1
|
Ammous F, Zhao W, Lin L, Ratliff SM, Mosley TH, Bielak LF, Zhou X, Peyser PA, Kardia SLR, Smith JA. Epigenetics of single-site and multi-site atherosclerosis in African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA). Clin Epigenetics 2022; 14:10. [PMID: 35039093 PMCID: PMC8764761 DOI: 10.1186/s13148-022-01229-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND DNA methylation, an epigenetic mechanism modulated by lifestyle and environmental factors, may be an important biomarker of complex diseases including cardiovascular diseases (CVD) and subclinical atherosclerosis. METHODS DNA methylation in peripheral blood samples from 391 African-Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) was assessed at baseline, and atherosclerosis was assessed 5 and 12 years later. Using linear mixed models, we examined the association between previously identified CpGs for coronary artery calcification (CAC) and carotid plaque, both individually and aggregated into methylation risk scores (MRSCAC and MRScarotid), and four measures of atherosclerosis (CAC, abdominal aorta calcification (AAC), ankle-brachial index (ABI), and multi-site atherosclerosis based on gender-specific quartiles of the single-site measures). We also examined the association between four epigenetic age acceleration measures (IEAA, EEAA, PhenoAge acceleration, and GrimAge acceleration) and the four atherosclerosis measures. Finally, we characterized the temporal stability of the epigenetic measures using repeated DNA methylation measured 5 years after baseline (N = 193). RESULTS After adjusting for CVD risk factors, four CpGs (cg05575921(AHRR), cg09935388 (GFI1), cg21161138 (AHRR), and cg18168448 (LRRC52)) were associated with multi-site atherosclerosis (FDR < 0.1). cg05575921 was also associated with AAC and cg09935388 with ABI. MRSCAC was associated with ABI (Beta = 0.016, P = 0.006), and MRScarotid was associated with both AAC (Beta = 0.605, equivalent to approximately 1.8-fold increase in the Agatston score of AAC, P = 0.004) and multi-site atherosclerosis (Beta = 0.691, P = 0.002). A 5-year increase in GrimAge acceleration (~ 1 SD) was associated with a 1.6-fold (P = 0.012) increase in the Agatston score of AAC and 0.7 units (P = 0.0003) increase in multi-site atherosclerosis, all after adjusting for CVD risk factors. All epigenetic measures were relatively stable over 5 years, with the highest intraclass correlation coefficients observed for MRScarotid and GrimAge acceleration (0.87 and 0.89, respectively). CONCLUSIONS We found evidence of an association between DNA methylation and atherosclerosis at multiple vascular sites in a sample of African-Americans. Further evaluation of these potential biomarkers is warranted to deepen our understanding of the relationship between epigenetics and atherosclerosis.
Collapse
Affiliation(s)
- Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Ammous F, Zhao W, Ratliff SM, Mosley TH, Bielak LF, Zhou X, Peyser PA, Kardia SLR, Smith JA. Epigenetic age acceleration is associated with cardiometabolic risk factors and clinical cardiovascular disease risk scores in African Americans. Clin Epigenetics 2021; 13:55. [PMID: 33726838 PMCID: PMC7962278 DOI: 10.1186/s13148-021-01035-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of mortality among US adults. African Americans have higher burden of CVD morbidity and mortality compared to any other racial group. Identifying biomarkers for clinical risk prediction of CVD offers an opportunity for precision prevention and earlier intervention. RESULTS Using linear mixed models, we investigated the cross-sectional association between four measures of epigenetic age acceleration (intrinsic (IEAA), extrinsic (EEAA), PhenoAge (PhenoAA), and GrimAge (GrimAA)) and ten cardiometabolic markers of hypertension, insulin resistance, and dyslipidemia in 1,100 primarily hypertensive African Americans from sibships in the Genetic Epidemiology Network of Arteriopathy (GENOA). We then assessed the association between epigenetic age acceleration and time to self-reported incident CVD using frailty hazard models and investigated CVD risk prediction improvement compared to models with clinical risk scores (Framingham risk score (FRS) and the atherosclerotic cardiovascular disease (ASCVD) risk equation). After adjusting for sex and chronological age, increased epigenetic age acceleration was associated with higher systolic blood pressure (IEAA), higher pulse pressure (EEAA and GrimAA), higher fasting glucose (PhenoAA and GrimAA), higher fasting insulin (EEAA), lower low density cholesterol (GrimAA), and higher triglycerides (GrimAA). A five-year increase in GrimAA was associated with CVD incidence with a hazard ratio of 1.54 (95% CI 1.22-2.01) and remained significant after adjusting for CVD risk factors. The addition of GrimAA to risk score models improved model fit using likelihood ratio tests (P = 0.013 for FRS and P = 0.008 for ASCVD), but did not improve C statistics (P > 0.05). Net reclassification index (NRI) showed small but significant improvement in reassignment of risk categories with the addition of GrimAA to FRS (NRI: 0.055, 95% CI 0.040-0.071) and the ASCVD equation (NRI: 0.029, 95% CI 0.006-0.064). CONCLUSIONS Epigenetic age acceleration measures are associated with traditional CVD risk factors in an African-American cohort with a high prevalence of hypertension. GrimAA was associated with CVD incidence and slightly improved prediction of CVD events over clinical risk scores.
Collapse
Affiliation(s)
- Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Ammous F, Zhao W, Ratliff SM, Kho M, Shang L, Jones AC, Chaudhary NS, Tiwari HK, Irvin MR, Arnett DK, Mosley TH, Bielak LF, Kardia SLR, Zhou X, Smith J. Epigenome-wide association study identifies DNA methylation sites associated with target organ damage in older African Americans. Epigenetics 2020; 16:862-875. [PMID: 33100131 DOI: 10.1080/15592294.2020.1827717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Target organ damage (TOD) manifests as vascular injuries in the body organ systems associated with long-standing hypertension. DNA methylation in peripheral blood leukocytes can capture inflammatory processes and gene expression changes underlying TOD. We investigated the association between epigenome-wide DNA methylation and five measures of TOD (estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), left ventricular mass index (LVMI), relative wall thickness (RWT), and white matter hyperintensity (WMH)) in 961 African Americans from hypertensive sibships. A multivariate (multi-trait) model of eGFR, UACR, LVMI, and RWT identified seven CpGs associated with at least one of the traits (cg21134922, cg04816311 near C7orf50, cg09155024, cg10254690 near OAT, cg07660512, cg12661888 near IFT43, and cg02264946 near CATSPERD) at FDR q < 0.1. Adjusting for blood pressure, body mass index, and type 2 diabetes attenuated the association for four CpGs. DNA methylation was associated with cis-gene expression for some CpGs, but no significant mediation by gene expression was detected. Mendelian randomization analyses suggested causality between three CpGs and eGFR (cg04816311, cg10254690, and cg07660512). We also assessed whether the identified CpGs were associated with TOD in 614 African Americans in the Hypertension Genetic Epidemiology Network (HyperGEN) study. Out of three CpGs available for replication, cg04816311 was significantly associated with eGFR (p = 0.0003), LVMI (p = 0.0003), and RWT (p = 0.002). This study found evidence of an association between DNA methylation and TOD in African Americans and highlights the utility of using a multivariate-based model that leverages information across related traits in epigenome-wide association studies.
