1
|
Zou HH, Wang L, Zheng XX, Xu GS, Shen Y. Endothelial cells secreted endothelin-1 augments diabetic nephropathy via inducing extracellular matrix accumulation of mesangial cells in ETBR -/- mice. Aging (Albany NY) 2020; 11:1804-1820. [PMID: 30926764 PMCID: PMC6461170 DOI: 10.18632/aging.101875] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 01/26/2023]
Abstract
Endothelin B receptor (ETBR) deficiency may contribute to the progression of diabetic nephropathy (DN) in a streptozotocin (STZ) model, but the underlying mechanism is not fully revealed. In this study, STZ-diabetic ETBR-/- mice was characterized by increased serum creatinine and urinary albumin, enhanced glomerulosclerosis, and upregulated ET-1 expression compared with STZ-diabetic WT mice. In vitro, HG conditioned media (CM) of ETBR-/- GENs promoted mesangial cell proliferation and upregulated ECM-related proteins, and ET-1 knockout in GENs or inhibition of ET-1/ETAR in mesangial cell suppressed mesangial cell proliferation and collagen IV formation. In addition, ET-1 was over-expressed in ETBR-/- GENs and was regulated by NF-kapapB pathway. ET-1/ETBR suppressed NF-kappaB to modulate ET-1 in GENs. Furthermore, ET-1/ETAR promoted RhoA/ROCK pathway in mesangial cells, and accelerated mesangial cell proliferation and ECM accumulation. Finally, in vivo experiments proved inhibition of NF-kappaB pathway ameliorated DN in ETBR-/- mice. These results suggest that in HG-exposed ETBR-/- GENs, suppression of ET-1 binding to ETBR activated NF-kappaB pathway, thus to secrete large amount of ET-1. Due to the communication between GENs and mesangial cells in diabetes, ET-1 binding to ETAR in mesangial cell promoted RhoA/ROCK pathway, thus to accelerate mesangial cell proliferation and ECM accumulation.
Collapse
Affiliation(s)
- Hong-Hong Zou
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Wang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Xu Zheng
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Gao-Si Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Patel DM, Bose M, Cooper ME. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21062218. [PMID: 32210089 PMCID: PMC7139394 DOI: 10.3390/ijms21062218] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The major clinical associations with the progression of diabetic kidney disease (DKD) are glycemic control and systemic hypertension. Recent studies have continued to emphasize vasoactive hormone pathways including aldosterone and endothelin which suggest a key role for vasoconstrictor pathways in promoting renal damage in diabetes. The role of glucose per se remains difficult to define in DKD but appears to involve key intermediates including reactive oxygen species (ROS) and dicarbonyls such as methylglyoxal which activate intracellular pathways to promote fibrosis and inflammation in the kidney. Recent studies have identified a novel molecular interaction between hemodynamic and metabolic pathways which could lead to new treatments for DKD. This should lead to a further improvement in the outlook of DKD building on positive results from RAAS blockade and more recently newer classes of glucose-lowering agents such as SGLT2 inhibitors and GLP1 receptor agonists.
Collapse
Affiliation(s)
- Devang M. Patel
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Correspondence: (D.M.P.); (M.E.C.)
| | - Madhura Bose
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
| | - Mark E. Cooper
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Correspondence: (D.M.P.); (M.E.C.)
| |
Collapse
|
3
|
Kasztan M, Fox BM, Speed JS, De Miguel C, Gohar EY, Townes TM, Kutlar A, Pollock JS, Pollock DM. Long-Term Endothelin-A Receptor Antagonism Provides Robust Renal Protection in Humanized Sickle Cell Disease Mice. J Am Soc Nephrol 2017; 28:2443-2458. [PMID: 28348063 DOI: 10.1681/asn.2016070711] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/13/2017] [Indexed: 11/03/2022] Open
Abstract
Sickle cell disease (SCD)-associated nephropathy is a major source of morbidity and mortality in patients because of the lack of efficacious treatments targeting renal manifestations of the disease. Here, we describe a long-term treatment strategy with the selective endothelin-A receptor (ETA) antagonist, ambrisentan, designed to interfere with the development of nephropathy in a humanized mouse model of SCD. Ambrisentan preserved GFR at the level of nondisease controls and prevented the development of proteinuria, albuminuria, and nephrinuria. Microscopy studies demonstrated prevention of podocyte loss and structural alterations, the absence of vascular congestion, and attenuation of glomerulosclerosis in treated mice. Studies in isolated glomeruli showed that treatment reduced inflammation and oxidative stress. At the level of renal tubules, ambrisentan treatment prevented the increased excretion of urinary tubular injury biomarkers. Additionally, the treatment strategy prevented tubular brush border loss, diminished tubular iron deposition, blocked the development of interstitial fibrosis, and prevented immune cell infiltration. Furthermore, the prevention of albuminuria in treated mice was associated with preservation of cortical megalin expression. In a separate series of identical experiments, combined ETA and ETB receptor antagonism provided only some of the protection observed with ambrisentan, highlighting the importance of exclusively targeting the ETA receptor in SCD. Our results demonstrate that ambrisentan treatment provides robust protection from diverse renal pathologies in SCD mice, and suggest that long-term ETA receptor antagonism may provide a strategy for the prevention of renal complications of SCD.
