pandey P, Suderman ED, Rajagopal M, Rao R. Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease. Kidney Int 2015; 87:1164-75. [PMID: 25629553 PMCID: PMC4449797 DOI: 10.1038/ki.2014.427] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/25/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3β isoforms and plays a crucial role in multiple cellular signaling pathways. We previously found that GSK3β, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin mediated urine concentration by the kidneys. However, the role of GSK3β in the pathogenesis of PKDs is not known. Here we found that GSK3β expression and activity were markedly up-regulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct specific gene knockout of GSK3β or pharmacological inhibition of GSK3 effectively slowed the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function and extended lifespan. GSK3β inhibition also reduced pERK, c-Myc and Cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3β plays a novel functional role in PKD pathophysiology and its inhibition may be therapeutically useful to slow cyst expansion and progression of PKD.
Collapse
Affiliation(s)
- Shixin Tao
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Vijayakumar R Kakade
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - James R Woodgett
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Pankaj Pandey
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin D Suderman
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhumitha Rajagopal
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Reena Rao
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
42
|
Harris PC, Torres VE. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 2014; 124:2315-24. [PMID: 24892705 DOI: 10.1172/jci72272] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent advances in defining the genetic mechanisms of disease causation and modification in autosomal dominant polycystic kidney disease (ADPKD) have helped to explain some extreme disease manifestations and other phenotypic variability. Studies of the ADPKD proteins, polycystin-1 and -2, and the development and characterization of animal models that better mimic the human disease, have also helped us to understand pathogenesis and facilitated treatment evaluation. In addition, an improved understanding of aberrant downstream pathways in ADPKD, such as proliferation/secretion-related signaling, energy metabolism, and activated macrophages, in which cAMP and calcium changes may play a role, is leading to the identification of therapeutic targets. Finally, results from recent and ongoing preclinical and clinical trials are greatly improving the prospects for available, effective ADPKD treatments.
Collapse
|
43
|
Sabbatini M, Russo L, Cappellaio F, Troncone G, Bellevicine C, De Falco V, Buonocore P, Riccio E, Bisesti V, Federico S, Pisani A. Effects of combined administration of rapamycin, tolvaptan, and AEZ-131 on the progression of polycystic disease in PCK rats. Am J Physiol Renal Physiol 2014; 306:F1243-50. [PMID: 24647711 DOI: 10.1152/ajprenal.00694.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Both experimental and clinical studies have suggested that any potential treatment of polycystic kidney disease (PKD) should start early and last for a long time to be effective, with unavoidable side reactions and considerable costs. The aim of the present study was to test how low doses of rapamycin (RAPA; 0.15 mg/kg ip for 4 days/wk), tolvaptan (TOLV; 0.005% in diet), or AEZ-131 (AEZ; a novel ERK inhibitor, 30 mg/kg for 3 days/wk by gavage), alone and in association, affect the progression of polycystic renal disease in PCK rats. Rats were treated for 8 wk starting at 4-6 wk of age. The efficacy of low doses of such drugs in inhibiting their respective targets was confirmed by immunoblot experiments. Compared with rats in the control (CON) group, RAPA treatment caused a significant reduction in cyst volume density (CVD; -19% vs. the CON group) and was numerically similar to that in TOLV-treated rats (-18%, not significiant), whereas AEZ treatment was not effective. RAPA + TOLV treatment resulted in a significantly lower CVD (-49% vs. the CON group) and was associated with a striking decrease in cAMP response element-binding protein phosphorylation, and similar data were detected in RAPA + AEZ-treated rats (-42%), whereas TOLV + AEZ treatment had virtually no effect. RAPA administration significantly lessened body weight gain, whereas TOLV administration resulted a mild increase in diuresis and a significant increase in cAMP urinary excretion. Histological data of tubular proliferation were in full agreement with CVD data. In conclusion, this study demonstrates that the association of low doses of RAPA, TOLV, and AEZ slows the progression of PKD with limited side effects, suggesting the use of combined therapies also in clinical trials.
