1
|
Shroff UN, Gyarmati G, Izuhara A, Deepak S, Peti-Peterdi J. A new view of macula densa cell protein synthesis. Am J Physiol Renal Physiol 2021; 321:F689-F704. [PMID: 34693742 PMCID: PMC8714974 DOI: 10.1152/ajprenal.00222.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Macula densa (MD) cells, a chief sensory cell type in the nephron, are endowed with unique microanatomic features including a high density of protein synthetic organelles and secretory vesicles in basal cell processes ("maculapodia") that suggest a so far unknown high rate of MD protein synthesis. This study aimed to explore the rate and regulation of MD protein synthesis and their effects on glomerular function using novel transgenic mouse models, newly established fluorescence cell biology techniques, and intravital microscopy. Sox2-tdTomato kidney tissue sections and an O-propargyl puromycin incorporation-based fluorescence imaging assay showed that MD cells have the highest level of protein synthesis within the kidney cortex followed by intercalated cells and podocytes. Genetic gain of function of mammalian target of rapamycin (mTOR) signaling specifically in MD cells (in MD-mTORgof mice) or their physiological activation by low-salt diet resulted in further significant increases in the synthesis of MD proteins. Specifically, these included both classic and recently identified MD-specific proteins such as cyclooxygenase 2, microsomal prostaglandin E2 synthase 1, and pappalysin 2. Intravital imaging of the kidney using multiphoton microscopy showed significant increases in afferent and efferent arteriole and glomerular capillary diameters and blood flow in MD-mTORgof mice coupled with an elevated glomerular filtration rate. The presently identified high rate of MD protein synthesis that is regulated by mTOR signaling is a novel component of the physiological activation and glomerular hemodynamic regulatory functions of MD cells that remains to be fully characterized.NEW & NOTEWORTHY This study discovered the high rate of protein synthesis in macula densa (MD) cells by applying direct imaging techniques with single cell resolution. Physiological activation and mammalian target of rapamycin signaling played important regulatory roles in this process. This new feature is a novel component of the tubuloglomerular cross talk and glomerular hemodynamic regulatory functions of MD cells. Future work is needed to elucidate the nature and (patho)physiological role of the specific proteins synthesized by MD cells.
Collapse
Affiliation(s)
- Urvi Nikhil Shroff
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Audrey Izuhara
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Sachin Deepak
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
- Department of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
2
|
YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood 2021; 136:468-479. [PMID: 32187357 DOI: 10.1182/blood.2019004147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
High protein load is a feature of multiple myeloma (MM), making the disease exquisitely sensitive to proteasome inhibitor (PIs). Despite the success of PIs in improving patient outcome, the majority of patients develop resistance leading to progressive disease; thus, the need to investigate the mechanisms driving the drug sensitivity vs resistance. With the well-recognized chaperone function of 14-3-3 proteins, we evaluated their role in affecting proteasome activity and sensitivity to PIs by correlating expression of individual 14-3-3 gene and their sensitivity to PIs (bortezomib and carfilzomib) across a large panel of MM cell lines. We observed a significant positive correlation between 14-3-3ε expression and PI response in addition to a role for 14-3-3ε in promoting translation initiation and protein synthesis in MM cells through binding and inhibition of the TSC1/TSC2 complex, as well as directly interacting with and promoting phosphorylation of mTORC1. 14-3-3ε depletion caused up to a 50% reduction in protein synthesis, including a decrease in the intracellular abundance and secretion of the light chains in MM cells, whereas 14-3-3ε overexpression or addback in knockout cells resulted in a marked upregulation of protein synthesis and protein load. Importantly, the correlation among 14-3-3ε expression, PI sensitivity, and protein load was observed in primary MM cells from 2 independent data sets, and its lower expression was associated with poor outcome in patients with MM receiving a bortezomib-based therapy. Altogether, these observations suggest that 14-3-3ε is a predictor of clinical outcome and may serve as a potential target to modulate PI sensitivity in MM.
Collapse
|
3
|
Lee HJ, Mariappan MM, Norton L, Bakewell T, Feliers D, Oh SB, Donati A, Rubannelsonkumar CS, Venkatachalam MA, Harris SE, Rubera I, Tauc M, Ghosh Choudhury G, Kahn CR, Sharma K, DeFronzo RA, Kasinath BS. Proximal tubular epithelial insulin receptor mediates high-fat diet-induced kidney injury. JCI Insight 2021; 6:143619. [PMID: 33400689 PMCID: PMC7934847 DOI: 10.1172/jci.insight.143619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal-fat diet (NFD) or high-fat diet (HFD) to control and kidney proximal tubule IR–knockout (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. Baseline serum glucose, serum creatinine, and the ratio of urinary albumin to creatinine (ACR) were similar in KPTIRKO mice compared to those of controls. On HFD, weight gain and increase in serum cholesterol were similar in control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR, urinary kidney injury molecule-1–to-creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD-fed male control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.
Collapse
Affiliation(s)
- Hak Joo Lee
- Center for Renal Medicine, Division of Nephrology
| | | | - Luke Norton
- Division of Diabetes, Department of Medicine
| | | | | | - Sae Byeol Oh
- Center for Renal Medicine, Division of Nephrology
| | | | | | | | - Stephen E Harris
- Department of Periodontics, University of Texas Health, San Antonio, Texas, USA
| | - Isabelle Rubera
- Universite Cote d'Azur, CNRS - UMR-7370, Laboratoire de Physiomédecine Moléculaire, Nice, France
| | - Michel Tauc
- Universite Cote d'Azur, CNRS - UMR-7370, Laboratoire de Physiomédecine Moléculaire, Nice, France
| | - Goutam Ghosh Choudhury
- Center for Renal Medicine, Division of Nephrology.,VA Research and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - C Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kumar Sharma
- Center for Renal Medicine, Division of Nephrology.,VA Research and
| | | | - Balakuntalam S Kasinath
- Center for Renal Medicine, Division of Nephrology.,VA Research and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
4
|
Parathyroid hormone-related protein induces fibronectin up-regulation in rat mesangial cells through reactive oxygen species/Src/EGFR signaling. Biosci Rep 2019; 39:BSR20182293. [PMID: 30926678 PMCID: PMC6487264 DOI: 10.1042/bsr20182293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/19/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) is known to be up-regulated in both glomeruli and tubules in patients with diabetic kidney disease (DKD), but its role remains unclear. Previous studies show that PTHrP-induced hypertrophic response in mesangial cells (MCs) and epithelial-mesenchymal transition (EMT) in tubuloepithelial cells can be mediated by TGF-β1. In the present study, although long-term PHTrP (1-34) treatment increased the mRNA and protein level of TGF-β1 in primary rat MCs, fibronectin up-regulation occurred earlier, suggesting that fibronectin induction is independent of TGF-β1/Smad signaling. We thus evaluated the involvement of epidermal growth factor receptor (EGFR) signaling and found that nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species mediates PTHrP (1-34)-induced Src kinase activation. Src phosphorylates EGFR at tyrosine 845 and then transactive EGFR. Subsequent PI3K activation mediates Akt and ERK1/2 activation. Akt and ERK1/2 discretely lead to excessive protein synthesis of fibronectin. Our study thus demonstrates the new role of PTHrP in fibronectin up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for glomerular sclerosis.
Collapse
|
5
|
Pyszniak M, Tabarkiewicz J, Łuszczki JJ. Endocannabinoid system as a regulator of tumor cell malignancy - biological pathways and clinical significance. Onco Targets Ther 2016; 9:4323-36. [PMID: 27486335 PMCID: PMC4958360 DOI: 10.2147/ott.s106944] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids. To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB. Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome. Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules. It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared. This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology. We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival. A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy.
Collapse
Affiliation(s)
- Maria Pyszniak
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin; Isobolographic Analysis Laboratory, Institute of Agricultural Medicine, Lublin, Poland
| |
Collapse
|
6
|
Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F, Kanwar YS. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Curr Med Chem 2016; 22:2858-70. [PMID: 26119175 DOI: 10.2174/0929867322666150625095407] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
Diabetic Nephropathy (DN) is believed to be a major microvascular complication of diabetes. The hallmark of DN includes deposition of Extracellular Matrix (ECM) proteins, such as, collagen, laminin and fibronectin in the mesangium and renal tubulo-interstitium of the glomerulus and basement membranes. Such an increased expression of ECM leads to glomerular and tubular basement membranes thickening and increase of mesangial matrix, ultimately resulting in glomerulosclerosis and tubulointerstitial fibrosis. The characteristic morphologic glomerular mesangial lesion has been described as Kimmelstiel-Wilson nodule, and the process at times is referred to as diabetic nodular glomerulosclerosis. Thus, the accumulation of ECM proteins plays a critical role in the development of DN. The relevant mechanism(s) involved in the increased ECM expression and their regulation in the kidney in diabetic state has been extensively investigated and documented in the literature. Nevertheless, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules including, Notch, Wnt, mTOR, TLRs and small GTPase may play a pivotal role in the modulation of ECM regulation and expression in DN. Such modulation could be operational for instance Notch through Notch1/Jagged1 signaling, Wnt by Wnt/β- catenin pathway and mTOR via PI3-K/Akt/mTOR signaling pathways. All these pathways may be critical in the modulation of ECM expression and tubulo-interstitial fibrosis. In addition, TLRs, mainly the TLR2 and TLR4, by TLR2- dependent and TGF-β-dependent conduits, may modulate ECM expression and generate a fibrogenic response. Small GTPase like Rho, Ras and Rab family by targeting relevant genes may also influence the accumulation of ECM proteins and renal fibrosis in hyperglycemic states. This review summarizes the recent information about the role and mechanisms by which these molecules and signaling pathways regulate ECM synthesis and its expression in high glucose ambience in vitro and in vivo states. The understanding of such signaling pathways and the molecules that influence expression, secretion and amassing of ECM may aid in developing strategies for the amelioration of diabetic nephropathy.