Collapse
Affiliation(s)
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, and.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, and .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
4
|
Abstract
The incidence of progressive kidney disease associated with diabetes continues to increase worldwide. Only partial renoprotection is achieved by current standard therapy with angiotensin-converting enzyme inhibitors and/or angiotensin-receptor blockers, increasing the need for novel therapeutic approaches. Experimental studies have provided evidence of a pathogenic role for endothelin-1 (ET-1) and its cognate receptors in the development and progression of diabetic nephropathy. ET-1, mainly through the activation of ETA receptor, contributes to renal cell injury, inflammation, and fibrosis. In animal models of type 1 and type 2 diabetes, ETA-selective antagonists have been shown to provide renoprotective effects, supplying the rationale for clinical trials in patients with diabetic nephropathy with ETA-receptor antagonists administered in addition to renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Elena Gagliardini
- Unit of Advanced Microscopy, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- Laboratory of Pathophysiology of Experimental Renal Disease and Interaction With Other Organ Systems, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.
| |
Collapse
|
5
|
Ding HH, Ni WJ, Tang LQ, Wei W. G protein-coupled receptors: potential therapeutic targets for diabetic nephropathy. J Recept Signal Transduct Res 2015; 36:411-421. [PMID: 26675443 DOI: 10.3109/10799893.2015.1122039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy, a lethal microvascular complication of diabetes mellitus, is characterized by progressive albuminuria, excessive deposition of extracellular matrix, thickened glomerular basement membrane, podocyte abnormalities, and podocyte loss. The G protein-coupled receptors (GPCRs) have attracted considerable attention in diabetic nephropathy, but the specific effects have not been elucidated yet. Likewise, abnormal signaling pathways are closely interrelated to the pathologic process of diabetic nephropathy, despite the fact that the mechanisms have not been explored clearly. Therefore, GPCRs and its mediated signaling pathways are essential for priority research, so that preventative strategies and potential targets might be developed for diabetic nephropathy. This article will give us comprehensive overview of predominant GPCR types, roles, and correlative signaling pathways in diabetic nephropathy.
Collapse
Affiliation(s)
- Hai-Hua Ding
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China.,b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei-Jian Ni
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Li-Qin Tang
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei Wei
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| |
Collapse
|
6
|
Johnson SA, Spurney RF. Twenty years after ACEIs and ARBs: emerging treatment strategies for diabetic nephropathy. Am J Physiol Renal Physiol 2015; 309:F807-20. [PMID: 26336162 DOI: 10.1152/ajprenal.00266.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of both type 1 and type 2 diabetes mellitus. The disease is now the most common cause of end-stage kidney disease (ESKD) in developed countries, and both the incidence and prevalence of diabetes mellitus is increasing worldwide. Current treatments are directed at controlling hyperglycemia and hypertension, as well as blockade of the renin angiotensin system with angiotensin-converting enzyme inhibitors (ACEIs), and angiotensin receptor blockers. Despite these therapies, DN progresses to ESKD in many patients. As a result, much interest is focused on developing new therapies. It has been over two decades since ACEIs were shown to have beneficial effects in DN independent of their blood pressure-lowering actions. Since that time, our understanding of disease mechanisms in DN has evolved. In this review, we summarize major cell signaling pathways implicated in the pathogenesis of diabetic kidney disease, as well as emerging treatment strategies. The goal is to identify promising targets that might be translated into therapies for the treatment of patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Stacy A Johnson
