1
|
Sánchez-Cazorla E, Carrera N, García-González MÁ. HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis. Int J Mol Sci 2024; 25:10609. [PMID: 39408938 PMCID: PMC11476927 DOI: 10.3390/ijms251910609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype-phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Miguel Ángel García-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Loeb GB, Kathail P, Shuai RW, Chung R, Grona RJ, Peddada S, Sevim V, Federman S, Mader K, Chu AY, Davitte J, Du J, Gupta AR, Ye CJ, Shafer S, Przybyla L, Rapiteanu R, Ioannidis NM, Reiter JF. Variants in tubule epithelial regulatory elements mediate most heritable differences in human kidney function. Nat Genet 2024; 56:2078-2092. [PMID: 39256582 DOI: 10.1038/s41588-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
Kidney failure, the decrease of kidney function below a threshold necessary to support life, is a major cause of morbidity and mortality. We performed a genome-wide association study (GWAS) of 406,504 individuals in the UK Biobank, identifying 430 loci affecting kidney function in middle-aged adults. To investigate the cell types affected by these loci, we integrated the GWAS with human kidney candidate cis-regulatory elements (cCREs) identified using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq). Overall, 56% of kidney function heritability localized to kidney tubule epithelial cCREs and an additional 7% to kidney podocyte cCREs. Thus, most heritable differences in adult kidney function are a result of altered gene expression in these two cell types. Using enhancer assays, allele-specific scATAC-seq and machine learning, we found that many kidney function variants alter tubule epithelial cCRE chromatin accessibility and function. Using CRISPRi, we determined which genes some of these cCREs regulate, implicating NDRG1, CCNB1 and STC1 in human kidney function.
Collapse
Affiliation(s)
- Gabriel B Loeb
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Pooja Kathail
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Richard W Shuai
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ryan Chung
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Reinier J Grona
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sailaja Peddada
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Volkan Sevim
- Laboratory for Genomics Research, San Francisco, CA, USA
- Target Discovery, GSK, San Francisco, CA, USA
| | - Scot Federman
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Mader
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey Y Chu
- Human Genetics and Genomics, GSK, Cambridge, MA, USA
| | | | - Juan Du
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander R Gupta
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine; Bakar Computational Health Sciences Institute; Parker Institute for Cancer Immunotherapy; Institute for Human Genetics; Department of Epidemiology & Biostatistics; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Shawn Shafer
- Laboratory for Genomics Research, San Francisco, CA, USA
- Target Discovery, GSK, San Francisco, CA, USA
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Radu Rapiteanu
- Genome Biology, Research Technologies, GSK, Stevenage, UK
| | - Nilah M Ioannidis
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeremy F Reiter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Short KM, Tortelote GG, Jones LK, Diniz F, Edgington-Giordano F, Cullen-McEwen LA, Schröder J, Spencer A, Keniry A, Polo JM, Bertram JF, Blewitt ME, Smyth IM, El-Dahr SS. The Impact of Low Protein Diet on the Molecular and Cellular Development of the Fetal Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569988. [PMID: 38106143 PMCID: PMC10723346 DOI: 10.1101/2023.12.04.569988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Low nephron number has a direct impact on the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. Methods We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development to affect nephron number. Results Single cell analysis at E14.5 and P0 revealed differences in the expression of genes and pathways involved in metabolism, cell cycle, epigenetic regulators and reciprocal inductive signals in most cell types analyzed, yielding imbalances and shifts in cellular energy production and cellular trajectories. In the nephron progenitor cells, LPD impeded cellular commitment and differentiation towards pre-tubular and renal vesicle structures. Confocal microscopy revealed a reduction in the number of pre-tubular aggregates and proliferation in nephron progenitor cells. We also found changes in branching morphogenesis, with a reduction in cell proliferation in the ureteric tips as well as reduced tip and tip parent lengths by optical projection tomography which causes patterning defects. Conclusions This unique profiling demonstrates how a fetal programming defect leads to low nephron endowment which is intricately linked to changes in both branching morphogenesis and the commitment of nephron progenitor cells. The commitment of progenitor cells is pivotal for nephron formation and is significantly influenced by nutritional factors, with a low protein diet driving alterations in this program which directly results in a reduced nephron endowment. Significance Statement While a mother's diet can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal developmental programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.