Collapse
Affiliation(s)
| | - Luigi Russo
- Department of Public Health, University Federico II, Naples, Italy
| | | | | | | | - Valentina De Falco
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Preziosa Buonocore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Eleonora Riccio
- Department of Public Health, University Federico II, Naples, Italy
| | - Vincenzo Bisesti
- Department of Public Health, University Federico II, Naples, Italy
| | - Stefano Federico
- Department of Public Health, University Federico II, Naples, Italy
| | - Antonio Pisani
- Department of Public Health, University Federico II, Naples, Italy
| |
Collapse
|
44
|
Gpr48 deficiency induces polycystic kidney lesions and renal fibrosis in mice by activating Wnt signal pathway. PLoS One 2014; 9:e89835. [PMID: 24595031 PMCID: PMC3940658 DOI: 10.1371/journal.pone.0089835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptor 48 (Gpr48/Lgr4) is essential to regulate the development of multiple tissues in mice. The notion that Gpr48 functions in renal development prompted us to investigate the relation between Gpr48 and renal diseases. Using a Gpr48 knockout mice model, we observed that 66.7% Gpr48 null mice developed polycystic lesions in the kidney, while no cysts were observed in the kidneys of wild-type mice. Polycystic kidney disease 1 (PKD1) and PKD2 expressions were also markedly decreased in the Gpr48 knockout mice. Abnormal expressions of exra-cellular matrix protein lead to the progression of polycystic kidney disease and the formation of renal fibrosis in the Gpr48 null mice. The expressions of several Wnt molecules and its receptors were increased and marked β-catenin nuclear accumulation was observed in the Gpr48 null mice. The inhibitors of Wnt/β-catenin signal pathway such as GSK3β and axin2 were loss of function. The Wnt/PCP signaling pathway is also activated in Gpr48 null mice. However, TGF-β expression and phosphorylated Smad2/3 levels were not altered. Collectively, our results showed that Gpr48 null mice are at a greater risk of suffering from polycystic lesions and renal fibrosis. Moreover, the formation of polycystic lesions and renal fibrosis induced by Gpr48 deficiency involves the activation of Wnt signaling pathway but not the TGF-β/Smad pathway.
Collapse
|
45
|
Park EY, Kim BH, Lee EJ, Chang E, Kim DW, Choi SY, Park JH. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem 2014; 289:9254-62. [PMID: 24515114 DOI: 10.1074/jbc.m113.514166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disorder. Although a myriad of research groups have attempted to identify a new therapeutic target for ADPKD, no drug has worked well in clinical trials. Our research group has focused on the receptor for advanced glycation end products (RAGE) gene as a novel target for ADPKD. This gene is involved in inflammation and cell proliferation. We have already confirmed that blocking RAGE function attenuates cyst growth in vitro. Based on this previous investigation, our group examined the effect of RAGE on cyst enlargement in vivo. PC2R mice, a severe ADPKD mouse model that we generated, were utilized. An adenovirus containing anti-RAGE shRNA was injected intravenously into this model. We observed that RAGE gene knockdown resulted in loss of kidney weight and volume. Additionally, the cystic area that originated from different nephron segments decreased in size because of down-regulation of the RAGE gene. Blood urea nitrogen and creatinine values tended to be lower after inhibiting RAGE. Based on these results, we confirmed that the RAGE gene could be an effective target for ADPKD treatment.
Collapse
Affiliation(s)
- Eun Young Park
- From the Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea and
| | | | | | | | | | | | | |
Collapse
|
46
|
Pathomthongtaweechai N, Soodvilai S, Chatsudthipong V, Muanprasat C. Pranlukast inhibits renal epithelial cyst progression via activation of AMP-activated protein kinase. Eur J Pharmacol 2014; 724:67-76. [DOI: 10.1016/j.ejphar.2013.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/01/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023]
|
47
|
Wallace DP, White C, Savinkova L, Nivens E, Reif GA, Pinto CS, Raman A, Parnell SC, Conway SJ, Fields TA. Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int 2013; 85:845-54. [PMID: 24284511 PMCID: PMC3972302 DOI: 10.1038/ki.2013.488] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 11/09/2022]
Abstract
In renal cystic diseases, sustained enlargement of fluid-filled cysts is associated with severe interstitial fibrosis and progressive loss of functioning nephrons. Periostin, a matricellular protein, is highly overexpressed in cyst-lining epithelial cells of autosomal-dominant polycystic disease kidneys (ADPKD) compared with normal tubule cells. Periostin accumulates in situ within the matrix subjacent to ADPKD cysts, binds to αVβ3 and αVβ5 integrins, and stimulates the integrin-linked kinase to promote cell proliferation. We knocked out periostin (Postn) in pcy/pcy mice, an orthologous model of nephronophthisis type 3, to determine whether periostin loss reduces PKD progression in a slowly progressive model of renal cystic disease. At 20 weeks of age, pcy/pcy:Postn(-/-) mice had a 34% reduction in kidney weight/body weight, a reduction in cyst number and total cystic area, a 69% reduction in phosphorylated S6, a downstream component of the mTOR pathway, and fewer proliferating cells in the kidneys compared with pcy/pcy:Postn(+/+) mice. The pcy/pcy Postin knockout mice also had less interstitial fibrosis with improved renal function at 20 weeks and significantly longer survival (51.4 compared with 38.0 weeks). Thus, periostin adversely modifies the progression of renal cystic disease by promoting cyst epithelial cell proliferation, cyst enlargement, and interstitial fibrosis, all contributing to the decline in renal function and premature death.