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| |
Collapse
|
7
|
Wang Y, Sun Z. Antiaging gene Klotho regulates endothelin-1 levels and endothelin receptor subtype B expression in kidneys of spontaneously hypertensive rats. J Hypertens 2015; 32:1629-36; discussion 1636. [PMID: 24979306 DOI: 10.1097/hjh.0000000000000233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Klotho is an antiaging gene and is predominately expressed in kidneys. The endothelin system is critical in the regulation of kidney function. The objective of this study is to assess whether klotho affects the renal endothelin system in spontaneously hypertensive rats (SHRs). METHOD Four groups of male SHRs and one group of male Wistar-Kyoto (WKY) rats were used. In-vivo expression of klotho was achieved by AAV2 delivery of mouse klotho full-length cDNA (AAV.mKL). Four groups of SHRs were given (intravenously) AAV.mKL, AAV.LacZ, AAV.GFP, and phosphate-buffered saline, respectively. The WKY group was given phosphate-buffered saline and served as a control. At the end of week 12 after gene delivery, all animals were euthanized. RESULTS Plasma endothelin-1 (ET-1) and renal ET-1 levels were increased in SHRs vs. WKY rats. In-vivo expression of klotho reversed the elevated ET-1 levels in SHRs. ETB receptor protein expression was decreased in both kidney cortex and medulla of SHRs. Interestingly, in-vivo expression of klotho abolished the downregulation of ETB protein expression in SHRs, suggesting that klotho regulates ETB receptor expression. Klotho gene delivery also eliminated the increase in the ratio of ETA/ETB in SHRs. Mitochondrial superoxide dismutase (Mn-SOD) protein expression was decreased in kidneys of SHRs, which was rescued by in-vivo expression of klotho. CONCLUSION Klotho gene delivery abolished the upregulation of ET-1 levels and the downregulation of ETB and Mn-SOD expression in kidneys of SHRs. These findings revealed a previously unidentified role of klotho in the regulation of the renal ET system and Mn-SOD in SHRs.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
8
|
Rokutan H, Suckow C, von Haehling S, Strassburg S, Bockmeyer B, Doehner W, Waller C, Bauersachs J, von Websky K, Hocher B, Anker SD, Springer J. Furosemide induces mortality in a rat model of chronic heart failure. Int J Cardiol 2012; 160:20-5. [DOI: 10.1016/j.ijcard.2011.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/25/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
9
|
Endothelin and endothelin receptors in the renal and cardiovascular systems. Life Sci 2012; 91:490-500. [PMID: 22480517 DOI: 10.1016/j.lfs.2012.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/12/2012] [Accepted: 03/16/2012] [Indexed: 01/08/2023]
Abstract
Endothelin-1 (ET-1) is a multifunctional hormone which regulates the physiology of the cardiovascular and renal systems. ET-1 modulates cardiac contractility, systemic and renal vascular resistance, salt and water renal reabsorption, and glomerular function. ET-1 is responsible for a variety of cellular events: contraction, proliferation, apoptosis, etc. These effects take place after the activation of the two endothelin receptors ET(A) and ET(B), which are present - among others - on cardiomyocytes, fibroblasts, smooth muscle and endothelial cells, glomerular and tubular cells of the kidney. The complex and numerous intracellular pathways, which can be contradictory in term of functional response depending on the receptor type, cell type and physiological situation, are described in this review. Many diseases share an enhanced ET-1 expression as part of the pathophysiology. However, the use of endothelin blockers is currently restricted to pulmonary arterial hypertension, and more recently to digital ulcer. The complexity of the endothelin system does not facilitate the translation of the molecular knowledge to clinical applications. Endothelin antagonists can prevent disease development but secondary undesirable effects limit their usage. Nevertheless, the increasing understanding of the effects of ET-1 on the cardiac and renal physiology maintains the endothelin system as a promising therapeutic target.