Collapse
Affiliation(s)
- Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Lulu Shang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Alana C Jones
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ninad S Chaudhary
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donna K Arnett
- Dean's Office, School of Public Health, University of Kentucky, Lexington, KY, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.,Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Thameem F, Voruganti VS, Blangero J, Comuzzie AG, Abboud HE. Evaluation of neurotrophic tyrosine receptor kinase 2 (NTRK2) as a positional candidate gene for variation in estimated glomerular filtration rate (eGFR) in Mexican American participants of San Antonio Family Heart study. J Biomed Sci 2015; 22:23. [PMID: 25885044 PMCID: PMC4383052 DOI: 10.1186/s12929-015-0123-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/26/2015] [Indexed: 01/09/2023] Open
Abstract
Background The estimated glomerular filtration rate (eGFR) is a well-known measure of kidney function and is commonly used for the diagnosis and management of patients with chronic kidney disease. The inter-individual variation in eGFR has significant genetic component. However, the identification of underlying genetic susceptibility variants has been challenging. In an attempt to identify and characterize susceptibility genetic variant(s) we previously identified the strongest evidence for linkage of eGFR occurring on chromosome 9q21 in the Mexican American participants of San Antonio Family Heart Study (SAFHS). The objective of the present study was to examine whether the common genetic variants in Neurotrophic Tyrosine Receptor Kinase 2 (NTRK2), a positional candidate gene on 9q21, contribute to variation in eGFR. Results Twelve tagging single nucleotide polymorphisms (SNPs) across the NTRK2 gene region were selected (r2 ≥ 0.80, minor allele frequency of ≥ 0.05) from the Hapmap database. SNPs were genotyped by TaqMan assay in the 848 Mexican American subjects participated in the SAFHS. Association analysis between the genotypes and eGFR (estimated by the Modification of Diet in Renal Disease equation) were performed by measured genotype approach as implemented in the program SOLAR. Of the 12 common genetic variants examined, the rs1036915 (located in 3′UTR) and rs1187274 (located in intron-14), present in perfect linkage disequilibrium, exhibited an association (P = 0.017) with eGFR after accounting for the effects of age, sex, diabetes, diabetes duration, systolic blood pressure and blood pressure medication. The carriers of minor allele of rs1036915 (G; 38%) had increased eGFR (104 ± 25 ml/min/1.73 m2) in comparison to the carriers of major allele A (98 ± 25 ml/min/1.73 m2). Conclusion Together, our results suggest for the first time that the genetic variants in NTRK2 may regulate eGFR.
Collapse
Affiliation(s)
- Farook Thameem
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA. .,Department of Biochemistry, Faculty of Medicine, Kuwait University, Safat, 13110, Kuwait.
| | - V Saroja Voruganti
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA. .,UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA.
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
| | - Hanna E Abboud
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA. .,South Texas Veterans Healthcare System, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol 2014; 307:F757-76. [PMID: 25080522 DOI: 10.1152/ajprenal.00306.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) has become a serious public health problem because of its associated morbidity, premature mortality, and attendant healthcare costs. The rising number of persons with CKD is linked with the aging population structure and an increased prevalence of diabetes, hypertension, and obesity. There is an inherited risk associated with developing CKD, as evidenced by familial clustering and differing prevalence rates across ethnic groups. Previous studies to determine the inherited risk factors for CKD rarely identified genetic variants that were robustly replicated. However, improvements in genotyping technologies and analytic methods are now helping to identify promising genetic loci aided by international collaboration and multiconsortia efforts. More recently, epigenetic modifications have been proposed to play a role in both the inherited susceptibility to CKD and, importantly, to explain how the environment dynamically interacts with the genome to alter an individual's disease risk. Genome-wide, epigenome-wide, and whole transcriptome studies have been performed, and optimal approaches for integrative analysis are being developed. This review summarizes recent research and the current status of genetic and epigenetic risk factors influencing CKD using population-based information.
Collapse
Affiliation(s)
- L J Smyth
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - S Duffy
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A J McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| |
Collapse
|
6
|
Prisco SZ, Prokop JW, Sarkis AB, Yeo NC, Hoffman MJ, Hansen CC, Jacob HJ, Flister MJ, Lazar J. Refined mapping of a hypertension susceptibility locus on rat chromosome 12. Hypertension 2014; 64:883-90. [PMID: 25001272 DOI: 10.1161/hypertensionaha.114.03550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we found that transferring 6.1 Mb of salt-sensitive (SS) chromosome 12 (13.4-19.5 Mb) onto the consomic SS-12(BN) background significantly elevated mean arterial pressure in response to an 8% NaCl diet (178±7 versus 144±2 mm Hg; P<0.001). Using congenic mapping, we have now narrowed the blood pressure locus by 86% from a 6.1-Mb region containing 133 genes to an 830-kb region (chr12:14.36-15.19 Mb) with 14 genes. Compared with the SS-12(BN) consomic, the 830-kb blood pressure locus was associated with a ∆+15 mm Hg (P<0.01) increase in blood pressure, which coincided with elevated albuminuria (∆+32 mg/d; P<0.001), proteinuria (∆+48 mg/d; P<0.01), protein casting (∆+154%; P<0.05), and renal fibrosis (∆+79%; P<0.05). Of the 14 genes residing in the 830-kb locus, 8 were differentially expressed, and among these, Chst12 (carbohydrate chondroitin 4 sulfotransferase 12) was most consistently downregulated by 2.6- to 4.5-fold (P<0.05) in both the renal medulla and cortex under normotensive and hypertensive conditions. Moreover, whole genome sequence analysis of overlapping blood pressure loci revealed an ≈86-kb region (chr12:14 541 567-14 627 442 bp) containing single-nucleotide variants near Chst12 that are unique to the hypertensive SS strain when compared with the normotensive Brown Norway, Dahl salt-resistant, and Wistar-Kyoto strains. Finally, the 830-kb interval is syntenic to a region on human chromosome 7 that has been genetically linked to blood pressure, suggesting that insight gained from our SS-12(BN) congenic strain may be translated to a better understanding of human hypertension.