Collapse
|
4
|
Tholen LE, Latta F, Martens JHA, Hoenderop JGJ, de Baaij JHF. Transcription factor HNF1β controls a transcriptional network regulating kidney cell structure and tight junction integrity. Am J Physiol Renal Physiol 2023; 324:F211-F224. [PMID: 36546837 DOI: 10.1152/ajprenal.00199.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutations in the hepatocyte nuclear factor (HNF)1β gene (HNF1B) cause autosomal dominant tubulointerstitial kidney disease, a rare and heterogeneous disease characterized by renal cysts and/or malformation, maturity-onset diabetes of the young, hypomagnesemia, and hypokalemia. The electrolyte disturbances may develop in the distal part of the nephron, which is important for fine-tuning of Mg2+ and Ca2+ reabsorption. Therefore, we aimed to study the transcriptional network directed by HNF1β in the distal part of the nephron. We combined HNF1β chromatin immunoprecipitation-sequencing and mRNA expression data to identify direct targets of HNF1β in a renal distal convoluted tubule cell line (mpkDCT). Gene Ontology term pathway analysis demonstrated enrichment of cell polarity, cell-cell junction, and cytoskeleton pathways in the dataset. Genes directly and indirectly regulated by HNF1β within these pathways included members of the apical and basolateral polarity complexes including Crumbs protein homolog 3 (Crb3), partitioning defective 6 homolog-β (Pard6b), and LLGL Scribble cell polarity complex component 2 (Llgl2). In monolayers of mouse inner medullary collecting duct 3 cells expressing dominant negative Hnf1b, tight junction integrity was compromised, as observed by reduced transepithelial electrical resistance values and increased permeability for fluorescein (0.4 kDa) compared with wild-type cells. Expression of dominant negative Hnf1b also led to a decrease in height (30%) and an increase in surface (58.5%) of cells grown on membranes. Moreover, three-dimensional spheroids formed by cells expressing dominant negative Hnf1b were reduced in size compared with wild-type spheroids (30%). Together, these findings demonstrate that HNF1β directs a transcriptional network regulating tight junction integrity and cell structure in the distal part of the nephron.NEW & NOTEWORTHY Genetic defects in transcription factor hepatocyte nuclear factor (HNF)1β cause a heterogeneous disease characterized by electrolyte disturbances, kidney cysts, and diabetes. By combining RNA-sequencing and HNF1β chromatin immunoprecipitation-sequencing data, we identified new HNF1β targets that were enriched for cell polarity pathways. Newly discovered targets included members of polarity complexes Crb3, Pard6b, and Llgl2. Functional assays in kidney epithelial cells demonstrated decreased tight junction integrity and a loss of typical cuboidal morphology in mutant Hnf1b cells.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Femke Latta
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Sharma A, Meer M, Dapkunas A, Ihermann-Hella A, Kuure S, Vainio SJ, Iber D, Naillat F. FGF8 induces chemokinesis and regulates condensation of mouse nephron progenitor cells. Development 2022; 149:277149. [DOI: 10.1242/dev.201012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Kidneys develop via iterative branching of the ureteric epithelial tree and subsequent nephrogenesis at the branch points. Nephrons form in the cap mesenchyme as the metanephric mesenchyme (MM) condenses around the epithelial ureteric buds (UBs). Previous work has demonstrated that FGF8 is important for the survival of nephron progenitor cells (NPCs), and early deletion of Fgf8 leads to the cessation of nephron formation, which results in post-natal lethality. We now reveal a previously unreported function of FGF8. By combining transgenic mouse models, quantitative imaging assays and data-driven computational modelling, we show that FGF8 has a strong chemokinetic effect and that this chemokinetic effect is important for the condensation of NPCs to the UB. The computational model shows that the motility must be lower close to the UB to achieve NPC attachment. We conclude that the FGF8 signalling pathway is crucial for the coordination of NPC condensation at the UB. Chemokinetic effects have also been described for other FGFs and may be generally important for the formation of mesenchymal condensates.
Collapse
Affiliation(s)
- Abhishek Sharma
- University of Oulu 1 Faculty of Biochemistry and Molecular Medicine , , Oulu 90220, Finland
- Biocenter Oulu 2 , Oulu 90220, Finland
| | - Marco Meer
- ETH Zürich 3 Department of Biosystems, Science and Engineering , , Zürich 04058, Switzerland
- Swiss Institute of Bioinformatics 4 , Lausanne 1015 , Switzerland
| | - Arvydas Dapkunas
- University of Helsinki 5 HiLIFE and Research Programs Unit, Faculty of Medicine , , Helsinki 00014, Finland
| | - Anneliis Ihermann-Hella
- University of Helsinki 5 HiLIFE and Research Programs Unit, Faculty of Medicine , , Helsinki 00014, Finland
| | - Satu Kuure
- University of Helsinki 5 HiLIFE and Research Programs Unit, Faculty of Medicine , , Helsinki 00014, Finland
- LAC/HiLIFE, and Medicum, University of Helsinki 6 GM-Unit , , Helsinki 00014, Finland
| | - Seppo J. Vainio
- University of Oulu 1 Faculty of Biochemistry and Molecular Medicine , , Oulu 90220, Finland
- Biocenter Oulu 2 , Oulu 90220, Finland
- Infotech Oulu 7 , Oulu 90200, Finland
- Borealis Biobank 8 , Oulu 90200, Finland
- Kvantum Institute, University of Oulu 9 , Oulu 90200, Finland
| | - Dagmar Iber
- ETH Zürich 3 Department of Biosystems, Science and Engineering , , Zürich 04058, Switzerland
- Swiss Institute of Bioinformatics 4 , Lausanne 1015 , Switzerland
| | - Florence Naillat
- University of Oulu 1 Faculty of Biochemistry and Molecular Medicine , , Oulu 90220, Finland
- Biocenter Oulu 2 , Oulu 90220, Finland
| |
Collapse
|
6
|
Scholz JK, Kraus A, Lüder D, Skoczynski K, Schiffer M, Grampp S, Schödel J, Buchholz B. Loss of Polycystin-1 causes cAMP-dependent switch from tubule to cyst formation. iScience 2022; 25:104359. [PMID: 35620436 PMCID: PMC9127160 DOI: 10.1016/j.isci.2022.104359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is the most common monogenic disease that causes end-stage renal failure. It primarily results from mutations in the PKD1 gene that encodes for Polycystin-1. How loss of Polycystin-1 translates into bilateral renal cyst development is mostly unknown. cAMP is significantly involved in cyst enlargement but its role in cyst initiation has remained elusive. Deletion of Polycystin-1 in collecting duct cells resulted in a switch from tubule to cyst formation and was accompanied by an increase in cAMP. Pharmacological elevation of cAMP in Polycystin-1-competent cells caused cyst formation, impaired plasticity, nondirectional migration, and mis-orientation, and thus strongly resembled the phenotype of Polycystin-1-deficient cells. Mis-orientation of developing tubule cells in metanephric kidneys upon loss of Polycystin-1 was phenocopied by pharmacological increase of cAMP in wildtype kidneys. In vitro, cAMP impaired tubule formation after capillary-induced injury which was further impaired by loss Polycystin-1. Loss of Polycystin-1 switches renal cells from tubule to cyst formation Deletion of Polycystin-1 leads to increase in cAMP Elevation of cAMP in wildtype cells phenocopies Polycystin-1-deficient features Features are: impaired plasticity, nondirectional migration, and mis-orientation
Collapse
|
7
|
Mohamed SA, Fernadez-Tajes J, Franks PW, Bennet L. GWAS in people of Middle Eastern descent reveals a locus protective of kidney function-a cross-sectional study. BMC Med 2022; 20:76. [PMID: 35227251 PMCID: PMC8886846 DOI: 10.1186/s12916-022-02267-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Type 2 diabetes is one of the leading causes of chronic kidney failure, which increases globally and represents a significant threat to public health. People from the Middle East represent one of the largest immigrant groups in Europe today. Despite poor glucose regulation and high risk for early-onset insulin-deficient type 2 diabetes, they have better kidney function and lower rates of all-cause and cardiovascular-specific mortality compared with people of European ancestry. Here, we assessed the genetic basis of estimated glomerular filtration rate (eGFR) and other metabolic traits in people of Iraqi ancestry living in southern Sweden. METHODS Genome-wide association study (GWAS) analyses were performed in 1201 Iraqi-born residents of the city of Malmö for eGFR and ten other metabolic traits using linear mixed-models to account for family structure. RESULTS The strongest association signal was detected for eGFR in CST9 (rs13037490; P value = 2.4 × 10-13), a locus previously associated with cystatin C-based eGFR; importantly, the effect (major) allele here contrasts the effect (minor) allele in other populations, suggesting favorable selection at this locus. Additional novel genome-wide significant loci for eGFR (ERBB4), fasting glucose (CAMTA1, NDUFA10, TRIO, WWC1, TRAPPC9, SH3GL2, ABCC11), quantitative insulin-sensitivity check index (METTL16), and HbA1C (CAMTA1, ME1, PAK1, RORA) were identified. CONCLUSIONS The genetic effects discovered here may help explain why people from the Middle East have better kidney function than those of European descent. Genetic predisposition to preserved kidney function may also underlie the observed survival benefits in Middle Eastern immigrants with type 2 diabetes.