Collapse
|
10
|
Abu-Saleh N, Ovcharenko E, Awad H, Goltsman I, Khamaisi M, Hoffman A, Heyman SN, Winaver J, Abassi Z. Involvement of the endothelin and nitric oxide systems in the pathogenesis of renal ischemic damage in an experimental diabetic model. Life Sci 2012; 91:669-75. [PMID: 22365956 DOI: 10.1016/j.lfs.2012.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/22/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022]
Abstract
AIMS Ischemic acute kidney injury (iAKI) in experimental diabetes mellitus (DM) is associated with a rapid kidney dysfunction more than in non-diabetic rats. We hypothesize that this vulnerability is due to excessive endothelin-1 (ET-1) expression along with dysregulation of nitric oxide synthase (NOS) isoforms. The aim of the present study was to assess the impact of ischemia on renal function in diabetic rats as compared with non-diabetic rats, and to investigate the involvement of ET-1 and NO systems in the susceptibility of diabetic kidney to ischemic damage. MAIN METHODS DM was induced by Streptozotocin. iAKI was induced by clamping of left renal artery for 30 min. Right intact kidney served as control. 48 h following ischemia, clearance protocols were applied to assess glomerular filtration rate (GFR), urinary flow (V) and sodium excretion (U(Na)V) in both kidneys. The renal effects of ABT-627, ET(A) antagonist; A192621.1, ET(B) antagonist; L-NAME, NOS non-selective inhibitor; 1400 W, inducible NOS (iNOS) inhibitor; and NPLA, neuronal NOS (nNOS) inhibitor, were assessed following ischemic renal injury in diabetic rats. KEY FINDINGS Induction of iAKI in diabetic and non-diabetic rats caused significant reductions in GFR, V, and U(Na)V, which were greater in diabetic than non-diabetic rats. While, treatment with ABT-627 decreased V and U(Na)V, and increased GFR, A192621.1 decreased all these parameters. L-NAME, 1400 W, and NPLA improved GFR in the ischemic diabetic kidney. SIGNIFICANCE Excessive vasoconstrictive effects of ET-1 via ET(A) and upregulation of iNOS, are partly responsible for the impaired recovery of renal function following ischemia in diabetic rats.
Collapse
Affiliation(s)
- Niroz Abu-Saleh
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, Haifa, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zoja C, Cattaneo S, Fiordaliso F, Lionetti V, Zambelli V, Salio M, Corna D, Pagani C, Rottoli D, Bisighini C, Remuzzi G, Benigni A. Distinct cardiac and renal effects of ETA receptor antagonist and ACE inhibitor in experimental type 2 diabetes. Am J Physiol Renal Physiol 2011; 301:F1114-23. [DOI: 10.1152/ajprenal.00122.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy is associated with cardiovascular morbidity. Angiotensin-converting enzyme (ACE) inhibitors provide imperfect renoprotection in advanced type 2 diabetes, and cardiovascular risk remains elevated. Endothelin (ET)-1 has a role in renal and cardiac dysfunction in diabetes. Here, we assessed whether combination therapy with an ACE inhibitor and ETA receptor antagonist provided reno- and cardioprotection in rats with overt type 2 diabetes. Four groups of Zucker diabetic fatty (ZDF) rats were treated orally from 4 (when proteinuric) to 8 mo with vehicle, ramipril (1 mg/kg), sitaxsentan (60 mg/kg), and ramipril plus sitaxsentan. Lean rats served as controls. Combined therapy ameliorated proteinuria and glomerulosclerosis mostly as a result of the action of ramipril. Simultaneous blockade of ANG II and ET-1 pathways normalized renal monocyte chemoattractant protein-1 and interstitial inflammation. Cardiomyocyte loss, volume enlargement, and capillary rarefaction were prominent abnormalities of ZDF myocardium. Myocyte volume was reduced by ramipril and sitaxsentan, which also ameliorated heart capillary density. Drug combination restored myocardial structure and reestablished an adequate capillary network in the presence of increased cardiac expression of VEGF/VEGFR-1, and significant reduction of oxidative stress. In conclusion, in type 2 diabetes concomitant blockade of ANG II synthesis and ET-1 biological activity through an ETA receptor antagonist led to substantial albeit not complete renoprotection, almost due to the ACE inhibitor. The drug combination also showed cardioprotective properties, which however, were mainly dependent on the contribution of the ETA receptor antagonist through the action of VEGF.