Collapse
Affiliation(s)
- Sasha Z Prisco
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Jeremy W Prokop
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Allison B Sarkis
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Nan Cher Yeo
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Hoffman
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Colin C Hansen
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Howard J Jacob
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Michael J Flister
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Jozef Lazar
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee.
| |
Collapse
|
7
|
Thameem F, Igo RP, Freedman BI, Langefeld C, Hanson RL, Schelling JR, Elston RC, Duggirala R, Nicholas SB, Goddard KAB, Divers J, Guo X, Ipp E, Kimmel PL, Meoni LA, Shah VO, Smith MW, Winkler CA, Zager PG, Knowler WC, Nelson RG, Pahl MV, Parekh RS, Kao WHL, Rasooly RS, Adler SG, Abboud HE, Iyengar SK, Sedor JR. A genome-wide search for linkage of estimated glomerular filtration rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND). PLoS One 2013; 8:e81888. [PMID: 24358131 PMCID: PMC3866106 DOI: 10.1371/journal.pone.0081888] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/27/2013] [Indexed: 12/22/2022] Open
Abstract
Objective Estimated glomerular filtration rate (eGFR), a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL) that influence eGFR. Methods Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN) from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND) study. This study included 954 African Americans (AA), 781 American Indians (AI), 614 European Americans (EA) and 1,611 Mexican Americans (MA). A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs) using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD) formula. Results The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4×10−5) in MA and chromosome 15q12 (LOD = 2.84; P = 1.5×10−4) in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5×10−4) at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome. Conclusion The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers for DN.
Collapse
Affiliation(s)
- Farook Thameem
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Robert P. Igo
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Barry I. Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carl Langefeld
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Jeffrey R. Schelling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert C. Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ravindranath Duggirala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Susanne B. Nicholas
- Department of Medicine, University of California, Los Angeles, California, United States of America
| | - Katrina A. B. Goddard
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, United States of America
| | - Jasmin Divers
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Xiuqing Guo
- Department of Pediatrics, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Eli Ipp
- Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Paul L. Kimmel
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucy A. Meoni
- Department of Epidemiology and Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Vallabh O. Shah
- University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael W. Smith
- National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Cheryl A. Winkler
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, United States of America
| | - Philip G. Zager
- University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William C. Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Robert G. Nelson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Madeline V. Pahl
- Department of Medicine, University of California, Irvine, California, United States of America
| | - Rulan S. Parekh
- Department of Epidemiology and Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - W. H. Linda Kao
- Department of Epidemiology and Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rebekah S. Rasooly
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon G. Adler
- Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Hanna E. Abboud
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Sudha K. Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - John R. Sedor
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | |
Collapse
|
8
|
Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens 2013; 28:74-9. [PMID: 23803592 DOI: 10.1038/jhh.2013.55] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/12/2013] [Accepted: 05/28/2013] [Indexed: 01/18/2023]
Abstract
Kidney damage represents a frequent event in the course of hypertension, ranging from a benign to a malignant form of nephropathy depending on several factors, that is, individual susceptibility, degree of hypertension, type of etiology and underlying kidney disease. Multiple mechanisms are involved in determination of kidney glomerular, tubular and interstitial injuries in hypertension. The present review article discusses relevant contributory molecular mechanisms underpinning the promotion of hypertensive renal damage, such as the renin-angiotensin-aldosterone system (RAAS), oxidative stress, endothelial dysfunction, and genetic and epigenetic determinants. We highlighted major pathways involved in the progression of inflammation and fibrosis leading to glomerular sclerosis, tubular atrophy and interstitial fibrosis, thus providing a state of the art review of the pathogenetic background useful for a better understanding of current and future therapeutic strategies toward hypertensive nephropathy. An adequate control of high blood pressure, obtained through an appropriate therapeutic intervention, still represents the key strategy to achieve a satisfactory control of renal damage in hypertension. In this regard, we reviewed the impact of currently available antihypertensive pharmacological treatment on kidney damage, with particular regard to RAAS inhibitors. Notably, recent findings underscored the ability of the kidneys to regenerate and to repair tissue injuries through the differentiation of resident embryonic stem cells. Pharmacological modulation of the renal endogenous reparative process (that is, with angiotensin-converting enzyme inhibitors and AT1 angiotensin II receptor blockers), as well as future therapeutic strategies targeted to the renopoietic system, offers interesting perspectives for the management of hypertensive nephropathy.
Collapse
|
9
|
Doris PA. Genetic susceptibility to hypertensive renal disease. Cell Mol Life Sci 2012; 69:3751-63. [PMID: 22562581 PMCID: PMC3422437 DOI: 10.1007/s00018-012-0996-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 12/21/2022]
Abstract
Hypertensive renal disease occurs at increased frequency among the relatives of patients with this disease compared to individuals who lack a family history of disease. This suggests a heritable risk in which genetic variation may play a role. These observations have motivated a search for genetic variation contributing to this risk in both experimental animal models and in human populations. Studies of animal models indicate the capacity of natural genetic variants to contribute to disease risk and have produced a few insights into the disease mechanism. In its current phase, human population genetic studies have sought to associate genetic variation with disease in large populations by testing genotypes at a large number of common genetic variations in the genome, expecting that common genetic variants contributing to renal disease risk will be identified. These genome-wide association studies (GWAS) have been productive and are a clear technical success; they have also identified narrowly defined loci and genes containing variation contributing to disease risk. Further extension and refinement of these GWAS are likely to extend this success. However, it is also clear that few additional variants with substantial effects accounting for the greatest part of heritability will be uncovered by GWAS. This raises an interesting biological question regarding where the remaining unaccounted heritable risk may be located. At present, much consideration is being given to this question and to the challenge of testing hypotheses that lead from the various alternative mechanisms under consideration. One result of the progress of GWAS is likely to be a renewed interest in mechanisms by which related individuals can share and transmit traits independently of Mendelian inheritance. This paper reviews the current progress in this area and considers other mechanisms by which familial aggregation of risk for renal disease may arise.