Collapse
Affiliation(s)
- Siham A Mohamed
- Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Juan Fernadez-Tajes
- Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Paul W Franks
- Lund University Diabetes Center, Lund University, Malmö, Sweden. .,Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Louise Bennet
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Clinical Research and Trial Center, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
8
|
Chakroborty D, Ojala VK, Knittle AM, Drexler J, Tamirat MZ, Ruzicka R, Bosch K, Woertl J, Schmittner S, Elo LL, Johnson MS, Kurppa KJ, Solca F, Elenius K. An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations. CANCER RESEARCH COMMUNICATIONS 2022; 2:10-27. [PMID: 36860695 PMCID: PMC9973412 DOI: 10.1158/2767-9764.crc-21-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED Despite the relatively high frequency of somatic ERBB4 mutations in various cancer types, only a few activating ERBB4 mutations have been characterized, primarily due to lack of mutational hotspots in the ERBB4 gene. Here, we utilized our previously published pipeline, an in vitro screen for activating mutations, to perform an unbiased functional screen to identify potential activating ERBB4 mutations from a randomly mutated ERBB4 expression library. Ten potentially activating ERBB4 mutations were identified and subjected to validation by functional and structural analyses. Two of the 10 ERBB4 mutants, E715K and R687K, demonstrated hyperactivity in all tested cell models and promoted cellular growth under two-dimensional and three-dimensional culture conditions. ERBB4 E715K also promoted tumor growth in in vivo Ba/F3 cell mouse allografts. Importantly, all tested ERBB4 mutants were sensitive to the pan-ERBB tyrosine kinase inhibitors afatinib, neratinib, and dacomitinib. Our data indicate that rare ERBB4 mutations are potential candidates for ERBB4-targeted therapy with pan-ERBB inhibitors. STATEMENT OF SIGNIFICANCE ERBB4 is a member of the ERBB family of oncogenes that is frequently mutated in different cancer types but the functional impact of its somatic mutations remains unknown. Here, we have analyzed the function of over 8,000 randomly mutated ERBB4 variants in an unbiased functional genetics screen. The data indicate the presence of rare activating ERBB4 mutations in cancer, with potential to be targeted with clinically approved pan-ERBB inhibitors.
Collapse
Affiliation(s)
- Deepankar Chakroborty
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veera K. Ojala
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anna M. Knittle
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Mahlet Z. Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Graduate School of Åbo Akademi University (Informational and Structural Biology Doctoral Network), Turku, Finland
| | | | - Karin Bosch
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Laura L. Elo
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Kari J. Kurppa
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
9
|
Singh B, Bogatcheva G, Krystofiak E, McKinley ET, Hill S, Rose KL, Higginbotham JN, Coffey RJ. Induction of apically mistrafficked epiregulin disrupts epithelial polarity via aberrant EGFR signaling. J Cell Sci 2021; 134:271860. [PMID: 34406412 DOI: 10.1242/jcs.255927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
In polarized MDCK cells, disruption of the tyrosine-based YXXΦ basolateral trafficking motif (Y156A) in the epidermal growth factor receptor (EGFR) ligand epiregulin (EREG), results in its apical mistrafficking and transformation in vivo. However, the mechanisms underlying these dramatic effects are unknown. Using a doxycycline-inducible system in 3D Matrigel cultures, we now show that induction of Y156A EREG in fully formed MDCK cysts results in direct and complete delivery of mutant EREG to the apical cell surface. Within 3 days of induction, ectopic lumens were detected in mutant, but not wild-type, EREG-expressing cysts. Of note, these structures resembled histological features found in subcutaneous xenografts of mutant EREG-expressing MDCK cells. These ectopic lumens formed de novo rather than budding from the central lumen and depended on metalloprotease-mediated cleavage of EREG and subsequent EGFR activity. Moreover, the most frequent EREG mutation in human cancer (R147stop) resulted in its apical mistrafficking in engineered MDCK cells. Thus, induction of EREG apical mistrafficking is sufficient to disrupt selective aspects of polarity of a preformed polarized epithelium. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Galina Bogatcheva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource, Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Salisha Hill
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Veikkolainen V, Ali N, Doroszko M, Kiviniemi A, Miinalainen I, Ohlsson C, Poutanen M, Rahman N, Elenius K, Vainio SJ, Naillat F. Erbb4 regulates the oocyte microenvironment during folliculogenesis. Hum Mol Genet 2021; 29:2813-2830. [PMID: 32716031 DOI: 10.1093/hmg/ddaa161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders leading to infertility in women affecting reproductive, endocrine and metabolic systems. Recent genomewide association studies on PCOS cohorts revealed a single nucleotide polymorphism (SNP) in the ERBB4 receptor tyrosine kinase 4 gene, but its role in ovary development or during folliculogenesis remains poorly understood. Since no genetic animal models mimicking all PCOS reproductive features are available, we conditionally deleted Erbb4 in murine granulosa cells (GCs) under the control of Amh promoter. While we have demonstrated that Erbb4 deletion displayed aberrant ovarian function by affecting the reproductive function (asynchronous oestrous cycle leading to few ovulations and subfertility) and metabolic function (obesity), their ovaries also present severe structural and functional abnormalities (impaired oocyte development). Hormone analysis revealed an up-regulation of serum luteinizing hormone, hyperandrogenism, increased production of ovarian and circulating anti-Müllerian hormone. Our data implicate that Erbb4 deletion in GCs leads to defective intercellular junctions between the GCs and oocytes, causing changes in the expression of genes regulating the local microenvironment of the follicles. In vitro culture assays reducing the level of Erbb4 via shRNAs confirm that Erbb4 is essential for regulating Amh level. In conclusion, our results indicate a functional role for Erbb4 in the ovary, especially during folliculogenesis and its reduced expression plays an important role in reproductive pathophysiology, such as PCOS development.