Collapse
Affiliation(s)
- Carla Zoja
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo
| | - Sara Cattaneo
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan
| | | | - Vanessa Zambelli
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan
| | - Monica Salio
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan
| | - Daniela Corna
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo
| | - Chiara Pagani
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo
| | - Daniela Rottoli
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo
| | - Cinzia Bisighini
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan
| | - Giuseppe Remuzzi
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo
- Unit of Nephrology and Dialysis, Azienda Ospedaliera Ospedali Riuniti di Bergamo, Bergamo, Italy
| | - Ariela Benigni
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo
| |
Collapse
|
12
|
Hocher B, Heiden S, von Websky K, Arafat AM, Rahnenführer J, Alter M, Kalk P, Ziegler D, Fischer Y, Pfab T. Renal effects of the novel selective adenosine A1 receptor blocker SLV329 in experimental liver cirrhosis in rats. PLoS One 2011; 6:e17891. [PMID: 21423778 PMCID: PMC3053401 DOI: 10.1371/journal.pone.0017891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/14/2011] [Indexed: 01/15/2023] Open
Abstract
Liver cirrhosis is often complicated by an impaired renal excretion of water and sodium. Diuretics tend to further deteriorate renal function. It is unknown whether chronic selective adenosine A(1) receptor blockade, via inhibition of the hepatorenal reflex and the tubuloglomerular feedback, might exert diuretic and natriuretic effects without a reduction of the glomerular filtration rate. In healthy animals intravenous treatment with the novel A(1) receptor antagonist SLV329 resulted in a strong dose-dependent diuretic (up to 3.4-fold) and natriuretic (up to 13.5-fold) effect without affecting creatinine clearance. Male Wistar rats with thioacetamide-induced liver cirrhosis received SLV329, vehicle or furosemide for 12 weeks. The creatinine clearance of cirrhotic animals decreased significantly (-36.5%, p<0.05), especially in those receiving furosemide (-41.9%, p<0.01). SLV329 was able to prevent this decline of creatinine clearance. Mortality was significantly lower in cirrhotic animals treated with SLV329 in comparison to animals treated with furosemide (17% vs. 54%, p<0.05). SLV329 did not relevantly influence the degree of liver fibrosis, kidney histology or expression of hepatic or renal adenosine receptors. In conclusion, chronic treatment with SLV329 prevented the decrease of creatinine clearance in a rat model of liver cirrhosis. Further studies will have to establish whether adenosine A(1) receptor antagonists are clinically beneficial at different stages of liver cirrhosis.
Collapse
Affiliation(s)
- Berthold Hocher
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Center for Cardiovascular Research/Institute of Pharmacology, Charité, Berlin, Germany
| | - Susi Heiden
- Center for Cardiovascular Research/Institute of Pharmacology, Charité, Berlin, Germany
| | - Karoline von Websky
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Center for Cardiovascular Research/Institute of Pharmacology, Charité, Berlin, Germany
| | - Ayman M. Arafat
- Department of Endocrinology, Diabetes and Nutrition, Charité Campus Benjamin Franklin, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Jan Rahnenführer
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Center for Cardiovascular Research/Institute of Pharmacology, Charité, Berlin, Germany
| | - Markus Alter
- Center for Cardiovascular Research/Institute of Pharmacology, Charité, Berlin, Germany
- Department of Nephrology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Philipp Kalk
- Center for Cardiovascular Research/Institute of Pharmacology, Charité, Berlin, Germany
- Department of Nephrology, Charité Campus Benjamin Franklin, Berlin, Germany
| | | | | | - Thiemo Pfab
- Center for Cardiovascular Research/Institute of Pharmacology, Charité, Berlin, Germany
- Department of Nephrology, Charité Campus Benjamin Franklin, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Saleh MA, Boesen EI, Pollock JS, Savin VJ, Pollock DM. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension 2010; 56:942-9. [PMID: 20823379 DOI: 10.1161/hypertensionaha.110.156570] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endothelin (ET) 1 is a potent vasoactive peptide implicated in the pathogenesis of hypertension and renal disease. The aim of the current study was to test the hypotheses that ET-1 increases albumin permeability of glomeruli isolated from normal rats and that chronic ET-1 infusion will increase glomerular permeability and inflammation independent of blood pressure. Glomerular permeability to albumin was determined from the change in glomerular volume induced by exposing isolated glomeruli to oncotic gradients. Incubation of glomeruli taken from normal rats with ET-1 at a concentration that did not produce direct glomerular contraction (1 nmol/L) significantly increased glomerular permeability