Collapse
Affiliation(s)
- Peter A Doris
- Institute of Molecular Medicine, University of Texas HSC at Houston, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Gopalakrishnan K, Kumarasamy S, Yan Y, Liu J, Kalinoski A, Kothandapani A, Farms P, Joe B. Increased Expression of Rififylin in A < 330 Kb Congenic Strain is Linked to Impaired Endosomal Recycling in Proximal Tubules. Front Genet 2012; 3:138. [PMID: 22891072 PMCID: PMC3413941 DOI: 10.3389/fgene.2012.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/11/2012] [Indexed: 11/13/2022] Open
Abstract
Cell surface proteins are internalized into the cell through endocytosis and either degraded within lysosomes or recycled back to the plasma membrane. While perturbations in endosomal internalization are known to modulate renal function, it is not known whether similar alterations in recycling affect renal function. Rififylin is a known regulator of endocytic recycling with E3 ubiquitin protein ligase activity. In this study, using two genetically similar strains, the Dahl Salt-sensitive rat and an S.LEW congenic strain, which had allelic variants within a < 330 kb segment containing rififylin, we tested the hypothesis that alterations in endosomal recycling affect renal function. The congenic strain had 1.59-fold higher renal expression of rififylin. Transcriptome analysis indicated that components of both endocytosis and recycling were upregulated in the congenic strain. Transcription of Atp1a1 and cell surface content of the protein product of Atp1a1, the alpha subunit of Na+K+ATPase were increased in the proximal tubules from the congenic strain. Because rififylin does not directly regulate endocytosis and it is also a differentially expressed gene within the congenic segment, we reasoned that the observed alterations in the transcriptome of the congenic strain constitute a feedback response to the primary functional alteration of recycling caused by rififylin. To test this, recycling of transferrin was studied in isolated proximal tubules. Recycling was significantly delayed within isolated proximal tubules of the congenic strain, which also had a higher level of polyubiquitinated proteins and proteinuria compared with S. These data provide evidence to suggest that delayed endosomal recycling caused by excess of rififylin indirectly affects endocytosis, enhances intracellular protein polyubiquitination and contributes to proteinuria.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Flister MJ, Prisco SZ, Sarkis AB, O'Meara CC, Hoffman M, Wendt-Andrae J, Moreno C, Lazar J, Jacob HJ. Identification of hypertension susceptibility loci on rat chromosome 12. Hypertension 2012; 60:942-8. [PMID: 22868394 DOI: 10.1161/hypertensionaha.112.198200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies have identified multiple blood pressure and renal disease quantitative trait loci located on rat chromosome 12. In the present study, we narrowed blood pressure loci using a series of overlapping Dahl salt-sensitive/Mcwi (SS)-12 Brown Norway (BN) congenic lines. We found that transferring 6.1 Mb of SS chromosome 12 (13.4-19.5 Mb) onto the consomic SS-12BN background significantly elevated blood pressure on 1% NaCl (146±6 versus 127±1 mm Hg; P<0.001) and 8% NaCl diets (178±7 versus 144±2 mm Hg; P<0.001). Compared with the SS-12BN consomic, these animals also had significantly elevated albumin (218±31 versus 104±8 mg/d; P<0.001) and protein excretion (347±41 versus 195±12 mg/d; P<0.001) on a 1% NaCl diet. Elevated blood pressure, albuminuria, and proteinuria coincided with greater renal and cardiac damage, demonstrating that SS allele(s) within the 6.1 Mb congenic interval are associated with strong cardiovascular disease phenotypes. Sequence analysis of the 6.1 Mb congenic region revealed 12 673 single nucleotide polymorphisms between SS and BN rats. Of these polymorphisms, 293 lie within coding regions, and 18 resulted in nonsynonymous changes in conserved genes, of which 5 were predicted to be potentially damaging to protein function. Syntenic regions in human chromosome 7 have also been identified in multiple linkage and association studies of cardiovascular disease, suggesting that genetic variants underlying cardiovascular phenotypes in this congenic strain can likely be translated to a better understanding of human hypertension.
Collapse
Affiliation(s)
- Michael J Flister
- Human and Molecular Genetics Center, Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Familial risk in hypertensive renal disease has stimulated a search for genetic variation contributing to this risk. The current phase of population genetic studies has sought to associate genetic variation with disease in large populations by testing genotypes at a large number of common genetic variations in the genome, expecting that common genetic variants contributing to renal disease risk will be identified. These genome-wide association studies (GWAS) have been productive and are a clear technical success. It is also clear that narrowly defined loci and genes containing variation contributing to disease risk have been identified. Further extension and refinement of these GWAS are likely to extend this success. However, it is also clear that few if any variants with substantial effects accounting for the greatest part of heritability will be uncovered by GWAS. This raises an interesting biological question regarding where the remaining heritable risk may be located. One result of the progress of GWAS is likely to be a renewed interest in mechanisms by which related individuals can share and transmit traits independently of Mendelian inheritance. This paper reviews current progress in this area and considers other mechanisms by which familial aggregation of risk for renal disease may arise.
Collapse
Affiliation(s)
- Michael C Braun
- Division of Pediatric Nephrology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
13
|
Böger CA, Heid IM. Chronic kidney disease: novel insights from genome-wide association studies. Kidney Blood Press Res 2011; 34:225-34. [PMID: 21691125 DOI: 10.1159/000326901] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is common, affecting about 10% of the general population, and causing significant morbidity and mortality. Apart from the risk conferred by traditional cardiovascular risk factors, there is a strong genetic component. The method of a genome-wide association study (GWAS) is a powerful hypothesis-free approach to unravel this component by association analyses of CKD with several million genetic variants distributed across the genome. Since the publication of the first GWAS in 2005, this method has led to the discovery of novel loci for numerous human common diseases and phenotypes. Here, we review the recent successes of meta-analyses of GWAS on renal phenotypes. UMOD, SHROOM3, STC1, LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2/SH2B3, DACH1, UBE2Q2, and SLC7A9 were uncovered as loci associated with estimated glomerular filtration rate (eGFR) and CKD, and CUBN as a locus for albuminuria in cross-sectional data of general population studies. However, less than 1.5% of the total variance of eGFR and albuminuria is explained by the identified variants, and the relative risk for CKD is modified by at most 20% per locus. In African Americans, much of the risk for end-stage nondiabetic kidney disease is explained by common variants in the MYH9/APOL1 locus, and in individuals of European descent, variants in HLA-DQA1 and PLA(2)R1 implicate most of the risk for idiopathic membranous nephropathy. In contrast, genetic findings in the analysis of diabetic nephropathy are inconsistent. Uncovering variants explaining more of the genetically determined variability of kidney function is hampered by the multifactorial nature of CKD and different mechanisms involved in progressive CKD stages, and by the challenges in elucidating the role of low-frequency variants. Meta-analyses with larger sample sizes and analyses of longitudinal renal phenotypes using higher-resolution genotyping data are required to uncover novel loci associated with severe renal phenotypes.
Collapse
Affiliation(s)
- Carsten A Böger
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| | | |
Collapse
|
14
|
Rao M, Mottl AK, Cole SA, Umans JG, Freedman BI, Bowden DW, Langefeld CD, Fox CS, Yang Q, Cupples A, Iyengar SK, Hunt SC, Trikalinos TA. Meta-analysis of genome-wide linkage scans for renal function traits. Nephrol Dial Transplant 2011; 27:647-56. [PMID: 21622988 DOI: 10.1093/ndt/gfr255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several genome scans have explored the linkage of chronic kidney disease phenotypes to chromosomic regions with disparate results. Genome scan meta-analysis (GSMA) is a quantitative method to synthesize linkage results from independent studies and assess their concordance. METHODS We searched PubMed to identify genome linkage analyses of renal function traits in humans, such as estimated glomerular filtration rate (GFR), albuminuria, serum creatinine concentration and creatinine clearance. We contacted authors for numerical data and extracted information from individual studies. We applied the GSMA nonparametric approach to combine results across 14 linkage studies for GFR, 11 linkage studies for albumin creatinine ratio, 11 linkage studies for serum creatinine and 4 linkage studies for creatinine clearance. RESULTS No chromosomal region reached genome-wide statistical significance in the main analysis which included all scans under each phenotype; however, regions on Chromosomes 7, 10 and 16 reached suggestive significance for linkage to two or more phenotypes. Subgroup analyses by disease status or ethnicity did not yield additional information. CONCLUSIONS While heterogeneity across populations, methodologies and study designs likely explain this lack of agreement, it is possible that linkage scan methodologies lack the resolution for investigating complex traits. Combining family-based linkage studies with genome-wide association studies may be a powerful approach to detect private mutations contributing to complex renal phenotypes.