Collapse
Affiliation(s)
- Ville Veikkolainen
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Nsrein Ali
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Milena Doroszko
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden
| | - Antti Kiviniemi
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Ilkka Miinalainen
- Electron Microscopy Unit, Biocenter Oulu, University of Oulu, FI-90220 Oulu, Finland
| | - Claes Ohlsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Nafis Rahman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Department of Oncology, Turku University Hospital, FI-20520 Turku, Finland
| | - Seppo J Vainio
- Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden.,InfoTech Oulu, Oulu University and Biobank Borealis of Northern Finland, Oulu University Hospital, University of Oulu, FI-90014 Oulu, FINLAND
| | - Florence Naillat
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
11
|
Lindström NO, Sealfon R, Chen X, Parvez RK, Ransick A, De Sena Brandine G, Guo J, Hill B, Tran T, Kim AD, Zhou J, Tadych A, Watters A, Wong A, Lovero E, Grubbs BH, Thornton ME, McMahon JA, Smith AD, Ruffins SW, Armit C, Troyanskaya OG, McMahon AP. Spatial transcriptional mapping of the human nephrogenic program. Dev Cell 2021; 56:2381-2398.e6. [PMID: 34428401 PMCID: PMC8396064 DOI: 10.1016/j.devcel.2021.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Congenital abnormalities of the kidney and urinary tract are among the most common birth defects, affecting 3% of newborns. The human kidney forms around a million nephrons from a pool of nephron progenitors over a 30-week period of development. To establish a framework for human nephrogenesis, we spatially resolved a stereotypical process by which equipotent nephron progenitors generate a nephron anlage, then applied data-driven approaches to construct three-dimensional protein maps on anatomical models of the nephrogenic program. Single-cell RNA sequencing identified progenitor states, which were spatially mapped to the nephron anatomy, enabling the generation of functional gene networks predicting interactions within and between nephron cell types. Network mining identified known developmental disease genes and predicted targets of interest. The spatially resolved nephrogenic program made available through the Human Nephrogenesis Atlas (https://sckidney.flatironinstitute.org/) will facilitate an understanding of kidney development and disease and enhance efforts to generate new kidney structures.
Collapse
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Rachel Sealfon
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xi Chen
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guilherme De Sena Brandine
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bill Hill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jian Zhou
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alicja Tadych
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Aaron Wong
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Elizabeth Lovero
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Brendan H Grubbs
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew D Smith
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern, Los Angeles, CA 90089, USA
| | - Seth W Ruffins
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Armit
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; BGI Hong Kong, 26/F, Kings Wing Plaza 2, 1 On Kwan Street, Shek Mun, NT, Hong Kong
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2019; 67:109497. [PMID: 31830556 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
14
|
De Keulenaer GW, Feyen E, Dugaucquier L, Shakeri H, Shchendrygina A, Belenkov YN, Brink M, Vermeulen Z, Segers VFM. Mechanisms of the Multitasking Endothelial Protein NRG-1 as a Compensatory Factor During Chronic Heart Failure. Circ Heart Fail 2019; 12:e006288. [DOI: 10.1161/circheartfailure.119.006288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a complex syndrome whose phenotypic presentation and disease progression depends on a complex network of adaptive and maladaptive responses. One of these responses is the endothelial release of NRG (neuregulin)-1—a paracrine growth factor activating ErbB2 (erythroblastic leukemia viral oncogene homolog B2), ErbB3, and ErbB4 receptor tyrosine kinases on various targets cells. NRG-1 features a multitasking profile tuning regenerative, inflammatory, fibrotic, and metabolic processes. Here, we review the activities of NRG-1 on different cell types and organs and their implication for heart failure progression and its comorbidities. Although, in general, effects of NRG-1 in heart failure are compensatory and beneficial, translation into therapies remains unaccomplished both because of the complexity of the underlying pathways and because of the challenges in the development of therapeutics (proteins, peptides, small molecules, and RNA-based therapies) for tyrosine kinase receptors. Here, we give an overview of the complexity to be faced and how it may be tackled.
Collapse
Affiliation(s)
- Gilles W. De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, ZNA Hospital, Antwerp, Belgium (G.W.D.K.)