Collapse
Affiliation(s)
- Darren P Wallace
- 1] Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA [2] Department of Molecular and Integrative Physiology, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Corey White
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Lyudmyla Savinkova
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Emily Nivens
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gail A Reif
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cibele S Pinto
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Archana Raman
- Department of Molecular and Integrative Physiology, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Stephen C Parnell
- Department of Biochemistry and Cellular Biology, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Simon J Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy A Fields
- Department of Pathology, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
48
|
Renal Cyclooxygenase Products are Higher and Lipoxygenase Products are Lower in Early Disease in the pcy Mouse Model of Adolescent Nephronophthisis. Lipids 2013; 49:39-47. [DOI: 10.1007/s11745-013-3859-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
49
|
Signalling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy. Eur J Clin Pharmacol 2013; 69:1863-74. [PMID: 23929259 DOI: 10.1007/s00228-013-1568-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
CONTEXT Cisplatin, a coordination platinum complex, is used as a potential anti-neoplastic agent, having well recognized DNA-damaging property that triggers cell-cycle arrest and cell death in cancer therapy. Beneficial chemotherapeutic actions of cisplatin can be detrimental for kidneys. BACKGROUND Unbound cisplatin gets accumulated in renal tubular cells, leading to cell injury and death. This liable action of cisplatin on kidneys is mediated by altered intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), extracellular regulated kinase (ERK), or C- Jun N terminal kinase/stress-activated protein kinase (JNK/SAPK). Further, these signalling alterations are responsible for release and activation of tumour necrosis factor (TNF-α), mitochondrial dysfunction, and apoptosis, which ultimately cause the renal pathogenic process. Cisplatin itself enhances the generation of reactive oxygen species (ROS) and activation of nuclear factor-κB (NF-κB), inflammation, and mitochondrial dysfunction, which further leads to renal apoptosis. Cisplatin-induced nephropathy is also mediated through the p53 and protein kinase-Cδ (PKCδ) signalling pathways. OBJECTIVE This review explores these signalling alterations and their possible role in the pathogenesis of cisplatin-induced renal injury.
Collapse
|
50
|
Choi SY, Chacon-Heszele MF, Huang L, McKenna S, Wilson FP, Zuo X, Lipschutz JH. Cdc42 deficiency causes ciliary abnormalities and cystic kidneys. J Am Soc Nephrol 2013; 24:1435-50. [PMID: 23766535 DOI: 10.1681/asn.2012121236] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ciliogenesis and cystogenesis require the exocyst, a conserved eight-protein trafficking complex that traffics ciliary proteins. In culture, the small GTPase Cdc42 co-localizes with the exocyst at primary cilia and interacts with the exocyst component Sec10. The role of Cdc42 in vivo, however, is not well understood. Here, knockdown of cdc42 in zebrafish produced a phenotype similar to sec10 knockdown, including tail curvature, glomerular expansion, and mitogen-activated protein kinase (MAPK) activation, suggesting that cdc42 and sec10 cooperate in ciliogenesis. In addition, cdc42 knockdown led to hydrocephalus and loss of photoreceptor cilia. Furthermore, there was a synergistic genetic interaction between zebrafish cdc42 and sec10, suggesting that cdc42 and sec10 function in the same pathway. Mice lacking Cdc42 specifically in kidney tubular epithelial cells died of renal failure within weeks of birth. Histology revealed cystogenesis in distal tubules and collecting ducts, decreased ciliogenesis in cyst cells, increased tubular cell proliferation, increased apoptosis, increased fibrosis, and led to MAPK activation, all of which are features of polycystic kidney disease, especially nephronophthisis. Taken together, these results suggest that Cdc42 localizes the exocyst to primary cilia, whereupon the exocyst targets and docks vesicles carrying ciliary proteins. Abnormalities in this pathway result in deranged ciliogenesis and polycystic kidney disease.
Collapse
Affiliation(s)
- Soo Young Choi
- Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|