Collapse
Affiliation(s)
- Madhumathi Rao
- Division of Nephrology, Tufts Medical Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pattaro C, De Grandi A, Vitart V, Hayward C, Franke A, Aulchenko YS, Johansson A, Wild SH, Melville SA, Isaacs A, Polasek O, Ellinghaus D, Kolcic I, Nöthlings U, Zgaga L, Zemunik T, Gnewuch C, Schreiber S, Campbell S, Hastie N, Boban M, Meitinger T, Oostra BA, Riegler P, Minelli C, Wright AF, Campbell H, van Duijn CM, Gyllensten U, Wilson JF, Krawczak M, Rudan I, Pramstaller PP. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level. BMC MEDICAL GENETICS 2010; 11:41. [PMID: 20222955 PMCID: PMC2848223 DOI: 10.1186/1471-2350-11-41] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/11/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Serum creatinine (S CR) is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in S CR level is explicable by genetic factors. METHODS We performed a meta-analysis of genome-wide association studies of S CR undertaken in five population isolates ('discovery cohorts'), all of which are part of the European Special Population Network (EUROSPAN) project. Genes showing the strongest evidence for an association with SCR (candidate loci) were replicated in two additional population-based samples ('replication cohorts'). RESULTS After the discovery meta-analysis, 29 loci were selected for replication. Association between SCR level and polymorphisms in the collagen type XXII alpha 1 (COL22A1) gene, on chromosome 8, and in the synaptotagmin-1 (SYT1) gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 x 10(-6) and 1.7 x 10(-4), respectively). Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (GABRR2) gene and the ubiquitin-conjugating enzyme E2-J1 (UBE2J1) gene (replication p value = 3.6 x 10(-3)). Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (UMOD) gene and in the schroom family member 3 (SCHROOM3) gene were also replicated. CONCLUSIONS While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes SYT1 and GABRR2 corroborate previous findings that highlighted a possible role of the neurotransmitters GABAA receptors in the regulation of the glomerular basement membrane and a possible interaction between GABAA receptors and synaptotagmin-I at the podocyte level.
Collapse
Affiliation(s)
- Cristian Pattaro
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University Lübeck, Lübeck, Germany
| | - Alessandro De Grandi
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University Lübeck, Lübeck, Germany
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Andre Franke
- Institute for Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Yurii S Aulchenko
- Genetic Epidemiology Unit, Departments of Epidemiology and Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Asa Johansson
- Department of Genetics and Pathology, Rudbeck laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Sarah H Wild
- Centre for Population Health Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | - Scott A Melville
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University Lübeck, Lübeck, Germany
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Departments of Epidemiology and Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Ozren Polasek
- Andrija Stampar School of Public Health, University of Zagreb Medical School, Rockefellerova 4, 10000 Zagreb, Croatia
- Gen-info Ltd, Ruzmarinka 17, 10000 Zagreb, Croatia
| | - David Ellinghaus
- Institute for Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ivana Kolcic
- Andrija Stampar School of Public Health, University of Zagreb Medical School, Rockefellerova 4, 10000 Zagreb, Croatia
| | - Ute Nöthlings
- Popgen biobank, Christian-Albrechts-University Kiel, Kiel, Germany
- Institute for Experimental Medicine, Christian-Albrechts University Kiel, 24105 Kiel, Germany
| | - Lina Zgaga
- Andrija Stampar School of Public Health, University of Zagreb Medical School, Rockefellerova 4, 10000 Zagreb, Croatia
| | - Tatijana Zemunik
- Croatian Centre for Global Health, University of Split Medical School, Soltanska 2, 21000 Split, Croatia
| | - Carsten Gnewuch
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, D-93053 Regensburg, Germany
| | - Stefan Schreiber
- Institute for Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Susan Campbell
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Nick Hastie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Mladen Boban
- Croatian Centre for Global Health, University of Split Medical School, Soltanska 2, 21000 Split, Croatia
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr 1, D-85764 Neuherberg, Germany
| | - Ben A Oostra
- Genetic Epidemiology Unit, Departments of Epidemiology and Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Peter Riegler
- Hemodialysis Unit, Hospital of Merano, Merano, Italy
| | - Cosetta Minelli
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University Lübeck, Lübeck, Germany
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Departments of Epidemiology and Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Ulf Gyllensten
- Department of Genetics and Pathology, Rudbeck laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - James F Wilson
- Centre for Population Health Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | - Michael Krawczak
- Popgen biobank, Christian-Albrechts-University Kiel, Kiel, Germany
- Institute of Medical Informatics and Statistics, Christian-Albrechts-University, Kiel, Germany
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK
- Gen-info Ltd, Ruzmarinka 17, 10000 Zagreb, Croatia
- Croatian Centre for Global Health, University of Split Medical School, Soltanska 2, 21000 Split, Croatia
| | - Peter P Pramstaller
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Department of Neurology, Central Hospital, Bolzano, Italy
| | | |
Collapse
|
16
|
Garrett MR, Pezzolesi MG, Korstanje R. Integrating human and rodent data to identify the genetic factors involved in chronic kidney disease. J Am Soc Nephrol 2010; 21:398-405. [PMID: 20133484 PMCID: PMC4473253 DOI: 10.1681/asn.2009080881] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The increasing numbers of patients with chronic kidney disease combined with no satisfying interventions for preventing or curing the disease emphasize the need to better understand the genes involved in the initiation and progression of complex renal diseases, their interactions with other host genes, and the environment. Linkage and association studies in human, rat, and mouse have been successful in identifying genetic loci for various disease-related phenotypes but have thus far not been very successful identifying underlying genes. The purpose of this review is to summarize the progress in human, rat, and mouse genetic studies to show the concordance between the loci among the different species. The collective utilization of human and nonhuman mammalian datasets and resources can lead to a more rapid narrowing of disease loci and the subsequent identification of candidate genes. In addition, genes identified through these methods can be further characterized and investigated for interactions using animal models, which is not possible in humans.
Collapse
Affiliation(s)
- Michael R. Garrett
- *Department of Medicine and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marcus G. Pezzolesi
- The Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, Massachusetts; and
| | | |
Collapse
|
17
|
McKnight AJ, Currie D, Maxwell AP. Unravelling the genetic basis of renal diseases; from single gene to multifactorial disorders. J Pathol 2010; 220:198-216. [PMID: 19882676 DOI: 10.1002/path.2639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic kidney disease is common with up to 5% of the adult population reported to have an estimated glomerular filtration rate of < 60 ml/min/1.73 m(2). A large number of pathogenic mutations have been identified that are responsible for 'single gene' renal disorders, such as autosomal dominant polycystic kidney disease and X-linked Alport syndrome. These single gene disorders account for < 15% of the burden of end-stage renal disease that requires dialysis or kidney transplantation. It has proved more difficult to identify the genetic susceptibility underlying common, complex, multifactorial kidney conditions, such as diabetic nephropathy and hypertensive nephrosclerosis. This review describes success to date and explores strategies currently employed in defining the genetic basis for a number of renal disorders. The complementary use of linkage studies, candidate gene and genome-wide association analyses are described and a collation of renal genetic resources highlighted.