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Anastasia Shchendrygina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Yury N. Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Marijke Brink
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland (M.B.)
| | - Zarha Vermeulen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Vincent F. M. Segers
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium (V.F.M.S.)
| |
Collapse
|
15
|
Li H, Shao F, Qian B, Sun Y, Huang Z, Ding Z, Dong L, Chen J, Zhang J, Zang Y. Upregulation of HER2 in tubular epithelial cell drives fibroblast activation and renal fibrosis. Kidney Int 2019; 96:674-688. [DOI: 10.1016/j.kint.2019.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/12/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022]
|
16
|
Haryuni RD, Watabe S, Yamaguchi A, Fukushi Y, Tanaka T, Kawasaki Y, Zhou Y, Yokoyama S, Sakurai H. Negative feedback regulation of ErbB4 tyrosine kinase activity by ERK-mediated non-canonical phosphorylation. Biochem Biophys Res Commun 2019; 514:456-461. [PMID: 31053301 DOI: 10.1016/j.bbrc.2019.04.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
ErbB4 receptor tyrosine kinase has four different isoforms that are classified based on variants in the extracellular juxtamembrane domain (JM-a and JM-b) and the C-terminal region (CYT-1 and CYT-2). Here, we used the JM-b/CYT-1 isoform to investigate the roles of serine/threonine phosphorylation in MEK-ERK-dependent feedback inhibition. TPA as an activator of the ERK pathway markedly induced ErbB4 phosphorylation at Thr-674, the conserved common feedback site in the intracellular JM domain, which resulted in the downregulation of tyrosine autophosphorylation. We also identified Ser-1026 as an ErbB4-specific ERK target site in the CYT-1 region. Moreover, double mutations (Thr-674/Ser-1026 to Ala) significantly upregulated ErbB4 activation, indicating that Thr-674 and Ser-1026 are cooperatively involved in negative feedback regulation. Given the fact that ErbB4 mutation is one of the most common genetic alterations in melanoma cells, we demonstrated that a typical oncogenic ErbB4 mutant was resistant to the negative feedback regulation to maintain a highly active status of tyrosine kinase activity. Together, these findings indicate that feedback mechanisms are key switches determining oncogenic potentials of ErbB receptor kinases.
Collapse
Affiliation(s)
- Ratna Dini Haryuni
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency of Indonesia, Serpong, Tangerang Selatan, Indonesia
| | - Satoko Watabe
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Asako Yamaguchi
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yayoi Fukushi
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomohiro Tanaka
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuki Kawasaki
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Laboratory of Public Health, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Diabetic complications affecting the kidneys, retina, nerves, and the cardiovasculature are the major causes of morbidity and mortality in diabetes. This paper aims to review the current understanding of the genetic basis of these complications, based on recent findings especially from genome-wide association studies. RECENT FINDINGS Variants in or near AFF3, RGMA-MCTP2, SP3-CDCA7, GLRA3, CNKSR3, and UMOD have reached genome-wide significance (p value <5 × 10-8) for association with diabetic kidney disease, and recently, GRB2 was reported to be associated at genome-wide significance with diabetic retinopathy. While some loci affecting cardiovascular disease in the general population have been replicated in diabetes, GLUL affects the risk of cardiovascular disease specifically in diabetic subjects. Genetic findings are emerging for diabetic complications, although the studies remain relatively small compared to those for type 1 and type 2 diabetes. In addition to pinpointing specific loci, the studies also reveal biological information on correlated traits and pathways.
Collapse
Affiliation(s)
- Emma Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Kocyigit I, Taheri S, Sener EF, Eroglu E, Ozturk F, Unal A, Korkmaz K, Zararsiz G, Sipahioglu MH, Ozkul Y, Tokgoz B, Oymak O, Ecder T, Axelsson J. Serum micro-rna profiles in patients with autosomal dominant polycystic kidney disease according to hypertension and renal function. BMC Nephrol 2017; 18:179. [PMID: 28558802 PMCID: PMC5450105 DOI: 10.1186/s12882-017-0600-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common hereditary disorder with unclear disease mechanism. Currently, overt hypertension and increased renal volume are the best predictors of renal function. In this study, we assessed the usefulness of selected circulating microRNAs (miRs) to predict disease progress in a cohort with ADPKD. METHODS Eighty ADPKD patients (44.6 ± 12.7 years, 40% female, 65% hypertensive) and 50 healthy subjects (HS; 45.4 ± 12.7, 44% female) were enrolled in the study. Serum levels of 384 miRs were determined by Biomark Real Time PCR. Groups were compared using the limma method with multiple-testing correction as proposed by Smyth (corrected p < 0.01 considered significant). RESULTS Comparing ADPKD to HS, we found significant differences in blood levels of 18 miRs (3 more and 15 less abundant). Of these, miR-3907, miR-92a-3p, miR-25-3p and miR-21-5p all rose while miR-1587 and miR-3911 decreased as renal function declined in both cross-sectional and longitudinal analysis. Using ROC analysis, an increased baseline miR-3907 in the circulation predicted a > 10% loss of GFR over the following 12 months (cut-off >2.2 AU, sensitivity 83%, specificity 78%, area 0.872 [95% CI: 0.790-0.953, p < 0.001]). Adjusting for age and starting CKD stage using multiple binary logistic regression analysis did not abrogate the predictive value. CONCLUSION Increased copy numbers of miR-3907 in the circulation may predict ADPKD progression and suggest pathophysiological pathways worthy of further study.
Collapse
Affiliation(s)
- Ismail Kocyigit
- Department of Internal Medicine, Division of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Eray Eroglu
- Department of Internal Medicine, Division of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Fahir Ozturk
- Department of Internal Medicine, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Aydin Unal
- Department of Internal Medicine, Division of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Kezban Korkmaz
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
| | - Murat Hayri Sipahioglu
- Department of Internal Medicine, Division of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Yusuf Ozkul
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Bulent Tokgoz
- Department of Internal Medicine, Division of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Oktay Oymak
- Department of Internal Medicine, Division of Nephrology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Tevfik Ecder
- Department of Internal Medicine, Division of Nephrology, Istanbul Bilim University, Istanbul, Turkey
| | - Jonas Axelsson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska institutet, Karolinska University Hospital, Stockholm, Sweden. .,Department of Clinical Immunology, Karolinska University Hospital, C2:66 ImmTrans, 141 86, Stockholm, Sweden.