to albumin, reaching a maximum after 4 hours. Chronic ET-1 infusion for 2 weeks in Sprague-Dawley rats significantly increased glomerular permeability to albumin and nephrin excretion rate, effects that were attenuated in rats given an ET(A) receptor antagonist (ABT-627, 5 mg/kg per day). Urinary protein and albumin excretion and mean arterial pressure (telemetry) were not changed by ET-1 infusion. Acute incubation of glomeruli isolated from ET-1-infused rats with the selective ET(A) antagonist significantly reduced glomerular permeability to albumin, an effect not observed with acute treatment with a selective ET(B) antagonist. Chronic ET-1 infusion increased glomerular and plasma soluble intercellular adhesion molecule 1 and monocyte chemoattractant protein 1 and elevated the number of macrophages and lymphocytes in renal cortices (ED-1 and CD3-positive staining, respectively). These effects were all attenuated in rats given an ET(A) selective antagonist. These data support the hypothesis that ET-1 directly increases glomerular permeability to albumin and renal inflammation via ET(A) receptor activation independent of changes in arterial pressure.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Endothelin is important in the development of cardiorenal disease. This review discusses recent developments in understanding endothelin's role in hypertension and chronic kidney disease (CKD). RECENT FINDINGS Endothelin-1 production is increased in hypertension and CKD. Endothelin-1 stimulates vasoconstriction, inflammation and fibrosis, thereby promoting hypertension, atherosclerosis and CKD. These effects are closely linked to angiotensin II and reactive oxygen species. In preclinical studies, endothelin receptor antagonists were effective in treating hypertension (particularly with endothelial dysfunction) and CKD. In preclinical studies, endothelin A-selective, as opposed to combined endothelin A and B, receptor blockers have generally been more efficacious. Few clinical trials have been conducted in hypertension and/or kidney disease, partly due to concerns over side effects of testicular toxicity and fluid retention. Endothelin blockade reduces blood pressure in patients with resistant hypertension, with additional beneficial metabolic effects. Endothelin antagonism improves proteinuria in CKD (diabetic or not), particularly in patients taking inhibitors of angiotensin II action. SUMMARY Endothelin is a promising target in the treatment of resistant hypertension and CKD, with additional potential benefits on atherosclerosis and the metabolic syndrome. The nature and mechanisms of drug side effects require elucidation before the potential of this new class of drugs can be fully realized.
Collapse
|
15
|
D'Amours M, Chbinou N, Beaudoin J, Lebel M, Larivière R. Increased ET-1 and Reduced ETBReceptor Expression in Uremic Hypertensive Rats. Clin Exp Hypertens 2010; 32:61-9. [DOI: 10.3109/10641960902993095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kalk P, Rückert M, Godes M, von Websky K, Relle K, Neumayer HH, Hocher B, Morgera S. Does endothelin B receptor deficiency ameliorate the induction of peritoneal fibrosis in experimental peritoneal dialysis? Nephrol Dial Transplant 2009; 25:1474-8. [PMID: 19945955 DOI: 10.1093/ndt/gfp652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Peritoneal fibrosis is a serious complication of peritoneal dialysis (PD); however, the mechanisms are poorly understood. The endothelin system exhibits potent pro-fibrotic properties and is known to be stimulated in peritoneal fibrosis. Thus, our study aimed at elucidating the impact of the endothelin B (ETB) receptor on peritoneal membrane thickening by means of an ETB-deficient rat model (ETB(-)(/)(-)) in experimental PD. METHODS Wild-type (WT) and ETB(-/-) rats were randomly allocated to four groups (each group n = 10): (i) WT Sham, (ii) WT PD, (iii) ETB(-/-) Sham and (iv) ETB(-/-) PD. All animals underwent surgical implantation of a port for intraperitoneal administration and 1 week of habituation to the procedure by administration of 2 ml of saline once daily. Afterwards, all animals were switched to 12 weeks of 15 ml of saline (Sham groups) or commercially available PD fluid containing 3.86% glucose (PD groups) administered twice daily. Afterwards, animals were sacrificed, and samples from visceral as well as parietal peritoneum were obtained. The samples were stained with Sirius-Red, and at 10 different sites per sample, peritoneal membrane thickness was measured using computer-aided histomorphometry devices. RESULTS Mean peritoneal membrane thickness was increased by PD in both WT and ETB(-/-) rats versus respective Sham controls (WT Sham: 22.3 +/- 0.7 microm/ETB Sham: 22.3 +/- 0.9 microm versus WT PD: 26.5 +/- 1.5 microm/ETB PD: 28.7 +/- 1.2 microm; P < 0.05, respectively). However, no difference in peritoneal membrane thickness was detected between WT PD and ETB(-/-) PD groups. CONCLUSION Our study demonstrates that PD increases peritoneal membrane thickness in a rat model, but deficiency of the ETB receptor has no detectable impact on this process.