Collapse
Affiliation(s)
- Amy J McKnight
- Nephrology Research Group, Queen's University of Belfast, Belfast BT9 7AB, Northern Ireland, UK
| | | | | |
Collapse
|
18
|
|
19
|
Genome-wide linkage analysis of serum creatinine in three isolated European populations. Kidney Int 2009; 76:297-306. [DOI: 10.1038/ki.2009.135] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Mottl AK, Vupputuri S, Cole SA, Almasy L, Göring HHH, Diego VP, Laston S, Shara N, Lee ET, Best LG, Fabsitz RR, MacCluer JW, Umans JG, North KE. Linkage analysis of albuminuria. J Am Soc Nephrol 2009; 20:1597-606. [PMID: 19369405 PMCID: PMC2709673 DOI: 10.1681/asn.2008080895] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 01/13/2009] [Indexed: 02/02/2023] Open
Abstract
American Indians have a higher prevalence of albuminuria than the general population, likely resulting from a combination of environmental and genetic risk factors. To localize gene regions influencing variation in urinary albumin-to-creatinine ratio, we performed a linkage analysis and explored gene-by-diabetes, -hypertension, and -obesity interactions in a large cohort of American Indian families. We recruited >3600 individuals from 13 American Indian tribes from three centers (Arizona, North and South Dakota, and Oklahoma). We performed multipoint variance component linkage analysis in each center as well as in the entire cohort after controlling for center effects. We used two modeling strategies: Model 1 incorporated age, gender, and interaction terms; model 2 also controlled for diabetes, BP, body mass index, HDL, LDL, triglycerides, and smoking status. We evaluated interactions with diabetes, hypertension, and obesity using additive, interaction-specific linkage and stratified analyses. Loci suggestive for linkage to urinary albumin-to-creatinine ratio included 1q, 6p, 9q, 18q, and 20p. Gene-by-diabetes interaction was present with a quantitative trait locus specific to the diabetic stratum in the Dakotas isolated on 18q21.2 to 21.3 using model 1 (logarithm of odds = 3.3). Gene-by-hypertension interaction was present with quantitative trait loci specific to the hypertensive stratum in the Dakotas on 7q21.11 using model 1 (logarithm of odds = 3.4) and 10q25.1 using model 2 (logarithm of odds = 3.3). These loci replicate findings from multiple other genome scans of kidney disease phenotypes with distinct populations and are worthy of further study.
Collapse
Affiliation(s)
- Amy K Mottl
- UNC Kidney Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7155, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The association of cell cycle checkpoint 2 variants and kidney function: findings of the Family Blood Pressure Program and the Atherosclerosis Risk In Communities study. Am J Hypertens 2009; 22:552-8. [PMID: 19265784 DOI: 10.1038/ajh.2009.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent experimental evidence suggests that DNA damage and cell cycle regulatory proteins are involved in kidney injury and apoptosis. The checkpoint 2 gene (CHEK2) is an important transducer in DNA damage signaling pathways in response to injury, and therefore, CHEK2 variants may affect susceptibility to kidney disease. METHODS We used tag-single-nucleotide polymorphisms (tag-SNPs) to evaluate the association of the CHEK2 with kidney function (estimated glomerular filtration rate, eGFR) in 1,549 African-American and 1,423 white Hypertension Genetic Epidemiology Network (HyperGEN) participants. We performed replication analyses in the Genetic Epidemiology Network of Arteriopathy (GENOA) participants (1,746 African Americans and 1,418 whites), GenNet participants (706 whites), and Atherosclerosis Risk in Communities (ARIC) study participants (3,783 African Americans and 10,936 whites). All analyses were race-stratified and used additive genetic models with adjustments for covariates and for family structure, if needed. RESULTS One tag-SNP, rs5762764, was associated with eGFR in HyperGEN (P = 0.003) and GENOA white participants (P = 0.009), and it was significantly associated with eGFR in meta-analyses (P = 0.002). The associations were independent of type 2 diabetes. CONCLUSIONS These results suggest that CHEK2 variants may influence eGFR in the context of hypertension.
Collapse
|
22
|
Rule AD, Fridley BL, Hunt SC, Asmann Y, Boerwinkle E, Pankow JS, Mosley TH, Turner ST. Genome-wide linkage analysis for uric acid in families enriched for hypertension. Nephrol Dial Transplant 2009; 24:2414-20. [PMID: 19258383 DOI: 10.1093/ndt/gfp080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Uric acid is heritable and associated with hypertension and insulin resistance. We sought to identify genomic regions influencing serum uric acid in families in which two or more siblings had hypertension. METHODS Uric acid levels and microsatellite markers were assayed in the Genetic Epidemiology Network of Arteriopathy (GENOA) cohort (1075 whites and 1333 blacks) and the Hypertension Genetic Epidemiology Network (HyperGEN) cohort (1542 whites and 1627 blacks). Genome-wide linkage analyses of uric acid and bivariate linkage analyses of uric acid with an additional surrogate of insulin resistance were completed. Pathway analysis explored gene sets enriched at loci influencing uric acid. RESULTS In the GENOA white cohort, loci influencing uric acid were identified on chromosome 8 at 135 cM [multipoint logarithm of odds score (MLS) = 2.4], on chromosome 9 at 113 cM (MLS = 3.7) and on chromosome 16 at 93 cM (MLS = 2.3), but did not replicate in HyperGEN. At these loci, there was evidence of pleiotropy with other surrogates of insulin resistance and genes in the fructose and mannose metabolism pathway were enriched. In the HyperGEN-black cohort, there was some evidence of a locus for uric acid on chromosome 4 at 135 cM (MLS = 2.4) that had modest replication in GENOA (MLS = 1.2). CONCLUSIONS Several novel loci linked to uric acid were identified but none showed clear replication. Widespread diuretic use, a medication that raises uric acid levels, was an important study limitation. Bivariate linkage analyses and pathway analysis were consistent with genes regulating insulin resistance and fructose metabolism contributing to the heritability of uric acid.