Collapse
Affiliation(s)
| | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lamarre SG, MacCormack TJ, Sykes AV, Hall JR, Speers-Roesch B, Callaghan NI, Driedzic WR. Metabolic rate and rates of protein turnover in food-deprived cuttlefish, Sepia officinalis (Linnaeus 1758). Am J Physiol Regul Integr Comp Physiol 2016; 310:R1160-8. [PMID: 27053650 DOI: 10.1152/ajpregu.00459.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/02/2016] [Indexed: 11/22/2022]
Abstract
To determine the metabolic response to food deprivation, cuttlefish (Sepia officinalis) juveniles were either fed, fasted (3 to 5 days food deprivation), or starved (12 days food deprivation). Fasting resulted in a decrease in triglyceride levels in the digestive gland, and after 12 days, these lipid reserves were essentially depleted. Oxygen consumption was decreased to 53% and NH4 excretion to 36% of the fed group following 3-5 days of food deprivation. Oxygen consumption remained low in the starved group, but NH4 excretion returned to the level recorded for fed animals during starvation. The fractional rate of protein synthesis of fasting animals decreased to 25% in both mantle and gill compared with fed animals and remained low in the mantle with the onset of starvation. In gill, however, protein synthesis rate increased to a level that was 45% of the fed group during starvation. In mantle, starvation led to an increase in cathepsin A-, B-, H-, and L-like enzyme activity and a 2.3-fold increase in polyubiquitin mRNA that suggested an increase in ubiquitin-proteasome activity. In gill, there was a transient increase in the polyubiquitin transcript levels in the transition from fed through fasted to the starved state and cathepsin A-, B-, H-, and L-like activity was lower in starved compared with fed animals. The response in gill appears more complex, as they better maintain rates of protein synthesis and show no evidence of enhanced protein breakdown through recognized catabolic processes.
Collapse
Affiliation(s)
- Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada;
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Antonio V Sykes
- Centro de Ciências do Mar do Algarve, Campus de Gambelas, Universidade do Algarve, Faro, Portugal
| | - Jennifer R Hall
- Aquatic Research Cluster, Core Research Equipment and Instrument Training Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; and
| | - Ben Speers-Roesch
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Neal I Callaghan
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - William R Driedzic
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
8
|
Springer A, Kratochwill K, Bergmeister H, Csaicsich D, Huber J, Mayer B, Mühlberger I, Stahlschmidt J, Subramaniam R, Aufricht C. A fetal sheep model for studying compensatory mechanisms in the healthy contralateral kidney after unilateral ureteral obstruction. J Pediatr Urol 2015. [PMID: 26211402 DOI: 10.1016/j.jpurol.2015.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Fetal unilateral ureteral obstruction (UUO) triggers complex pathophysiology involving not only the affected organ but also the contralateral kidney, which undergoes evident compensatory changes. OBJECTIVE We hypothesized that it would be possible to characterize a transcriptomic fingerprint and selected molecular mechanisms for compensatory growth of contralateral kidneys in UUO, specifically focusing on mediators, carriers, membrane transport, and organ crosstalk in an ovine fetal UUO model. STUDY DESIGN A fetal ovine model of complete UUO was created on the 60th day of gestation. For transcriptomics profiling, total RNA was extracted from vital renal biopsies of contralateral (non-obstructed) kidneys harvested on the 80th day of gestation, and kidneys of untreated fetuses served as controls. Statistical analysis provided the set of differentially regulated genes further forwarded to bioinformatics analysis for identification of eventual compensatory molecular mechanisms. Histological analysis was performed with hematoxylin and eosin and periodic acid-Schiff stains. RESULTS Contralateral kidneys showed compensatory hypertrophic renal growth, represented on the molecular side by 324 protein coding genes differentially regulated compared with the control kidney samples. Bioinformatics analysis identified an interactome (Figure) consisting of 102 genes with 108 interactions mainly involving transporters (protein transport and protein localization as well as in protein degradation), signaling molecules, DNA/nucleotide/RNA processing, and components of catabolism and cell cycle regulation. Within the interactome, nine receptors were identified as differentially regulated on the contralateral kidney, involving potential renoprotective ligands of the prostaglandin and the bradykinin receptor, arginine vasopressin receptor 1B, and integrin beta 4. Interestingly, a broad range of molecules found differentially expressed, has been previously described in stress response, renoprotection and repair (e.g., MAPK3, MCP1, DICER1, and others). DISCUSSION The compensatory renal growth interactome provides a network of transcripts significantly altered in the contralateral kidney, potentially allowing novel insights into mechanisms, interactions, and signaling pathways associated with compensatory growth, and renal protection and repair. Interestingly, the finding of an embedded gene signature reflecting signaling and communication suggests a key role of these processes in CRG either by crosstalk, soluble substances, carriers, or membrane signaling. CONCLUSIONS Using a transcriptomics approach, it was possible to identify a gene expression fingerprint of contralateral renal growth in a fetal UUO model. Further studies are warranted to validate those processes and to allow incorporation of this knowledge in new fetal diagnostic or even therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Helga Bergmeister
- Division of Biomedical Research, Medical University of Vienna, Austria
| | | | - Johann Huber
- Section Ruminants, Education and Research Farm, University of Veterinary Medicine Vienna, Austria
| | - Bernd Mayer
- emergentec biodevelopment GmbH, Vienna, Austria
| | | | | | | | | |
Collapse
|
9
|
Thakur S, Viswanadhapalli S, Kopp JB, Shi Q, Barnes JL, Block K, Gorin Y, Abboud HE. Activation of AMP-activated protein kinase prevents TGF-β1-induced epithelial-mesenchymal transition and myofibroblast activation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2168-80. [PMID: 26071397 DOI: 10.1016/j.ajpath.2015.04.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 12/26/2022]
Abstract
Transforming growth factor (TGF)-β contributes to tubulointerstitial fibrosis. We investigated the mechanism by which TGF-β exerts its profibrotic effects and specifically the role of AMP-activated protein kinase (AMPK) in kidney tubular epithelial cells and interstitial fibroblasts. In proximal tubular epithelial cells, TGF-β1 treatment causes a decrease in AMPK phosphorylation and activation together with increased fibronectin and α-smooth muscle actin expression and decreased in E-cadherin. TGF-β1 causes similar changes in interstitial fibroblasts. Activation of AMPK with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, metformin, or overexpression of constitutively active AMPK markedly attenuated TGF-β1 functions. Conversely, inhibition of AMPK with adenine 9-β-d-arabinofuranoside or siRNA-mediated knockdown of AMPK (official name PRKAA1) mimicked the effect of TGF-β1 and enhanced basal and TGF-β1-induced phenotypic changes. Importantly, we found that tuberin contributed to the protective effects of AMPK and that TGF-β1 promoted cell injury by blocking AMPK-mediated tuberin phosphorylation and activation. In the kidney cortex of TGF-β transgenic mice, the significant decrease in AMPK phosphorylation and tuberin phosphorylation on its AMPK-dependent activating site was associated with an increase in mesenchymal markers and a decrease in E-cadherin. Collectively, the data indicate that TGF-β exerts its profibrotic action in vitro and in vivo via inactivation of AMPK. AMPK and tuberin activation prevent tubulointerstitial injury induced by TGF-β. Activators of AMPK provide potential therapeutic strategy to prevent kidney fibrosis and progressive kidney disease.
Collapse
Affiliation(s)
- Sachin Thakur
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | | | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Qian Shi
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Jeffrey L Barnes
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Healthcare System, San Antonio, Texas
| | - Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Hanna E Abboud
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Healthcare System, San Antonio, Texas
| |
Collapse
|
10
|
Lee HJ, Feliers D, Mariappan MM, Sataranatarajan K, Choudhury GG, Gorin Y, Kasinath BS. Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes. J Biol Chem 2015; 290:12014-26. [PMID: 25752605 DOI: 10.1074/jbc.m114.615377] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 12/30/2022] Open
Abstract
Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). N(ω)-Nitro-L-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1 activity and mRNA translation.