Collapse
Affiliation(s)
- Philipp Kalk
- Department of Pharmacology and Toxicology, Center for Cardiovascular Research, Charite, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pollock DM, Boesen EI, Black SM. Does targeting the lipophilic milieu provide advantages for an endothelin antagonist? Mol Interv 2009; 9:75-8. [PMID: 19401539 DOI: 10.1124/mi.9.2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- David M Pollock
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA.
| | | | | |
Collapse
|
18
|
von Websky K, Heiden S, Pfab T, Hocher B. Pathophysiology of the endothelin system - lessons from genetically manipulated animal models. Eur J Med Res 2009; 14:1-6. [PMID: 19258203 PMCID: PMC3352198 DOI: 10.1186/2047-783x-14-1-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shortly after discovery of ET-1 in 1988, the entire endothelin system was characterized. The endothelin system consists of the three peptides ET-1, ET-2 and ET-3, their G-protein-coupled receptors endothelin receptor A and B (ETRA and ETRB) and the two endothelin-converting enzymes (ECE-1 and ECE-2). Genetically modified animal models are an important tool in biomedical research. Here we describe the key findings obtained from genetically modified animal models either over-expressing compounds of the ET system or lacking these compounds (knockout mice). Results from the different transgenic and knockout models disclose that the ET system plays a major role in embryonic development. Two ET system-dependent neural crest-driven developmental pathways become obvious: one of them being an ET-1/ETAR axis, responsible for cardio-renal function and development as well as cranial development; the other seems to be an ET-3/ETBR mediated signalling pathway. Mutations within this axis are associated with disruptions in epidermal melanocytes and enteric neurons. These findings led to the discovery of similar findings in humans with Hirschsprung disease. In adult life the ET system is most important in the cardiovascular system and plays a role in fibrotic remodelling of the heart, lung and kidney as well as in the regulation of water and salt excretion.
Collapse
Affiliation(s)
- K von Websky
- Center for Cardiovascular Research/Department of Pharmacology and Toxicology, Charité, Hessische Str. 3-4, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
19
|
Raila J, Kalk P, Pfab T, Thöne-Reineke C, Godes M, Yanagisawa M, Schweigert FJ, Hocher B. Urinary protein profiling with surface-enhanced laser desorption/ionization time-of-flight mass spectrometry in ETB receptor-deficient rats. Can J Physiol Pharmacol 2008; 86:566-70. [PMID: 18758505 DOI: 10.1139/y08-056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathways leading to salt-sensitive hypertension and renal damage in rescued ETB receptor-deficient (ETBRd) rats are still unknown. The objective of the study was therefore to identify modifications of urinary peptide and protein expression in ETBRd rats (n = 9) and wild-type controls (n = 6) using SDS - polyacrylamide gel electrophoresis (SDS-PAGE) and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology. Glomerular filtration rate, glomerulosclerosis, and tubulointerstitial fibrosis did not differ between the groups. ETBRd rats showed slightly higher blood pressure (p < 0.001), media/lumen ratio of intrarenal arteries (p < 0.01), and albuminuria (p < 0.01). SDS-PAGE confirmed albuminuria, but showed no differences in the urinary excretion of low molecular weight proteins (<60 kDa). SELDI-TOF-MS profiling revealed 9 proteomic features at molecular masses (Da) of 2720, 2980, 3130, 3345, 6466, 6682, 8550, 18 729, and 37 492, which were significantly elevated (p < 0.02) in urine of ETBRd rats. The results demonstrate that, independent of structural changes in the kidneys, ETB-receptor deficiency causes specific differences in urinary peptide and protein excretion. SELDI-TOF-MS may be a valuable tool for the characterization of urinary biomarkers helping to uncover the mechanism of ETBR action in the kidney.