Collapse
Affiliation(s)
- Andrew D Rule
- Division of Nephrology and Hypertension, Division of Biostatistics, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lacolley P, Challande P, Osborne-Pellegrin M, Regnault V. Genetics and pathophysiology of arterial stiffness. Cardiovasc Res 2008; 81:637-48. [PMID: 19098299 DOI: 10.1093/cvr/cvn353] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Arterial stiffness is a cardiovascular risk factor that is independent of arterial pressure. Clinically, carotid-femoral pulse wave velocity (PWV) is the gold-standard parameter of arterial stiffness. Recent genetic studies have revealed specific genes that contribute to arterial stiffening. Here we review the recent findings on genome-wide linkage analyses and candidate gene polymorphism association studies. We also focus on the latest advances in the identification of gene variants affecting PWV using high density array single nucleotide polymorphism technology in a recent genome-wide association (GWA) study. Linkage and polymorphism studies revealed a first group of genes affecting the renin-angiotensin-aldosterone system, elastic fibre structural components, metalloproteinases, and the NO pathway. A second group of genes, identified by polymorphism association studies and possibly involved in the pathophysiology of arterial stiffness, includes beta-adrenergic receptors, endothelin receptors, and inflammatory molecules. The last group of genes, identified by GWA studies and unrelated to currently suspected mechanisms of arterial stiffness, may target transcriptional pathways controlling gene expression, differentiation of vascular smooth muscle cells, apoptosis of endothelial cells, or the immune response within the vascular wall.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U961, Faculté de Médecine, 9 avenue de la forêt de Haye, B.P. 184, 54500 Vandoeuvre-les-Nancy cedex, France.
| | | | | | | |
Collapse
|
24
|
Abstract
The aim of this study was to evaluate the determinants of kidney function and the role of heritable factors in a sample of 249 siblings free from known cardiovascular disease and without antihypertensive drugs belonging to 110 families. Four different measures and estimates of kidney function were considered. Blood pressure was recorded during 24 h by ambulatory blood pressure monitoring. Heritability was estimated with and without adjustment for significant covariates.In multivariate analysis, in addition to age, sex, BMI, HDL-cholesterol, 24-h systolic and mean blood pressure, systolic nocturnal blood pressure dipping resulted independently related to serum creatinine, estimated Cockcroft-Gault-creatinine clearance and estimated by the modification of diet in renal disease-glomerular filtration rate. After full adjustment, the heritability values were 51% for the measured creatinine clearance (P < 0.01), 58% for the estimated Cockcroft-Gault-creatinine clearance (P < 0.001), 40% for the estimated by the modification of diet in renal disease-glomerular filtration rate (P < 0.001), but 8% (P = 0.34) for serum creatinine.Our data confirm that kidney function is partially under genetic control and that genetic variants of importance for this trait could be mapped. The association of the circadian rhythm of blood pressure with kidney function in this sample deserves further investigation.
Collapse
|
25
|
Quantitative genetics of renal function: tackling complexities of the eGFR phenotype in gene mapping studies. Kidney Int 2008; 74:1109-12. [DOI: 10.1038/ki.2008.479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Arar NH, Voruganti VS, Nath SD, Thameem F, Bauer R, Cole SA, Blangero J, MacCluer JW, Comuzzie AG, Abboud HE. A genome-wide search for linkage to chronic kidney disease in a community-based sample: the SAFHS. Nephrol Dial Transplant 2008; 23:3184-91. [PMID: 18443212 DOI: 10.1093/ndt/gfn215] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) phenotypes such as albuminuria measured by urinary albumin creatinine ratio (ACR), elevated serum creatinine (SrCr) and/or decreased creatinine clearance (CrCl) and glomerular filtration rate (eGFR) are major risk factors for renal and cardiovascular diseases. Epidemiological studies have reported that CKD phenotypes cluster in families suggesting a genetic predisposition. However, studies reporting chromosomal regions influencing CKD are very limited. Therefore, the purpose of this study is to identify susceptible chromosomal regions for CKD phenotypes in Mexican American families enrolled in the San Antonio Family Heart Study (SAFHS). METHODS We used the variance components decomposition approach (implemented in the software package SOLAR) to perform linkage analysis on 848 participants from 26 families. A total of 417 microsatellite markers were genotyped at an average interval of 10 cM spanning 22 autosomal chromosomes. RESULTS All phenotypes were measured by standard procedures. Mean +/- SD values of ACR, SrCr, CrCl and eGFR were 0.06 +/- 0.38, 0.85 +/- 0.72 mg/dl, 129.85 +/- 50.37 ml/min and 99.18 +/- 25.69 ml/min/1.73 m(2) body surface area, respectively. All four CKD phenotypes exhibited significant heritabilities (P < 0.0001). A genome-wide scan showed linkage on chromosome 2p25 for SrCr, CrCl and eGFR. Significant linkage was also detected on chromosome 9q21 for eGFR [logarithm of the odds (LOD) score = 3.87, P = 0.00005] and SrCr (LOD score = 2.6, P = 0.00026). ACR revealed suggestive evidence for linkage to a region on chromosome 20q12 (LOD score = 2.93, P = 0.00020). CONCLUSION Findings indicate that chromosomal regions 2p25, 9q21 and 20q12 may have functional relevance to CKD phenotypes in Mexican Americans.
Collapse
Affiliation(s)
- Nedal H Arar
- Department of Medicine/Nephrology, University of Texas Health Science Center, South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229-4404, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Knopman DS, Mosley TH, Bailey KR, Jack CR, Schwartz GL, Turner ST. Associations of microalbuminuria with brain atrophy and white matter hyperintensities in hypertensive sibships. J Neurol Sci 2008; 271:53-60. [PMID: 18442832 DOI: 10.1016/j.jns.2008.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 02/08/2008] [Accepted: 03/20/2008] [Indexed: 11/15/2022]
Abstract
BACKGROUND Because of similarities between brain and kidney microvascular disease, there may be a relationship between measures of renal microvascular disease and brain structural changes in middle aged or elderly individuals. OBJECTIVE To determine whether the urine albumin/creatinine ratio (UACR), a measure of renal microvascular disease, is associated with brain atrophy and white matter hyperintensities. METHODS As part of a larger study of the genetics of hypertension, we performed brain imaging and assessed microalbuminuria and other vascular risk factors including diabetes, hypertension, hyperlipidemia and hyperhomocysteinemia in 1253 individuals from hypertensive sibships (age mean 63.8 years, range 50 to 91; 65% women; 49% African-American; 78% hypertensive). Semi-automated quantitative measurements of brain atrophy (BA) ventricular volume, and white matter hyperintensities (WMH) were carried out on the brain MR scans. RESULTS In logistic regression models, elevated UACR was associated with greater BA (odds ratio (OR)=1.70 (95% CI 1.14, 2.54) and burden of WMH (OR=2.06 (95% CI 1.37, 3.10) after controlling for demographic factors, blood glucose, hypertension severity, duration of smoking and serum homocysteine. In contrast to elevated UACR, the associations with elevated creatinine or reduced glomerular filtration rate and WMH were not significant in the fully adjusted models. CONCLUSIONS In this cohort with an overrepresentation of hypertensives, elevated UACR was independently associated with both brain atrophy and white matter hyperintensities. Brain volume loss and WMH burden might represent expressions of microvascular disease that share common mechanisms with nephrosclerosis.