Collapse
Affiliation(s)
- Hak Joo Lee
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas 78229
| | - Denis Feliers
- From the Department of Medicine, University of Texas Health Science Center and
| | - Meenalakshmi M Mariappan
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas 78229
| | | | - Goutam Ghosh Choudhury
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas 78229
| | - Yves Gorin
- From the Department of Medicine, University of Texas Health Science Center and
| | - Balakuntalam S Kasinath
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas 78229
| |
Collapse
|
11
|
Perez I, Blanco L, Sanz B, Errarte P, Ariz U, Beitia M, Fernández A, Loizate A, Candenas ML, Pinto FM, Gil J, López JI, Larrinaga G. Altered Activity and Expression of Cytosolic Peptidases in Colorectal Cancer. Int J Med Sci 2015; 12:458-67. [PMID: 26078706 PMCID: PMC4466510 DOI: 10.7150/ijms.11808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The role of peptidases in carcinogenic processes and their potential usefulness as tumor markers in colorectal cancer (CRC) have been classically attributed to cell-surface enzymes. The objective of the present study was to analyze the activity and mRNA expression of three cytosolic peptidases in the CRC and to correlate the obtained results with classic histopathological parameters for tumor prognosis and survival. METHODS The activity and mRNA levels of puromycin-sensitive aminopeptidase (PSA), aminopeptidase B (APB) and pyroglutamyl-peptidase I (PGI) were measured by fluorimetric and quantitative RT-PCR methods in colorectal mucosa and tumor tissues and plasma samples from CRC patients (n=81). RESULTS 1) PSA and APB activity was higher in adenomas and carcinomas than in the uninvolved mucosa. 2) mRNA levels of PSA and PGI was lower in tumors. 3) PGI activity in CRC tissue correlated negatively with histological grade, tumor size and 5-year overall survival of CRC patients. 4) Higher plasmatic APB activity was independently associated with better 5-year overall survival. CONCLUSIONS Data suggest that cytosolic peptidases may be involved in colorectal carcinogenesis and point to the determination of this enzymes as a valuable method in the determination of CRC prognosis.
Collapse
Affiliation(s)
- Itxaro Perez
- 1. Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Lorena Blanco
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Begoña Sanz
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Peio Errarte
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Usue Ariz
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Maider Beitia
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Ainhoa Fernández
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Alberto Loizate
- 3. Department of Surgery, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao, Bizkaia, Spain
| | - M Luz Candenas
- 4. Institute for Chemical Research, CSIC-Isla de la Cartuja, Sevilla, Spain
| | - Francisco M Pinto
- 4. Institute for Chemical Research, CSIC-Isla de la Cartuja, Sevilla, Spain
| | - Javier Gil
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - José I López
- 5. Department of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Gorka Larrinaga
- 1. Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| |
Collapse
|
12
|
Blanco L, Sanz B, Perez I, Sánchez CE, Cándenas ML, Pinto FM, Gil J, Casis L, López JI, Larrinaga G. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms. BMC Cancer 2014; 14:386. [PMID: 24885240 PMCID: PMC4057613 DOI: 10.1186/1471-2407-14-386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 05/08/2014] [Indexed: 01/21/2023] Open
Abstract
Background Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. Methods In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. Results GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. Conclusions This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gorka Larrinaga
- Department of Physiology, Faculty of Medicine and Dentistry, Universitiy of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
13
|
Gorin Y, Block K. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free Radic Biol Med 2013; 61:130-42. [PMID: 23528476 PMCID: PMC3716866 DOI: 10.1016/j.freeradbiomed.2013.03.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, a complication of diabetes in the kidney. NADPH oxidases of the Nox family are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current understanding of the roles of Nox catalytic and regulatory subunits in the processes that control mesangial cell, podocyte, and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The role of the Nox isoform Nox4 in the redox processes that alter renal biology in diabetes is highlighted.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| |
Collapse
|
14
|
Cannabinoid CB1 receptor is expressed in chromophobe renal cell carcinoma and renal oncocytoma. Clin Biochem 2013; 46:638-41. [PMID: 23318578 DOI: 10.1016/j.clinbiochem.2012.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 12/04/2012] [Accepted: 12/29/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To analyze the mRNA and protein expression of cannabinoid receptors CB1 and CB2 in chromophobe renal cell carcinoma (ChRCC) and renal oncocytoma (RO). DESIGN AND METHODS Fresh and formalin-fixed tissue samples of ChRCC and RO were analyzed by using real-time quantitative RT-PCR and immunohistochemical techniques (n=40). RESULTS Quantitative RT-PCR analysis showed that CB1 mRNA was underexpressed by 12-fold in ChRCC and had a variable expression in RO. CB1 protein showed intense positive immunostaining in both neoplasms. Both CB2 mRNA and protein were not expressed in tumor and non tumor renal tissue. CONCLUSION This distinct immunoprofile may eventually be used as an additional tool with practical interest in the differential diagnosis of renal tumors.
Collapse
|
15
|
Rai P, Plagov A, Kumar D, Pathak S, Ayasolla KR, Chawla AK, Mathieson PW, Saleem MA, Husain M, Malhotra A, Singhal PC. Rapamycin-induced modulation of HIV gene transcription attenuates progression of HIVAN. Exp Mol Pathol 2012; 94:255-61. [PMID: 23010541 DOI: 10.1016/j.yexmp.2012.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/15/2012] [Indexed: 11/15/2022]
Abstract
HIV-associated nephropathy (HIVAN) is the manifestation of HIV gene expression by kidney cells in the presence of specific host factors. Recently, rapamycin (sirolimus) has been demonstrated to modulate the progression of HIVAN. We hypothesized that rapamycin would modulate the progression of HIVAN by attenuating HIV gene expression. To test our hypothesis, three weeks old Tg26 mice (n=6) were administered either vehicle or rapamycin (5 mg/kg, every other day, intraperitoneal) for eight weeks. At the end of the experimental period, the kidneys were harvested. In in vitro studies, human podocytes were transduced with either HIV-1 (NL4-3) or empty vector (EV), followed by treatment with either vehicle or rapamycin. Total RNA and proteins were extracted from renal tissues/cellular lysates and HIV gene transcription/translation was measured by real time PCR and Western blotting studies. Renal histological slides were graded for glomerular sclerosis and tubular dilatation with microcyst formation. Rapamycin attenuated both glomerular and tubular lesions in Tg26 mice. Rapamycin decreased transcription of HIV genes both in renal tissues as well as in HIV-1 transduced podocytes. Our data strongly indicate that HIV-1 long terminal repeat-mediated transcriptional activity was targeted by rapamycin. Rapamycin enhanced podocyte NF-κB and CREB activities but then it decreased AP-1 binding activity. Since expression of HIV genes by kidney cells has been demonstrated to be the key factor in the development HIVAN, it appears that rapamycin-induced altered transcription of HIV genes might have partly contributed to its disease modulating effects.
Collapse
Affiliation(s)
- Partab Rai
- Department of Medicine, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lamarre SG, Ditlecadet D, McKenzie DJ, Bonnaud L, Driedzic WR. Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 2012; 303:R427-37. [PMID: 22647292 DOI: 10.1152/ajpregu.00077.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome β-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.
Collapse
Affiliation(s)
- Simon G Lamarre
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Canada
| | | | | | | | | |
Collapse
|
17
|
Signaling mechanisms in the regulation of renal matrix metabolism in diabetes. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:749812. [PMID: 22454628 PMCID: PMC3290898 DOI: 10.1155/2012/749812] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/02/2011] [Indexed: 02/06/2023]
Abstract
Renal hypertrophy and accumulation of extracellular matrix proteins are among cardinal manifestations of diabetic nephropathy. TGF beta system has been implicated in the pathogenesis of these manifestations. Among signaling pathways activated in the kidney in diabetes, mTOR- (mammalian target of rapamycin-)regulated pathways are pivotal in orchestrating high glucose-induced production of ECM proteins leading to functional and structural changes in the kidney culminating in adverse outcomes. Understanding signaling pathways that influence individual matrix protein expression could lead to the development of new interventional strategies. This paper will highlight some of the diverse components of the signaling network stimulated by hyperglycemia with an emphasis on extracellular matrix protein metabolism in the kidney in diabetes.
Collapse
|
18
|
Rehman S, Husain M, Yadav A, Kasinath BS, Malhotra A, Singhal PC. HIV-1 promotes renal tubular epithelial cell protein synthesis: role of mTOR pathway. PLoS One 2012; 7:e30071. [PMID: 22253885 PMCID: PMC3253808 DOI: 10.1371/journal.pone.0030071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 12/13/2011] [Indexed: 01/01/2023] Open
Abstract
Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy.