| |
Collapse
|
19
|
Streets AJ, Magayr TA, Huang L, Vergoz L, Rossetti S, Simms RJ, Harris PC, Peters DJM, Ong ACM. Parallel microarray profiling identifies ErbB4 as a determinant of cyst growth in ADPKD and a prognostic biomarker for disease progression. Am J Physiol Renal Physiol 2017; 312:F577-F588. [PMID: 28077374 DOI: 10.1152/ajprenal.00607.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of end-stage renal disease. The disease course can be highly variable and treatment options are limited. To identify new therapeutic targets and prognostic biomarkers of disease, we conducted parallel discovery microarray profiling in normal and diseased human PKD1 cystic kidney cells. A total of 1,515 genes and 5 miRNA were differentially expressed by more than twofold in PKD1 cells. Functional enrichment analysis identified 30 dysregulated signaling pathways including the epidermal growth factor (EGF) receptor pathway. In this paper, we report that the EGF/ErbB family receptor ErbB4 is a major factor driving cyst growth in ADPKD. Expression of ErbB4 in vivo was increased in human ADPKD and Pkd1 cystic kidneys, both transcriptionally and posttranscriptionally by mir-193b-3p. Ligand-induced activation of ErbB4 drives cystic proliferation and expansion suggesting a pathogenic role in cystogenesis. Our results implicate ErbB4 activation as functionally relevant in ADPKD, both as a marker of disease activity and as a new therapeutic target in this major kidney disease.
Collapse
Affiliation(s)
- Andrew J Streets
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom;
| | - Tajdida A Magayr
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| | - Linghong Huang
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| | - Laura Vergoz
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| | - Sandro Rossetti
- Division of Nephrology, Mayo Clinic and Foundation, Rochester, Minnesota; and
| | - Roslyn J Simms
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| | - Peter C Harris
- Division of Nephrology, Mayo Clinic and Foundation, Rochester, Minnesota; and
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert C M Ong
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| |
Collapse
|
20
|
Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex. Proc Natl Acad Sci U S A 2017; 114:E629-E637. [PMID: 28074037 DOI: 10.1073/pnas.1610077114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Working memory requires efficient excitatory drive to parvalbumin-positive (PV) interneurons in the primate dorsolateral prefrontal cortex (DLPFC). Developmental pruning eliminates superfluous excitatory inputs, suggesting that working memory maturation during adolescence requires pruning of excitatory inputs to PV interneurons. Therefore, we tested the hypothesis that excitatory synapses on PV interneurons are pruned during adolescence. The density of excitatory synapses, defined by overlapping vesicular glutamate transporter 1-positive (VGlut1+) and postsynaptic density 95-positive (PSD95+) puncta, on PV interneurons was lower in postpubertal relative to prepubertal monkeys. In contrast, puncta levels of VGlut1 and PSD95 proteins were higher in postpubertal monkeys and positively predicted activity-dependent PV levels, suggesting a greater strength of the remaining synapses after pruning. Because excitatory synapse number on PV interneurons is regulated by erb-b2 receptor tyrosine kinase 4 (ErbB4), whose function is influenced by alternative splicing, we tested the hypothesis that pruning of excitatory synapses on PV interneurons is associated with developmental shifts in ErbB4 expression and/or splicing. Pan-ErbB4 expression did not change, whereas the minor-to-major splice variant ratios increased with age. In cell culture, the major, but not the minor, variant increased excitatory synapse number on PV interneurons and displayed greater kinase activity than the minor variant, suggesting that the effect of ErbB4 signaling in PV interneurons is mediated by alternative splicing. Supporting this interpretation, in monkey DLPFC, higher minor-to-major variant ratios predicted lower PSD95+ puncta density on PV interneurons. Together, our findings suggest that ErbB4 splicing may regulate the pruning of excitatory synapses on PV interneurons during adolescence.
Collapse
|
21
|
Lee HW, Khan SQ, Khaliqdina S, Altintas MM, Grahammer F, Zhao JL, Koh KH, Tardi NJ, Faridi MH, Geraghty T, Cimbaluk DJ, Susztak K, Moita LF, Baltimore D, Tharaux PL, Huber TB, Kretzler M, Bitzer M, Reiser J, Gupta V. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem 2016; 292:732-747. [PMID: 27913625 DOI: 10.1074/jbc.m116.753822] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
Podocyte injury is an early event in diabetic kidney disease and is a hallmark of glomerulopathy. MicroRNA-146a (miR-146a) is highly expressed in many cell types under homeostatic conditions, and plays an important anti-inflammatory role in myeloid cells. However, its role in podocytes is unclear. Here, we show that miR-146a expression levels decrease in the glomeruli of patients with type 2 diabetes (T2D), which correlates with increased albuminuria and glomerular damage. miR-146a levels are also significantly reduced in the glomeruli of albuminuric BTBR ob/ob mice, indicating its significant role in maintaining podocyte health. miR-146a-deficient mice (miR-146a-/-) showed accelerated development of glomerulopathy and albuminuria upon streptozotocin (STZ)-induced hyperglycemia. The miR-146a targets, Notch-1 and ErbB4, were also significantly up-regulated in the glomeruli of diabetic patients and mice, suggesting induction of the downstream TGFβ signaling. Treatment with a pan-ErbB kinase inhibitor erlotinib with nanomolar activity against ErbB4 significantly suppressed diabetic glomerular injury and albuminuria in both WT and miR-146a-/- animals. Treatment of podocytes in vitro with TGF-β1 resulted in increased expression of Notch-1, ErbB4, pErbB4, and pEGFR, the heterodimerization partner of ErbB4, suggesting increased ErbB4/EGFR signaling. TGF-β1 also increased levels of inflammatory cytokine monocyte chemoattractant protein-1 (MCP-1) and MCP-1 induced protein-1 (MCPIP1), a suppressor of miR-146a, suggesting an autocrine loop. Inhibition of ErbB4/EGFR with erlotinib co-treatment of podocytes suppressed this signaling. Our findings suggest a novel role for miR-146a in protecting against diabetic glomerulopathy and podocyte injury. They also point to ErbB4/EGFR as a novel, druggable target for therapeutic intervention, especially because several pan-ErbB inhibitors are clinically available.