Collapse
Affiliation(s)
- David S Knopman
- Division of Behavioral Neurology, Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
| | | | | | | | | | | |
Collapse
|
28
|
Ratelade J, Lavin TA, Muda AO, Morisset L, Mollet G, Boyer O, Chen DS, Henger A, Kretzler M, Hubner N, Théry C, Gubler MC, Montagutelli X, Antignac C, Esquivel EL. Maternal environment interacts with modifier genes to influence progression of nephrotic syndrome. J Am Soc Nephrol 2008; 19:1491-9. [PMID: 18385421 DOI: 10.1681/asn.2007111268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in the NPHS2 gene, which encodes podocin, are responsible for some cases of sporadic and familial autosomal recessive steroid-resistant nephrotic syndrome. Inter- and intrafamilial variability in the progression of renal disease among patients bearing NPHS2 mutations suggests a potential role for modifier genes. Using a mouse model in which the podocin gene is constitutively inactivated, we sought to identify genetic determinants of the development and progression of renal disease as a result of the nephrotic syndrome. We report that the evolution of renal disease as a result of nephrotic syndrome in Nphs2-null mice depends on genetic background. Furthermore, the maternal environment significantly interacts with genetic determinants to modify survival and progression of renal disease. Quantitative trait locus mapping suggested that these genetic determinants may be encoded for by genes on the distal end of chromosome 3, which are linked to proteinuria, and on the distal end of chromosome 7, which are linked to a composite trait of urea, creatinine, and potassium. These loci demonstrate epistatic interactions with other chromosomal regions, highlighting the complex genetics of renal disease progression. In summary, constitutive inactivation of podocin models the complex interactions between maternal and genetically determined factors on the progression of renal disease as a result of nephrotic syndrome in mice.
Collapse
Affiliation(s)
- Julien Ratelade
- INSERM, U574, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Puppala S, Arya R, Thameem F, Arar NH, Bhandari K, Lehman DM, Schneider J, Fowler S, Farook VS, Diego VP, Almasy L, Blangero J, Stern MP, Duggirala R, Abboud HE. Genotype by diabetes interaction effects on the detection of linkage of glomerular filtration rate to a region on chromosome 2q in Mexican Americans. Diabetes 2007; 56:2818-28. [PMID: 17698600 DOI: 10.2337/db06-0984] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Glomerular filtration rate (GFR) is used to assess the progression of renal disease. We performed linkage analysis to localize genes that influence GFR using estimated GFR data from the San Antonio Family Diabetes/Gallbladder Study. We also examined the effect of genotype by diabetes interaction (G x DM) on the detection of linkage to address whether genetic effects on GFR differ in diabetic and nondiabetic subjects. RESEARCH DESIGN AND METHODS GFR (N = 453) was estimated using the recently recalculated Cockcroft-Gault (GFR-CGc) and the simplified Modification of Diet in Renal Disease (GFR-4VMDRD) formulae. Both estimates of GFR exhibited significant heritabilities, but only GFR-CGc showed significant G x DM interaction. We therefore performed multipoint linkage analyses on both GFR measures using models that did not include G x DM interaction effects (Model 1) and that included G x DM interaction effects (Model 2, in the case of GFR-CGc). RESULTS The strongest evidence for linkage (Model 1) of both GFR-CGc (logarithm of odds [LOD] 2.9) and GFR-4VMDRD (LOD 2.6) occurred between markers D9S922 and D9S1120 on chromosome 9q. However, using Model 2, the strongest evidence for linkage of GFR-CGc on chromosome 2q was found near marker D2S427 (corrected LOD score [LOD(C)] 3.3) compared with the LOD score of 2.7 based on Model 1. Potential linkages (LOD or LOD(C) >or=1.2) were found only for GFR-CGc on chromosomes 3p, 3q, 4p, 8q, 11q, and 14q. CONCLUSIONS We found a major locus on chromosome 2q that differentially influences GFR in diabetic and nondiabetic environments in the Mexican-American population.
Collapse
Affiliation(s)
- Sobha Puppala
- Southwest Foundation for Biomedical Research, Department of Genetics, P.O. Box 760549, San Antonio, TX 78254, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zintzaras E, Kitsios G, Kent D, Camp NJ, Atwood L, Hopkins PN, Hunt SC. Genome-wide scans meta-analysis for pulse pressure. Hypertension 2007; 50:557-64. [PMID: 17635856 DOI: 10.1161/hypertensionaha.107.090316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genome scans for identifying susceptibility loci for pulse pressure have produced inconclusive results. A heterogeneity-based genome search meta-analysis was applied to available genome-scan data on pulse pressure. A genome search meta-analysis divides the whole genome into 120 bins and identifies bins that rank high on average in terms of linkage statistics across genome scans unweighted or weighted by study size. The significance of each bin's average rank (right-sided test) and heterogeneity among studies (left-sided test) was calculated using a Monte Carlo test. The meta-analysis involved 7 genome scans, 3 consisting of subjects of European descent. Of the 120 bins, 5 bins had significant average rank (P(rank)<or=0.05) by either unweighted or weighted analyses, 4 of which (bins 21.2: 21q22.11 to 21q22.3, 18.3: 18q12.2 to 18q21.33, 18.4: 18q21.33 to 18q23, and 6.2: 6p22.3 to 6p21.1) were significant by both. In subjects of European descent, 3 bins (22.1: 22q11.1 to 22q12.3, 22.2: 22q12.3 to 22q13.3, 10.4: 10q22.1 to 10q23.32) had P(rank)<or=0.05 with both unweighted and weighted analyses. Bin 10.4 showed low heterogeneity (P(Q)=0.04). None of the bins showed low heterogeneity (P(Q)>0.05), indicating variation in the strength of association. Further investigation of these regions may help to direct the identification of candidate genes for pulse pressure variation.
Collapse
Affiliation(s)
- Elias Zintzaras
- Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Department of Medicine, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Rule AD. Understanding estimated glomerular filtration rate: implications for identifying chronic kidney disease. Curr Opin Nephrol Hypertens 2007; 16:242-9. [PMID: 17420668 DOI: 10.1097/mnh.0b013e328057de8b] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Glomerular filtration rate (GFR) can be estimated using serum markers such as serum creatinine (SCr) or cystatin C. This review presents new insights into estimated GFR based on theory, validation studies, SCr assay standardization, cystatin C, and longitudinal comparison with measured GFR. RECENT FINDINGS The estimation of GFR by SCr differs in health and in chronic kidney disease (CKD) due to differences in GFR range and in creatinine production between these two populations. Among populations with normal baseline GFR, there is a more rapid decline in measured GFR than in SCr-based estimated GFR. While elevated SCr is specific for CKD, other disease processes may lead to elevated cystatin C. Validation is improved by refitting equation coefficients to compare populations, recognizing the asymmetry between estimated GFR and measured GFR, and using residual plots instead of Bland-Altman plots to assess bias. SUMMARY As a screening test, SCr should be interpreted as a marker of CKD probability in the context of the patient's clinical presentation. Measured GFR or creatinine clearance may be helpful in high-risk patients with normal SCr levels. GFR estimating equations should be reserved for patients with identified CKD. Standardized SCr and cystatin C assays are needed.
Collapse
Affiliation(s)
- Andrew D Rule
- Division of Nephrology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|