Collapse
Affiliation(s)
- Shabina Rehman
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| | - Mohammad Husain
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| | - Anju Yadav
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| | - Balakuntalam S. Kasinath
- Department of Medicine, Texas Health Science Center, San Antonio, Texas, United States of America
| | - Ashwani Malhotra
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| | - Pravin C. Singhal
- Department of Medicine, North Shore LIJ Health System, New York, New York, United States of America
| |
Collapse
|
19
|
Anderson S, Oyama TT, Lindsley JN, Schutzer WE, Beard DR, Gattone VH, Komers R. 2-Hydroxyestradiol slows progression of experimental polycystic kidney disease. Am J Physiol Renal Physiol 2011; 302:F636-45. [PMID: 22160773 DOI: 10.1152/ajprenal.00265.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Male gender is a risk factor for progression of polycystic kidney disease (PKD). 17β-Estradiol (E2) protects experimentally, but clinical use is limited by adverse effects. Novel E2 metabolites provide many benefits of E2 without stimulating the estrogen receptor, and thus may be safer. We hypothesized that E2 metabolites are protective in a model of PKD. Studies were performed in male control Han:SPRD rats, and in cystic males treated with orchiectomy, 2-methoxyestradiol, 2-hydroxyestradiol (2-OHE), or vehicle, from age 3 to 12 wk. Cystic rats exhibited renal functional impairment (∼50% decrease in glomerular filtration and renal plasma flow rates, P < 0.05) and substantial cyst development (20.5 ± 2.0% of cortex area). 2-OHE was the most effective in limiting cysts (6.0 ± 0.7% of cortex area, P < 0.05 vs. vehicle-treated cystic rats) and preserving function, in association with suppression of proliferation, apoptosis, and angiogenesis markers. Downregulation of p21 expression and increased expression of Akt, the mammalian target of rapamycin (mTOR), and some of its downstream effectors were significantly reversed by 2-OHE. Thus, 2-OHE limits disease progression in a cystic rodent model. Mechanisms include reduced renal cell proliferation, apoptosis, and angiogenesis. These effects may be mediated, at least in part, by preservation of p21 and suppression of Akt and mTOR. Estradiol metabolites may represent a novel, safe intervention to slow progression of PKD.
Collapse
Affiliation(s)
- Sharon Anderson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wesseling S, Essers PB, Koeners MP, Pereboom TC, Braam B, van Faassen EE, Macinnes AW, Joles JA. Perinatal exogenous nitric oxide in fawn-hooded hypertensive rats reduces renal ribosomal biogenesis in early life. Front Genet 2011; 2:52. [PMID: 22303348 PMCID: PMC3268605 DOI: 10.3389/fgene.2011.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 08/02/2011] [Indexed: 01/21/2023] Open
Abstract
Nitric oxide (NO) is known to depress ribosome biogenesis in vitro. In this study we analyzed the influence of exogenous NO on ribosome biogenesis in vivo using a proven antihypertensive model of perinatal NO administration in genetically hypertensive rats. Fawn-hooded hypertensive rat (FHH) dams were supplied with the NO-donor molsidomine in drinking water from 2 weeks before to 4 weeks after birth, and the kidneys were subsequently collected from 2 day, 2 week, and 9 to 10-month-old adult offspring. Although the NO-donor increased maternal NO metabolite excretion, the NO status of juvenile renal (and liver) tissue was unchanged as assayed by EPR spectroscopy of NO trapped with iron-dithiocarbamate complexes. Nevertheless, microarray analysis revealed marked differential up-regulation of renal ribosomal protein genes at 2 days and down-regulation at 2 weeks and in adult males. Such differential regulation of renal ribosomal protein genes was not observed in females. These changes were confirmed in males at 2 weeks by expression analysis of renal ribosomal protein L36a and by polysome profiling, which also revealed a down-regulation of ribosomes in females at that age. However, renal polysome profiles returned to normal in adults after early exposure to molsidomine. No direct effects of molsidomine were observed on cellular proliferation in kidneys at any age, and the changes induced by molsidomine in renal polysome profiles at 2 weeks were absent in the livers of the same rats. Our results suggest that the previously found prolonged antihypertensive effects of perinatal NO administration may be due to epigenetically programmed alterations in renal ribosome biogenesis during a critical fetal period of renal development, and provide a salient example of a drug-induced reduction of ribosome biogenesis that is accompanied by a beneficial long-term health effect in both males and females.
Collapse
Affiliation(s)
- Sebastiaan Wesseling
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Erk in kidney diseases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:768512. [PMID: 21776388 PMCID: PMC3135240 DOI: 10.1155/2011/768512] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/01/2011] [Indexed: 11/17/2022]
Abstract
Acute or chronic kidney injury results from various insults and pathological conditions, and is accompanied by activation of compensatory repair mechanisms. Both insults and repair mechanisms are initiated by circulating factors, whose cellular effects are mediated by activation selective signal transduction pathways. Two main signal transduction pathways are activated during these processes, the phosphatidylinositol 3' kinase (PI-3K)/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK) cascades. This review will focus on the latter, and more specifically on the role of extracellular signal-regulated kinase (ERK) cascade in kidney injury and repair.
Collapse
|
22
|
mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int 2011; 79:502-11. [DOI: 10.1038/ki.2010.457] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Abstract
Progression of fibrosis involves interstitial hypercellularity, matrix accumulation, and atrophy of epithelial structures, resulting in loss of normal function and ultimately organ failure. There is common agreement that the fibroblast/myofibroblast is the cell type most responsible for interstitial matrix accumulation and consequent structural deformations associated with fibrosis. During wound healing and progressive fibrotic events, fibroblasts transform into myofibroblasts acquiring smooth muscle features, most notably the expression of alpha-smooth muscle actin and synthesis of mesenchymal cell-related matrix proteins. In renal disease, glomerular mesangial cells also acquire a myofibroblast phenotype and synthesize the same matrix proteins. The origin of interstitial myofibroblasts during fibrosis is a matter of debate, where the cells are proposed to derive from resident fibroblasts, pericytes, perivascular adventitial, epithelial, and/or endothelial sources. Regardless of the origin of the cells, transforming growth factor-beta1 (TGF-β1) is the principal growth factor responsible for myofibroblast differentiation to a profibrotic phenotype and exerts its effects via Smad signaling pathways involving mitogen-activated protein kinase and Akt/protein kinase B. Additionally, reactive oxygen species (ROS) have important roles in progression of fibrosis. ROS are derived from a variety of enzyme sources, of which the nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase family has been identified as a major source of superoxide and hydrogen peroxide generation in the cardiovasculature and kidney during health and disease. Recent evidence indicates that the NAD(P)H oxidase homolog Nox4 is most accountable for ROS-induced fibroblast and mesangial cell activation, where it has an essential role in TGF-β1 signaling of fibroblast activation and differentiation into a profibrotic myofibroblast phenotype and matrix production. Information on the role of ROS in mesangial cell and fibroblast signaling is incomplete, and further research on myofibroblast differentiation during fibrosis is warranted.
Collapse
|
24
|
Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure. Kidney Int 2010; 79:432-42. [PMID: 20962741 DOI: 10.1038/ki.2010.428] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rho-associated kinases (ROCK) are activated in the kidney as well as in cultured cells of diabetic models and have been implicated in renal pathophysiology. To explore whether inhibition of ROCK is protective, we studied its role in a model of accelerated diabetic nephropathy where uninephrectomized rats were made diabetic by streptozotocin. After establishing diabetes, rats were treated with the ROCK inhibitor fasudil continuously or for the final 6 weeks of an 18-week experimental period. The results were compared to similar rats given losartan, an established treatment of clinical and experimental diabetic nephropathy, or a combination of both agents. Vehicle-treated diabetic and non-diabetic uninephrectomized rats served as controls. Diabetes resulted in a rapid development of albuminuria, higher glomerulosclerosis and interstitial fibrosis scores, lower glomerular filtration rates, and increased expression of several molecular markers of diabetic nephropathy. Eighteen weeks of fasudil treatment reduced renal ROCK activity, and ameliorated diabetes-induced structural changes in the kidney and expression of the molecular markers in association with a modest anti-proteinuric effect but no change in blood pressure. Late intervention with fasudil reduced glomerulosclerosis, but did not influence proteinuria. Most effects of fasudil were comparable to those of losartan, although losartan lowered blood pressure and further lowered proteinuria. The combination of both treatments was no different than losartan alone. Thus, ROCK inhibition protected the kidney from diabetic nephropathy even though it did not reduce the blood pressure.