Collapse
Affiliation(s)
- Ha Won Lee
- From the Departments of Internal Medicine and
| | | | | | | | - Florian Grahammer
- the Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jimmy L Zhao
- the Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, New York 10065.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Kwi Hye Koh
- From the Departments of Internal Medicine and
| | | | | | | | - David J Cimbaluk
- Pathology, Rush University Medical Center, Chicago, Illinois 60612
| | - Katalin Susztak
- the Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Luis F Moita
- the Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - David Baltimore
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Pierre-Louis Tharaux
- the Paris Cardiovascular Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France and the Université Paris Descartes, Sorbonne Paris Cité, 75270 Paris, France
| | - Tobias B Huber
- the Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,the BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,the FRIAS, Freiburg Institute for Advanced Studies and ZBSA-Center for Systems Biology, Albert-Ludwigs-University, 79104 Freiburg, Germany, and
| | - Matthias Kretzler
- the Division of Nephrology, University of Michigan, Ann Arbor, Michigan 48109
| | - Markus Bitzer
- the Division of Nephrology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
22
|
Zhu Y, Yu J, Yin L, Zhou Y, Sun Z, Jia H, Tao Y, Liu W, Zhang B, Zhang J, Wang M, Zhang X, Yan Y, Xue J, Gu H, Mao F, Xu W, Qian H. MicroRNA-146b, a Sensitive Indicator of Mesenchymal Stem Cell Repair of Acute Renal Injury. Stem Cells Transl Med 2016; 5:1406-1415. [PMID: 27400799 PMCID: PMC5031179 DOI: 10.5966/sctm.2015-0355] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/07/2016] [Indexed: 01/19/2023] Open
Abstract
: The role of mesenchymal stem cells (MSCs) in kidney injury repair has been studied widely. However, the underlying molecular mechanism remains unclear. We profiled the altered microRNAs in renal tissues from cisplatin-induced acute kidney injury (AKI) rats treated with or without rat bone marrow MSCs (rMSCs). We observed that microRNA-146b (miR-146b) expression was considerably upregulated in renal tissues from AKI rats compared with that in healthy rats, and the expression decreased following MSC treatment after cisplatin administration. At the early stage of AKI, serum miR-146b levels exhibited a rapid increase that was even faster than that of two conventional renal function indexes: serum creatinine and blood urea nitrogen levels. Furthermore, the serum miR-146b levels in AKI patients were higher than those in healthy people. In vitro exposure to cisplatin also increased miR-146b expression in renal tubular epithelial cells (TECs). miR-146b knockdown protected renal TECs from cisplatin-induced apoptosis and promoted their proliferation. Moreover, ErbB4 was identified as a direct target of miR-146b, and miR-146b inhibition induced ErbB4 expression, resulting in enhanced proliferation of injured renal TECs. In addition, restoration by rMSCs could be controlled through ErbB4 downregulation. In conclusion, elevated miR-146b expression contributes to cisplatin-induced AKI, partly through ErbB4 downregulation. miR-146b might be an early biomarker for AKI, and miR-146b inhibition could be a novel strategy for AKI treatment. SIGNIFICANCE The present study found that microRNA-146b (miR-146b) might be a novel biomarker for acute kidney injury and an indicator for its recovery after treatment with mesenchymal stem cells (MSCs). The results showed that in acute kidney injury induced by cisplatin, miR-146b in serum increased more quickly than did the usual indexes of kidney injury and decreased with restoration of MSCs. In addition, inhibition of miR-146b could ameliorate the apoptosis induced by cisplatin and potentially improve the proliferation by freeing ErbB4 and its downstream proteins.
Collapse
Affiliation(s)
- Yuan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lei Yin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ying Zhou
- Department of Central Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Haoyuan Jia
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yang Tao
- Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wanzhu Liu
- Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiao Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Mei Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yongmin Yan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jianguo Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hongbin Gu
- Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Sandholm N, Van Zuydam N, Ahlqvist E, Juliusdottir T, Deshmukh HA, Rayner NW, Di Camillo B, Forsblom C, Fadista J, Ziemek D, Salem RM, Hiraki LT, Pezzolesi M, Trégouët D, Dahlström E, Valo E, Oskolkov N, Ladenvall C, Marcovecchio ML, Cooper J, Sambo F, Malovini A, Manfrini M, McKnight AJ, Lajer M, Harjutsalo V, Gordin D, Parkkonen M, Tuomilehto J, Lyssenko V, McKeigue PM, Rich SS, Brosnan MJ, Fauman E, Bellazzi R, Rossing P, Hadjadj S, Krolewski A, Paterson AD, Florez JC, Hirschhorn JN, Maxwell AP, Dunger D, Cobelli C, Colhoun HM, Groop L, McCarthy MI, Groop PH. The Genetic Landscape of Renal Complications in Type 1 Diabetes. J Am Soc Nephrol 2016; 28:557-574. [PMID: 27647854 DOI: 10.1681/asn.2016020231] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4×10-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2×10-5) and the risk of type 2 diabetes (P=6.1×10-4) associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1×10-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0×10-6), and pentose and glucuronate interconversions (P=3.0×10-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Natalie Van Zuydam
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Medical Research Institute
| | - Emma Ahlqvist
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Harshal A Deshmukh
- Division of Population Health Sciences, University of Dundee, Dundee, United Kingdom
| | - N William Rayner
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Joao Fadista
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Daniel Ziemek
- Computational Sciences, Pfizer Worldwide Research and Development, Berlin, Germany
| | - Rany M Salem
- Departments of Genetics,Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Divisions of Endocrinology and Genetics, Boston Children's Hospital, Boston, Massachusetts
| | - Linda T Hiraki
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcus Pezzolesi
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, Massachusetts
| | - David Trégouët
- Sorbonne Universities, Pierre et Marie Curie University (UPMC) and National Institute for Health and Medical Research, Mixed Research Unit in Health (UMR_S) 1166, Paris, France.,Institute for Cardiometabolism and Nutrition, Genomics and pathophysiology of Cardiovascular diseases, Paris, France
| | - Emma Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Nikolay Oskolkov
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Jason Cooper
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Sambo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alberto Malovini