Collapse
Affiliation(s)
- Jens Raila
- Institute of Nutritional Science, Department of Physiology and Pathophysiology of Nutrition, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Khamaisi M, Raz I, Shilo V, Shina A, Rosenberger C, Dahan R, Abassi Z, Meidan R, Lecht S, Heyman S. Diabetes and radiocontrast media increase endothelin converting enzyme-1 in the kidney. Kidney Int 2008; 74:91-100. [DOI: 10.1038/ki.2008.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Slowinski T, Kalk P, Christian M, Schmager F, Relle K, Godes M, Funke-Kaiser H, Neumayer HH, Bauer C, Theuring F, Hocher B. Cell-type specific interaction of endothelin and the nitric oxide system: pattern of prepro-ET-1 expression in kidneys of L-NAME treated prepro-ET-1 promoter-lacZ-transgenic mice. J Physiol 2007; 581:1173-81. [PMID: 17395629 PMCID: PMC2170825 DOI: 10.1113/jphysiol.2007.131201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide (NO) and endothelin-1 (ET-1) are known to play a major role in renal and vascular pathophysiology and exhibit a close interaction with ET-1, stimulating NO production; NO in turn inhibits ET-1 expression. Our objectives were (1) to establish a novel transgenic mouse model facilitating ET-1 expression assessment in vivo, (2) to validate this model by assessing prepro-ET-1 promoter activity in mice embryos by means of our novel model and comparing expression sites to well-established data on ET-1 in fetal development and (3) to investigate renal ET-NO interaction by assessing prepro-ET-1 promoter activity in different structures of the renal cortex in the setting of blocked NO synthases via L-NAME administration. We established transgenic mice carrying a lacZ reporter gene under control of the human prepro-ET-1 gene promoter sequence (8 kb of 5' sequences). Bluo-Gal staining of tissue sections revealed intracellular blue particles as indicators of prepro-ET-1 promoter activity. In mouse embryos, we detected high prepro-ET-1 promoter activity in the craniofacial region, as well as in bone and cartilage consistent with the literature. In order to investigate the interaction of ET-1 and NO in the kidney in vivo, transgenic mice at the age of 3-4 months were treated with a single dose of the NO synthase inhibitor L-NAME (25 mg (kg bw)(-1) i.p.) 12 h before kidney removal. Bluo-Gal staining of kidney sections revealed intracellular blue particles as indicators of prepro-ET-1 promoter activity in tubular and vascular endothelium and glomerular cells. Particle count was closely correlated to kidney tissue ET-1 content (R=0.918, P<0.001). Comparison of counts revealed an increase by 135+/-53% in L-NAME treated (n=12) compared to non-treated mice (n=10, P=0.001). Cell-type specific evaluation revealed an increase of 136+/-51% in tubular (P=0.001) and 105+/-41% in glomerular cells (P=0.046), but no significant increase in vascular endothelium. In conclusion, our study revealed a close interaction of renal endothelin and the NO system in a cell-type specific manner. Our new transgenic model provides a unique opportunity to analyse regulation of the ET system on a cellular level in vivo.
Collapse
Affiliation(s)
- Torsten Slowinski
- Center for Cardiovascular Research/Institute of Pharmacology, and Department of Nephrology, University Hospital Charité, Campus Mitte, Hessische Str. 3-4, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sasser JM, Sullivan JC, Hobbs JL, Yamamoto T, Pollock DM, Carmines PK, Pollock JS. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J Am Soc Nephrol 2006; 18:143-54. [PMID: 17167119 PMCID: PMC2579758 DOI: 10.1681/asn.2006030208] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endothelin (ET) receptor blockade delays the progression of diabetic nephropathy; however, the mechanism of this protection is unknown. Therefore, the aim of this study was to test the hypothesis that ET(A) receptor blockade attenuates superoxide production and inflammation in the kidney of diabetic rats. Diabetes was induced by streptozotocin (diabetic rats with partial insulin replacement to maintain modest hyperglycemia [HG]), and sham rats received vehicle treatments. Some rats also received the ETA antagonist ABT-627 (sham+ABT and HG+ABT; 5 mg/kg per d; n = 8 to 10/group). During the 10-wk study, urinary microalbumin was increased in HG rats, and this effect was prevented by ET(A) receptor blockade. Indices of oxidative stress, urinary excretion of thiobarbituric acid reactive substances, 8-hydroxy--deoxyguanosine, and H2O2 and plasma thiobarbituric acid reactive substances were significantly greater in HG rats than in sham rats. These effects were not prevented by ABT-627. In addition, renal cortical expression of 8-hydroxy--deoxyguanosine and NADPH oxidase subunits was not different between HG and HG+ABT rats. ETA receptor blockade attenuated increases in macrophage infiltration and urinary excretion of TGF-beta and prostaglandin E2 metabolites in HG rats. Although ABT-627 did not alleviate oxidative stress in HG rats, inflammation and production of inflammatory mediators were reduced in association with prevention of microalbuminuria. These observations indicate that ETA receptor activation mediates renal inflammation and TGF-beta production in diabetes and are consistent with the postulate that ETA blockade slows progression of diabetic nephropathy via an anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Jennifer M. Sasser
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA
| | - Jennifer C. Sullivan
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA
| | - Janet L. Hobbs
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA
| | - Tatsuo Yamamoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - David M. Pollock
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA
| | - Pamela K. Carmines
- Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine, Omaha, NE
| | - Jennifer S. Pollock
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA
| |
Collapse
|