Collapse
|
25
|
Mariappan MM, D'Silva K, Lee MJ, Sataranatarajan K, Barnes JL, Choudhury GG, Kasinath BS. Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells. Am J Physiol Renal Physiol 2010; 300:F219-30. [PMID: 20943765 DOI: 10.1152/ajprenal.00207.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Diabetes promotes protein synthesis to induce kidney hypertrophy and increase renal matrix proteins. Increased capacity for mRNA translation by way of ribosomal biogenesis facilitates sustained stimulation of protein synthesis. We tested the hypothesis that high glucose induces ribosomal biogenesis as indicated by an increase in rRNA synthesis in the setting of augmented protein synthesis. High glucose (30 mM) increased global protein synthesis, expression of matrix proteins, laminin γ1 and fibronectin, and rDNA transcription in glomerular epithelial cells (GECs) compared with 5 mM glucose. High glucose induced Ser388 phosphorylation of upstream binding factor (UBF), an rDNA transcription factor, along with increased phosphorylation of Erk and p70S6 kinase. Inactivation of Erk and p70S6 kinase either by their respective chemical inhibitors or by expression of their inactive mutant constructs blocked high-glucose-induced UBF phosphorylation. High glucose reduced nuclear content of p19ARF and promoted dissolution of inactive UBF-p19ARF complex. High glucose also promoted association of UBF with RPA194, a subunit of RNA polymerase I. Inhibition of Erk, p70S6 kinase, and UBF1 by transfecting GECs with their respective inactive mutants abolished laminin γ1 synthesis, protein synthesis, and rDNA transcription. Renal cortex from type 1 diabetic rats and type 2 diabetic db/db mice showed increased phosphorylation of UBF, Erk, and p70S6 kinase coinciding with renal hypertrophy and onset of matrix accumulation. Our data suggest that augmented ribosome biogenesis occurs in an UBF-dependent manner during increased protein synthesis induced by high glucose in the GECs that correlates with UBF activation and renal hypertrophy in rodents with type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Meenalakshmi M Mariappan
- Mail Code 7882, Department of Medicine/Division of Nephrology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Larrinaga G, Sanz B, Pérez I, Blanco L, Cándenas ML, Pinto FM, Gil J, López JI. Cannabinoid CB₁ receptor is downregulated in clear cell renal cell carcinoma. J Histochem Cytochem 2010; 58:1129-34. [PMID: 20852034 DOI: 10.1369/jhc.2010.957126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several studies in cell cultures and in animal models have demonstrated that cannabinoids have important antitumoral properties. Because many of these effects are mediated through cannabinoid (CB) receptors CB₁ and CB₂, the study of their expression in human neoplasms has become of great interest in recent years. Fresh and formalin-fixed tissue samples of 20 consecutive clear cell renal cell carcinomas (CCRCCs) were collected prospectively and analyzed for the expression of both CB receptors by using RT-PCR, Western blot (WB), and immunohistochemical techniques. RT-PCR assays demonstrated the expression of mRNA encoding the CB₁ in tumor tissue and in adjacent non-neoplastic kidney. Conversely, WB and IHC revealed a marked downregulation of CB₁ protein in tumor tissue; CB₂ was not expressed. The obtained data suggest a possible implication of the endocannabinoid system in renal carcinogenesis. A posttranscriptional downregulation of CB₁ and the absence of expression of CB₂ characterize CCRCC.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
TGFβ enforces activation of eukaryotic elongation factor-2 (eEF2) via inactivation of eEF2 kinase by p90 ribosomal S6 kinase (p90Rsk) to induce mesangial cell hypertrophy. FEBS Lett 2010; 584:4268-72. [PMID: 20837011 DOI: 10.1016/j.febslet.2010.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/24/2010] [Accepted: 09/03/2010] [Indexed: 12/11/2022]
Abstract
eEF2 phosphorylation is under tight control to maintain mRNA translation elongation. We report that TGFβ activates eEF2 by decreasing eEF2 phosphorylation and simultaneously increasing eEF2 kinase phosphorylation. Remarkably, inhibition of Erk1/2 blocked the TGFβ-induced dephosphorylation and phosphorylation of eEF2 and eEF2 kinase. TGFβ increased phosphorylation of p90Rsk in an Erk1/2-dependent manner. Inactive p90Rsk reversed TGFβ-inhibited phosphorylation of eEF2 and suppressed eEF2 kinase activity. Finally, inactive p90Rsk significantly attenuated TGFβ-induced protein synthesis and hypertrophy of mesangial cells. These results present the first evidence that TGFβ utilizes the two layered kinase module Erk/p90Rsk to activate eEF2 for increased protein synthesis during cellular hypertrophy.
Collapse
|
28
|
Dey N, Ghosh-Choudhury N, Das F, Li X, Venkatesan B, Barnes JL, Kasinath BS, Ghosh Choudhury G. PRAS40 acts as a nodal regulator of high glucose-induced TORC1 activation in glomerular mesangial cell hypertrophy. J Cell Physiol 2010; 225:27-41. [PMID: 20629086 DOI: 10.1002/jcp.22186] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy manifests aberrant activation of TORC1, which senses key signals to modulate protein synthesis and renal hypertrophy. PRAS40 has recently been identified as a raptor-interacting protein and is a component and a constitutive inhibitor of TORC1. The mechanism by which high glucose stimulates TORC1 activity is not known. PRAS40 was identified in the mesangial cells in renal glomeruli and in tubulointerstitium of rat kidney. Streptozotocin-induced diabetic renal hypertrophy was associated with phosphorylation of PRAS40 in the cortex and glomeruli. In vitro, high glucose concentration increased PRAS40 phosphorylation in a PI 3 kinase- and Akt-dependent manner, resulting in dissociation of raptor-PRAS40 complex in mesangial cells. High glucose augmented the inactivating and activating phosphorylation of 4EBP-1 and S6 kinase, respectively, with concomitant induction of protein synthesis and hypertrophy. Expression of TORC1-nonphosphorylatable mutant of 4EBP-1 and dominant-negative S6 kinase significantly inhibited high glucose-induced protein synthesis and hypertrophy. PRAS40 knockdown mimicked the effect of high glucose on phosphorylation of 4EBP-1 and S6 kinase, protein synthesis, and hypertrophy. To elucidate the role of PRAS40 phosphorylation, we used phosphorylation-deficient mutant of PRAS40, which in contrast to PRAS40 knockdown inhibited phosphorylation of 4EBP-1 and S6 kinase, leading to reduced mesangial cell hypertrophy. Thus, our data identify high glucose-induced phosphorylation and inactivation of PRAS40 as a central node for mesangial cell hypertrophy in diabetic nephropathy.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Larrinaga G, Pérez I, Sanz B, Blanco L, López JI, Cándenas ML, Pinto FM, Gil J, Irazusta J, Varona A. Angiotensin-converting enzymes (ACE and ACE2) are downregulated in renal tumors. ACTA ACUST UNITED AC 2010; 165:218-23. [PMID: 20692300 DOI: 10.1016/j.regpep.2010.07.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 01/08/2023]
Abstract
The angiotensin-converting enzymes (ACE and ACE2) are highly expressed in renal tubules and play an important role in the regulation of renal function by the intrarenal renin-angiotensin system (iRAS). Dysregulation of these cell-surface peptidases has been associated with renal injury. Most of these studies, however, have focused on non-neoplastic kidney diseases. In the present study, ACE and ACE2 activity and protein and mRNA expression were analysed in a subset of clear-cell (CCRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Enzyme activity was measured by spectrofluorometric (ACE2) and spectrophotometric assays (ACE), and protein and mRNA expression were determined by immunohistochemistry and qRT-PCR assays, respectively. The enzyme activities and immunohistochemistry showed that both enzymes are mainly downregulated in these neoplasms. qRT-PCR studies in CCRCC showed no positive correlation between ACE and ACE2 activity/protein expression and mRNA levels, whereas downregulation of ACE2 mRNA levels was observed in tumors from the distal nephron (ChRCC and RO). These findings suggest a metabolic imbalance in iRAS and a role of this system in renal neoplastic diseases, and point to ACE and ACE2 as potential prognostic/diagnostic markers.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Bilbao, Biscay, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kumar D, Konkimalla S, Yadav A, Sataranatarajan K, Kasinath BS, Chander PN, Singhal PC. HIV-associated nephropathy: role of mammalian target of rapamycin pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:813-21. [PMID: 20581056 PMCID: PMC2913356 DOI: 10.2353/ajpath.2010.100131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2010] [Indexed: 12/22/2022]
Abstract
Both glomerular and tubular lesions are characterized by a proliferative phenotype in HIV-associated nephropathy. We hypothesized that mammalian target of rapamycin (mTOR) contributes to the development of the HIVAN phenotype. Both glomerular and tubular epithelial cells showed enhanced expression of phospho (p)-mTOR in HIV-1 transgenic mice (Tgs). In addition, renal tissues of transgenic mice (RT-Tg) showed enhanced phosphorylation of p70S6 kinase and an associated diminished phosphorylation of eEF2. Moreover, RT-Tgs showed enhanced phosphorylation of 4EBP1 and eIF4B; these findings indicated activation of the mTOR pathway in RT-Tgs. To test our hypothesis, age- and sex-matched control mice and Tgs were administered either saline or rapamycin (an inhibitor of the mTOR pathway) for 4 weeks. Tgs receiving rapamycin not only showed inhibition of the mTOR-associated downstream signaling but also displayed attenuated renal lesions. RT-Tgs showed enhanced expression of hypoxia-inducible factor-alpha and also displayed increased expression of vascular endothelial growth factor; on the other hand, rapamycin inhibited RT-Tg expression of both hypoxia-inducible factor-alpha and vascular endothelial growth factor. We conclude that the mTOR pathway contributes to the HIVAN phenotype and that inhibition of the mTOR pathway can be used as a therapeutic strategy to alter the course of HIVAN.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Immunology, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Acute hyperglycemia rapidly stimulates VEGF mRNA translation in the kidney. Role of angiotensin type 2 receptor (AT2). Cell Signal 2010; 22:1849-57. [PMID: 20667471 DOI: 10.1016/j.cellsig.2010.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/14/2010] [Accepted: 07/19/2010] [Indexed: 11/24/2022]
Abstract
Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin β1 (lamβ1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lamβ1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF.
Collapse
|
32
|
Ix JH, Sharma K. Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK. J Am Soc Nephrol 2010; 21:406-12. [PMID: 20150538 DOI: 10.1681/asn.2009080820] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity is a risk factor for chronic kidney disease (CKD) and nonalcoholic fatty liver disease (NAFLD). Recent studies identify mechanisms common to both diseases linked through an interorgan communication orchestrated by fetuin-A and adiponectin. In liver and kidney, the energy sensor 5'-AMP activated protein kinase (AMPK) is pivotal to directing podocytes and hepatocytes to compensatory and potentially deleterious pathways, leading to inflammatory and profibrotic cascades culminating in end-organ damage. Regulation of these early upstream pathways may provide new therapeutic targets for these increasingly common sequelae of obesity.
Collapse
Affiliation(s)
- Joachim H Ix
- Division of Nephrology and Hypertension, Department of Medicine, University of California-San Diego/Veterans Affairs San Diego Healthcare System, CA 92093-0711, USA
| | | |
Collapse
|
33
|
RamachandraRao SP, Talwar P, Ravasi T, Sharma K. Novel systems biology insights using antifibrotic approaches for diabetic kidney disease. Expert Rev Endocrinol Metab 2010; 5:127-135. [PMID: 30934387 DOI: 10.1586/eem.09.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although several interventions slow the progression of diabetic nephropathy, current therapies do not halt progression completely. Recent preclinical studies suggested that pirfenidone (PFD) prevents fibrosis in various diseases, but the mechanisms underlying its antifibrotic action are incompletely understood. To explore the therapeutic potential of PFD, we studied the PFD-treated db/db diabetic mouse kidney by liquid chromatography-tandem mass spectrometry proteomics. A total of 21 proteins unique to PFD-treated diabetic kidneys were identified. Analysis of gene ontology and protein-protein interactions of these proteins suggested that PFD may regulate RNA translation. Two key proteins involved in mRNA translation initiation and elongation were further evaluated and found to be regulated by PFD at the level of phosphorylation. In conclusion, insights from combining proteomics and bioinformatics improve the likelihood of rapid advancement of novel clinical therapies focused on reducing inflammation and fibrosis for diabetic complications.
Collapse
Affiliation(s)
- Satish P RamachandraRao
- a Veterans Administration San Diego Healthcare System, La Jolla, CA, USA and Center for Renal Translational Medicine, Division of Nephrology and Hypertension, Department of Medicine, 407 Stein Clinical Research Building, Mail Box #0711, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Priti Talwar
- b Center for Renal Translational Medicine, Division of Nephrology and Hypertension, Department of Medicine, 407 Stein Clinical Research Building, Mail Box #0711, University of California, San Diego, La Jolla, CA 92093, USA and Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, CA, USA.
| | - Timothy Ravasi
- c Division of Life Sciences and Engineering, Computational Bioscience Research Center (CBRC), King Abdullah University for Science and Technology (KAUST), Jeddah, Saudi Arabia and Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, CA, USA and The Scripps NeuroAIDS Preclinical Studies Centre, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Kumar Sharma
- d Director, Center for Renal Translational Medicine, UCSD/VA San Diego Health System, La Jolla, CA 92093-0711, USA.
| |
Collapse
|
34
|
Lieberthal W, Levine JS. The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol 2009; 20:2493-502. [PMID: 19875810 DOI: 10.1681/asn.2008111186] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in mediating cell size and mass, proliferation, and survival. mTOR has also emerged as an important modulator of several forms of renal disease. mTOR is activated after acute kidney injury and contributes to renal regeneration and repair. Inhibition of mTOR with rapamycin delays recovery of renal function after acute kidney injury. Activation of mTOR within the kidney also occurs in animal models of diabetic nephropathy and other causes of progressive kidney disease. Rapamycin ameliorates several key mechanisms believed to mediate changes associated with the progressive loss of GFR in chronic kidney disease. These include glomerular hypertrophy, intrarenal inflammation, and interstitial fibrosis. mTOR also plays an important role in mediating cyst formation and enlargement in autosomal dominant polycystic kidney disease. Inhibition of mTOR by rapamycin or one of its analogues represents a potentially novel treatment for autosomal dominant polycystic kidney disease. Finally, inhibitors of mTOR improve survival in patients with metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Stony Brook Medical Center, Health Sciences Center, 16-081B Nicholls Road, Stony Brook, NY 11794-8166, USA.
| | | |
Collapse
|
35
|
Lee MJ, Feliers D, Sataranatarajan K, Mariappan MM, Li M, Barnes JL, Choudhury GG, Kasinath BS. Resveratrol ameliorates high glucose-induced protein synthesis in glomerular epithelial cells. Cell Signal 2009; 22:65-70. [PMID: 19765649 DOI: 10.1016/j.cellsig.2009.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 11/18/2022]
Abstract
High glucose-induced protein synthesis in the glomerular epithelial cell (GEC) is partly dependent on reduction in phosphorylation of AMP-activated protein kinase (AMPK). We evaluated the effect of resveratrol, a phytophenol known to stimulate AMPK, on protein synthesis. Resveratrol completely inhibited high glucose stimulation of protein synthesis and synthesis of fibronectin, an important matrix protein, at 3 days. Resveratrol dose-dependently increased AMPK phosphorylation and abolished high glucose-induced reduction in its phosphorylation. We examined the effect of resveratrol on critical steps in mRNA translation, a critical event in protein synthesis. Resveratrol inhibited high glucose-induced changes in association of eIF4E with eIF4G, phosphorylation of eIF4E, eEF2, eEF2 kinase and, p70S6 kinase, indicating that it affects important events in both initiation and elongation phases of mRNA translation. Upstream regulators of AMPK in high glucose-treated GEC were explored. High glucose augmented acetylation of LKB1, the upstream kinase for AMPK, and inhibited its activity. Resveratrol prevented acetylation of LKB1 and restored its activity in high glucose-treated cells; this action did not appear to depend on SIRT1, a class III histone deacetylase. Our data show that resveratrol ameliorates protein synthesis by regulating the LKB1-AMPK axis.
Collapse
Affiliation(s)
- Myung-Ja Lee
- O'Brien Kidney Research Center, Division of Nephrology, Department of Medicine, University of Texas Health Science Center, GRECC, South Texas Veterans Health Care System, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The accumulation of unfolded proteins in the endoplasmic reticulum (ER), leading to ER stress, is caused by a wide range of physiologic and pathologic conditions. Cells respond to ER stress by activating a series of integrative stress pathways termed the unfolded protein response (UPR). This either may be adaptive and promote cell survival, or if the ER stress is chronic or excessive, may lead to cell death. The role of ER stress in the pathophysiology of both acute and chronic kidney diseases has been gaining increasing interest. This review highlights the current knowledge of ER stress in renal disease, with emphasis on more recent advances. Potential therapeutic options targeting ER stress are discussed.
Collapse
Affiliation(s)
- Jeffrey G Dickhout
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's, Hamilton, Ontario, Canada
| | | |
Collapse
|
37
|
RamachandraRao SP, Zhu Y, Ravasi T, McGowan TA, Toh I, Dunn SR, Okada S, Shaw MA, Sharma K. Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol 2009; 20:1765-75. [PMID: 19578007 DOI: 10.1681/asn.2008090931] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although several interventions slow the progression of diabetic nephropathy, current therapies do not halt progression completely. Recent preclinical studies suggested that pirfenidone (PFD) prevents fibrosis in various diseases, but the mechanisms underlying its antifibrotic action are incompletely understood. Here, we evaluated the role of PFD in regulation of the extracellular matrix. In mouse mesangial cells, PFD decreased TGF-beta promoter activity, reduced TGF-beta protein secretion, and inhibited TGF-beta-induced Smad2-phosphorylation, 3TP-lux promoter activity, and generation of reactive oxygen species. To explore the therapeutic potential of PFD, we administered PFD to 17-wk-old db/db mice for 4 wk. PFD treatment significantly reduced mesangial matrix expansion and expression of renal matrix genes but did not affect albuminuria. Using liquid chromatography with subsequent electrospray ionization tandem mass spectrometry, we identified 21 proteins unique to PFD-treated diabetic kidneys. Analysis of gene ontology and protein-protein interactions of these proteins suggested that PFD may regulate RNA processing. Immunoblotting demonstrated that PFD promotes dosage-dependent dephosphorylation of eukaryotic initiation factor, potentially inhibiting translation of mRNA. In conclusion, PFD is renoprotective in diabetic kidney disease and may exert its antifibrotic effects, in part, via inhibiting RNA processing.
Collapse
Affiliation(s)
- Satish P RamachandraRao
- Center for Renal Translational Medicine, Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang ZQ, Floyd ZE, Qin J, Liu X, Yu Y, Zhang XH, Wagner JD, Cefalu WT. Modulation of skeletal muscle insulin signaling with chronic caloric restriction in cynomolgus monkeys. Diabetes 2009; 58:1488-98. [PMID: 19336678 PMCID: PMC2699875 DOI: 10.2337/db08-0977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Caloric restriction (CR) has been shown to retard aging processes, extend maximal life span, and consistently increase insulin action in experimental animals. The mechanism by which CR enhances insulin action, specifically in higher species, is not precisely known. We sought to examine insulin receptor signaling and transcriptional alterations in skeletal muscle of nonhuman primates subjected to CR over a 4-year period. RESEARCH DESIGN AND METHODS At baseline, 32 male adult cynomolgus monkeys (Macaca fascicularis) were randomized to an ad libitum (AL) diet or to 30% CR. Dietary intake, body weight, and insulin sensitivity were obtained at routine intervals over 4 years. At the end of the study, hyperinsulinemic-euglycemic clamps were performed and skeletal muscle (vastus lateralis) was obtained in the basal and insulin-stimulated states for insulin receptor signaling and gene expression profiling. RESULTS CR significantly increased whole-body insulin-mediated glucose disposal compared with AL diet and increased insulin receptor signaling, i.e., insulin receptor substrate (IRS)-1, insulin receptor phosphorylation, and IRS-associated PI 3-kinase activity in skeletal muscle (P < 0.01, P < 0.01, and P < 0.01, respectively). Gene expression for insulin signaling proteins, i.e., IRS-1 and IRS-2, were not increased with CR, although a significant increase in protein abundance was noted. Components of the ubiquitin-proteasome system, i.e., 20S and 19S proteasome subunit abundance and 20S proteasome activity, were significantly decreased by CR. CONCLUSIONS CR increases insulin sensitivity on a whole-body level and enhances insulin receptor signaling in this higher species. CR in cynomolgus monkeys may alter insulin signaling in vivo by modulating protein content of insulin receptor signaling proteins.
Collapse
Affiliation(s)
- Zhong Q. Wang
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Z. Elizabeth Floyd
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Jianhua Qin
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Xiaotuan Liu
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Yongmei Yu
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Xian H. Zhang
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Janice D. Wagner
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - William T. Cefalu
- Division of Nutrition and Chronic Diseases, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
- Corresponding author: William T. Cefalu,
| |
Collapse
|
39
|
Kasinath BS, Feliers D, Sataranatarajan K, Ghosh Choudhury G, Lee MJ, Mariappan MM. Regulation of mRNA translation in renal physiology and disease. Am J Physiol Renal Physiol 2009; 297:F1153-65. [PMID: 19535566 DOI: 10.1152/ajprenal.90748.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Translation, a process of generating a peptide from the codons present in messenger RNA, can be a site of independent regulation of protein synthesis; it has not been well studied in the kidney. Translation occurs in three stages (initiation, elongation, and termination), each with its own set of regulatory factors. Mechanisms controlling translation include small inhibitory RNAs such as microRNAs, binding proteins, and signaling reactions. Role of translation in renal injury in diabetes, endoplasmic reticulum stress, acute kidney injury, and, in physiological adaptation to loss of nephrons is reviewed here. Contribution of mRNA translation to physiology and disease is not well understood. Because it is involved in such diverse areas as development and cancer, it should prove a fertile field for investigation in renal science.
Collapse
Affiliation(s)
- Balakuntalam S Kasinath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Manucha W, Vallés P. Hsp70/nitric oxide relationship in apoptotic modulation during obstructive nephropathy. Cell Stress Chaperones 2008; 13:413-20. [PMID: 18563630 PMCID: PMC2673925 DOI: 10.1007/s12192-008-0050-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 04/22/2008] [Accepted: 04/29/2008] [Indexed: 11/25/2022] Open
Abstract
The functional integrity of the kidney depends on normal development as well as on physiological cell turnover. Apoptosis induction is essential for these mechanisms. Multiple mechanisms are unleashed during obstructive nephropathy, one of the most complex being programmed cell death that leads to renal tubular atrophy and tubular loss. This review will focus on the interaction of nitric oxide and Hsp70 and on the regulation of renal antiapoptotic and protective oxidative stress responses.
Collapse
Affiliation(s)
- Walter Manucha
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza, Argentina
- IMBECU-CONICET (Consejo Nacional de Investigación Ciencia y Tecnológica), Mendoza, Argentina
| | - Patricia Vallés
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza, Argentina
- IMBECU-CONICET (Consejo Nacional de Investigación Ciencia y Tecnológica), Mendoza, Argentina
| |
Collapse
|
41
|
Kasinath BS, Mariappan MM, Sataranatarajan K, Lee MJ, Ghosh Choudhury G, Feliers D. Novel mechanisms of protein synthesis in diabetic nephropathy--role of mRNA translation. Rev Endocr Metab Disord 2008; 9:255-66. [PMID: 18654857 PMCID: PMC5886780 DOI: 10.1007/s11154-008-9091-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ambient protein levels are affected by both synthesis and degradation. Synthesis of a protein is regulated by transcription and messenger RNA (mRNA) translation. Translation has emerged as an important site of regulation of protein expression during development and disease. It is under the control of distinct factors that regulate initiation, elongation and termination phases. Regulation of translation occurs via signaling reactions, guanosine diphosphate-guanosine triphosphate binding and by participation of non-coding RNA species such as microRNA. Recent work has revealed an important role for translation in hypertrophy, matrix protein synthesis, elaboration of growth factors in in vivo and in vitro models of diabetic nephropathy. Studies of translation dysregulation in diabetic nephropathy have enabled identification of novel therapeutic targets. Translation of mRNA is a fertile field for exploration in investigation of kidney disease.
Collapse
Affiliation(s)
- B S Kasinath
- O'Brien Kidney Research Center, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Mariappan MM, Shetty M, Sataranatarajan K, Choudhury GG, Kasinath BS. Glycogen synthase kinase 3beta is a novel regulator of high glucose- and high insulin-induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells. J Biol Chem 2008; 283:30566-75. [PMID: 18701453 PMCID: PMC2576557 DOI: 10.1074/jbc.m801756200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 07/29/2008] [Indexed: 11/06/2022] Open
Abstract
High glucose (30 mM) and high insulin (1 nM), pathogenic factors of type 2 diabetes, increased mRNA expression and synthesis of lamininbeta1 and fibronectin after 24 h of incubation in kidney proximal tubular epithelial (MCT) cells. We tested the hypothesis that inactivation of glycogen synthase kinase 3beta (GSK3beta) by high glucose and high insulin induces increase in synthesis of laminin beta1 via activation of eIF2Bepsilon. Both high glucose and high insulin induced Ser-9 phosphorylation and inactivation of GSK3beta at 2 h that lasted for up to 48 h. This was associated with dephosphorylation of eIF2Bepsilon and eEF2, and increase in phosphorylation of 4E-BP1 and eIF4E. Expression of the kinase-dead mutant of GSK3beta or constitutively active kinase led to increased and diminished laminin beta1 synthesis, respectively. Incubation with selective kinase inhibitors showed that high glucose- and high insulin-induced laminin beta1 synthesis and phosphorylation of GSK3beta were dependent on PI 3-kinase, Erk, and mTOR. High glucose and high insulin augmented activation of Akt, Erk, and p70S6 kinase. Dominant negative Akt, but not dominant negative p70S6 kinase, inhibited GSK3beta phosphorylation induced by high glucose and high insulin, suggesting Akt but not p70S6 kinase was upstream of GSK3beta. Status of GSK3beta was examined in vivo in renal cortex of db/db mice with type 2 diabetes at 2 weeks and 2 months of diabetes. Diabetic mice showed increased phosphorylation of renal cortical GSK3beta and decreased phosphorylation of eIF2Bepsilon, which correlated with renal hypertrophy at 2 weeks, and increased laminin beta1 and fibronectin protein content at 2 months. GSK3beta and eIF2Bepsilon play a role in augmented protein synthesis associated with high glucose- and high insulin-stimulated hypertrophy and matrix accumulation in renal disease in type 2 diabetes.
Collapse
Affiliation(s)
- Meenalakshmi M Mariappan
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
43
|
Rabkin R, Awwad I, Chen Y, Ashley EA, Sun D, Sood S, Clusin W, Heidenreich P, Piecha G, Gross ML. Low-dose growth hormone is cardioprotective in uremia. J Am Soc Nephrol 2008; 19:1774-83. [PMID: 18650479 DOI: 10.1681/asn.2007121386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Growth hormone (GH) is required to maintain normal cardiac structure and function and has a positive effect on cardiac remodeling in experimental and possibly human disease. Cardiac resistance to GH develops in the uremic state, perhaps predisposing to the characteristic cardiomyopathy associated with uremia. It was hypothesized that administration of low-dosage GH may have a salutary effect on the cardiac remodeling process in uremia, but because high levels of GH have adverse cardiac effects, administration of high-dosage GH may worsen uremic cardiomyopathy. In rats with chronic renal failure, quantitative cardiac morphology revealed a decrease in total capillary length and capillary length density and an increase in mean intercapillary distance and fibroblast volume density evident. Low-dosage GH prevented these changes. Collagen and TGF-beta immunostaining, increased in chronic renal failure, were also reduced by GH, suggesting a mechanism for its salutary action. Low-dosage GH also prevented thickening of the carotid artery but did not affect aortic pathology. In contrast, high-dosage GH worsened several of these variables. These results suggest that low-dosage GH may benefit the heart and possibly the carotid arteries in chronic renal failure.
Collapse
Affiliation(s)
- Ralph Rabkin
- Department of Medicine, Stanford University and Research Service, Veterans Administration Health Care System, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zdychová J, Kazdová L, Pelikanová T, Lindsley JN, Anderson S, Komers R. Renal activity of Akt kinase in obese Zucker rats. Exp Biol Med (Maywood) 2008; 233:1231-41. [PMID: 18641049 DOI: 10.3181/0801-rm-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Insulin resistance (IR) and consequent hyperinsulinemia are hallmarks of Type 2 diabetes (DM2). Akt kinase (Akt) is an important molecule in insulin signaling, implicated in regulation of glucose uptake, cell growth, cell survival, protein synthesis, and endothelial nitric oxide (NO) production. Impaired Akt activation in insulin-sensitive tissues contributes to IR. However, Akt activity in other tissues, particularly those affected by complications of DM2, has been less studied. We hypothesized that hyperinsulinemia could have an impact on activity of Akt and its effectors involved in regulation of renal morphology and function in DM2. To address this issue, renal cortical Akt was determined in obese Zucker rats (ZO), a model of DM2, and lean controls (ZL). We also studied expression and phosphorylation of the mammalian target of rapamycin (mTOR) and endothelial NO synthase (eNOS), molecules downstream of Akt in the insulin signaling cascade, and documented modulators of renal injury. Akt activity was measured by a kinase assay with GSK-3 as a substrate. Expression of phosphorylated (active) and total proteins was measured by immunoblotting and immunohistochemistry. Renal Akt activity was increased in ZO as compared to ZL rats, in parallel with progressive hyperinsulinemia. No differences in Akt were observed in the skeletal muscle. Corresponding to increases in Akt activity, ZO rats demonstrated enhanced phosphorylation of renal mTOR. Acute PI3K inhibition with wortmannin (100 mug/kg) attenuated renal Akt and mTOR activities in ZO, but not in ZL rats. In contrast to mTOR, eNOS phosphorylation was similar in ZO and ZL rats, despite higher total eNOS expression. In conclusion, ZO rats demonstrated increases in renal Akt and mTOR activity and expression. However, eNOS phosphorylation did not follow this pattern. These data suggest that DM2 is associated with selective IR in the kidney, allowing pro-growth signaling via mTOR, whereas potentially protective effects mediated by eNOS are blunted.
Collapse
Affiliation(s)
- Jana Zdychová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
45
|
Cruzado JM. Nonimmunosuppressive effects of mammalian target of rapamycin inhibitors. Transplant Rev (Orlando) 2008; 22:73-81. [DOI: 10.1016/j.trre.2007.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Sataranatarajan K, Mariappan MM, Lee MJ, Feliers D, Choudhury GG, Barnes JL, Kasinath BS. Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1733-42. [PMID: 17991718 DOI: 10.2353/ajpath.2007.070412] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
High glucose and high insulin, pathogenic factors in type 2 diabetes, induce rapid synthesis of the matrix protein laminin-beta1 in renal proximal tubular epithelial cells by stimulation of initiation phase of mRNA translation. We investigated if elongation phase of translation also contributes to high glucose and high insulin induction of laminin-beta1 synthesis in proximal tubular epithelial cells. High glucose or high insulin rapidly increased activating Thr56 dephosphorylation of eEF2 and inactivating Ser366 phosphorylation of eEF2 kinase, events that facilitate elongation. Studies with inhibitors showed that PI3 kinase-Akt-mTOR-p70S6 kinase pathway controlled changes in phosphorylation of eEF2 and eEF2 kinase induced by high glucose or high insulin. Renal cortical homogenates from db/db mice in early stage of type 2 diabetes showed decrease in eEF2 phosphorylation and increment in eEF2 kinase phosphorylation in association with renal hypertrophy and glomerular and tubular increase in laminin-beta1 content. Rapamycin, an inhibitor of mTOR, abolished diabetes-induced changes in phosphorylation of eEF2, eEF2 kinase, and p70S6 kinase and ameliorated renal hypertrophy and laminin-beta1 protein content, without affecting hyperglycemia. These data show that mTOR is an attractive target for amelioration of diabetes-induced renal injury.
Collapse
Affiliation(s)
- Kavithalakshmi Sataranatarajan
- O'Brien Kidney Research Center, Department of Medicine, MC 7882, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Raptor-rictor axis in TGFbeta-induced protein synthesis. Cell Signal 2007; 20:409-23. [PMID: 18068336 DOI: 10.1016/j.cellsig.2007.10.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/30/2007] [Indexed: 11/23/2022]
Abstract
Transforming growth factor-beta (TGFbeta) stimulates pathological renal cell hypertrophy for which increased protein synthesis is critical. The mechanism of TGFbeta-induced protein synthesis is not known, but PI 3 kinase-dependent Akt kinase activity is necessary. We investigated the contribution of downstream effectors of Akt in TGFbeta-stimulated protein synthesis. TGFbeta increased inactivating phosphorylation of Akt substrate tuberin in a PI 3 kinase/Akt dependent manner, resulting in activation of mTOR kinase. mTOR activity increased phosphorylation of S6 kinase and the translation repressor 4EBP-1, which were sensitive to inhibition of both PI 3 kinase and Akt. mTOR inhibitor rapamycin and a dominant negative mutant of mTOR suppressed TGFbeta-induced phosphorylation of S6 kinase and 4EBP-1. PI 3 kinase/Akt and mTOR regulated dissociation of 4EBP-1 from eIF4E to make the latter available for binding to eIF4G. mTOR and 4EBP-1 modulated TGFbeta-induced protein synthesis. mTOR is present in two multi protein complexes, mTORC1 and mTORC2. Raptor and rictor are part of mTORC1 and mTORC2, respectively. shRNA-mediated downregulation of raptor inhibited TGFbeta-stimulated mTOR kinase activity, resulting in inhibition of phosphorylation of S6 kinase and 4EBP-1. Raptor shRNA also prevented protein synthesis in response to TGFbeta. Downregulation of rictor inhibited serine 473 phosphorylation of Akt without any effect on phosphorylation of its substrate, tuberin. Furthermore, rictor shRNA increased phosphorylation of S6 kinase and 4EBP-1 in TGFbeta-independent manner, resulting in increased protein synthesis. Thus mTORC1 function is essential for TGFbeta-induced protein synthesis. Our data also provide novel evidence that rictor negatively regulates TORC1 activity to control basal protein synthesis, thus conferring tight control on cellular hypertrophy.
Collapse
|
48
|
Wu CC, Chen JS, Chen SJ, Lin SH, Chen A, Chang LC, Sytwu HK, Lin YF. Kinetics of adaptive immunity to cationic bovine serum albumin-induced membranous nephropathy. Kidney Int 2007; 72:831-40. [PMID: 17622271 DOI: 10.1038/sj.ki.5002426] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membranous nephropathy is an autoimmune-mediated glomerulonephritis and a major cause of nephrotic syndrome. We studied the kinetics of adaptive immunity in the pathogenesis of membranous nephropathy in T1/T2 double transgenic mice (T1/T2 TG mice) that express human Thy1 protein under the control of interferon-gamma (INF-gamma) and mouse Thy1.1 protein under the control of interleukin (IL)-4. Nephropathy was induced by cationic bovine serum albumin. We found that splenocytes expressed a progressive Th2 response and a subsequent compensatory T-helper 1 (Th1) response, with a gradual augmentation of IL-4-producing Th2 cells and INF-gamma-producing Th1 cells. Increased Th2 marker expression was seen in peripheral blood and kidney cells, with the immunoglobulin G1 (IgG1) antibody isotype predominant in the serum and kidneys. We found that CD8+ T cells contribute more to the augmented INF-gamma production than CD4+ T cells. Moreover, CD19+ B cells demonstrated a greater production of IL-4 than the CD4+ T cells. Cytokine-related gene expression in kidneys and splenocytes showed an upregulation of proinflammatory Th1 and Th2 cytokines. Th2 cells but not Th1 cells were significantly correlated with serum cholesterol and proteinuria. Our study shows that both peripheral and renal immune reactions are strongly polarized toward Th2-type immune responses during the course of membranous nephropathy. The T1/T2 mouse model may help decipher the kinetic changes of adaptive immunity in glomerulonephritis.
Collapse
Affiliation(s)
- C-C Wu
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|