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.,Laboratory of Informatics and Systems Engineering for Clinical Research, Scientific Institute for Research, Hospitalization and Health Care, IRCCS (Instituto di Ricovero e Cura a Carattere Scientifico); Salvatore Maugeri Foundation, Pavia, Italy
| | - Marco Manfrini
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Maria Lajer
- Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Maija Parkkonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | | | - Jaakko Tuomilehto
- The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland.,Centre for Vascular Prevention, Danube University Krems, Krems, Austria
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden.,Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark
| | - Paul M McKeigue
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Eric Fauman
- Computational Sciences, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Peter Rossing
- Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark.,Department of Health, Aarhus University, Aarhus, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Samy Hadjadj
- Functional Research Unit of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,Department of Endocrinology-Diabetology and Center of Clinical Investigation, Poitiers University Hospital, Poitiers, France.,Institute National pour la Santé et la Recherche Médicale, National Institute for Health and Medical Research, Center of Clinical Investigation 1402 and Unit 1082, Poitiers, France
| | - Andrzej Krolewski
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, Massachusetts
| | - Andrew D Paterson
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Joel N Hirschhorn
- Departments of Genetics,Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Divisions of Endocrinology and Genetics, Boston Children's Hospital, Boston, Massachusetts
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom; and
| | | | - David Dunger
- Department of Paediatrics, Institute of Metabolic Science, and
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Helen M Colhoun
- Division of Population Health Sciences, University of Dundee, Dundee, United Kingdom
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Baker IDI (International Diabetes Institute) Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | |
Collapse
|
24
|
Nagy II, Xu Q, Naillat F, Ali N, Miinalainen I, Samoylenko A, Vainio SJ. Impairment of Wnt11 function leads to kidney tubular abnormalities and secondary glomerular cystogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:30. [PMID: 27582005 PMCID: PMC5007805 DOI: 10.1186/s12861-016-0131-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/22/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wnt11 is a member of the Wnt family of secreted signals controlling the early steps in ureteric bud (UB) branching. Due to the reported lethality of Wnt11 knockout embryos in utero, its role in later mammalian kidney organogenesis remains open. The presence of Wnt11 in the emerging tubular system suggests that it may have certain roles later in the development of the epithelial ductal system. RESULTS The Wnt11 knockout allele was backcrossed with the C57Bl6 strain for several generations to address possible differences in penetrance of the kidney phenotypes. Strikingly, around one third of the null mice with this inbred background survived to the postnatal stages. Many of them also reached adulthood, but urine and plasma analyses pointed out to compromised kidney function. Consistent with these data the tubules of the C57Bl6 Wnt11 (-/-) mice appeared to be enlarged, and the optical projection tomography indicated changes in tubular convolution. Moreover, the C57Bl6 Wnt11 (-/-) mice developed secondary glomerular cysts not observed in the controls. The failure of Wnt11 signaling reduced the expression of several genes implicated in kidney development, such as Wnt9b, Six2, Foxd1 and Hox10. Also Dvl2, an important PCP pathway component, was downregulated by more than 90 % due to Wnt11 deficiency in both the E16.5 and NB kidneys. Since all these genes take part in the control of UB, nephron and stromal progenitor cell differentiation, their disrupted expression may contribute to the observed anomalies in the kidney tubular system caused by Wnt11 deficiency. CONCLUSIONS The Wnt11 signal has roles at the later stages of kidney development, namely in coordinating the development of the tubular system. The C57Bl6 Wnt11 (-/-) mouse generated here provides a model for studying the mechanisms behind tubular anomalies and glomerular cyst formation.
Collapse
Affiliation(s)
- Irina I Nagy
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland.,NordLab Oulu, Department of Clinical Chemistry, University of Oulu, Oulu, Finland
| | - Qi Xu
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Florence Naillat
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Nsrein Ali
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Ilkka Miinalainen
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Anatoly Samoylenko
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, University of Oulu, Aapistie 5A, Oulu, 90014, Finland. .,InfoTech Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
25
|
Abstract
The epidermal growth factor receptor (EGFR) pathway has a critical role in renal development, tissue repair and electrolyte handling. Numerous studies have reported an association between dysregulation of this pathway and the initiation and progression of various chronic kidney diseases such as diabetic nephropathy, chronic allograft nephropathy and polycystic kidney disease through the promotion of renal cell proliferation, fibrosis and inflammation. In the oncological setting, compounds that target the EGFR pathway are already in clinical use or have been evaluated in clinical trials; in the renal setting, therapeutic interventions targeting this pathway by decreasing ligand availability with disintegrin and metalloproteinase inhibitors or with ligand-neutralizing antibodies, or by inhibiting receptor activation with tyrosine kinase inhibitors or monoclonal antibodies are only just starting to be explored in animal models of chronic kidney disease and in patients with autosomal dominant polycystic kidney disease. In this Review we focus on the role of the EGFR signalling pathway in the kidney under physiological conditions and during the pathophysiology of chronic kidney diseases and explore the clinical potential of interventions in this pathway to treat chronic renal diseases.
Collapse
|
26
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Suizu F, Hirata N, Kimura K, Edamura T, Tanaka T, Ishigaki S, Donia T, Noguchi H, Iwanaga T, Noguchi M. Phosphorylation-dependent Akt-Inversin interaction at the basal body of primary cilia. EMBO J 2016; 35:1346-63. [PMID: 27220846 PMCID: PMC4883026 DOI: 10.15252/embj.201593003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
A primary cilium is a microtubule‐based sensory organelle that plays an important role in human development and disease. However, regulation of Akt in cilia and its role in ciliary development has not been demonstrated. Using yeast two‐hybrid screening, we demonstrate that Inversin (INVS) interacts with Akt. Mutation in the INVS gene causes nephronophthisis type II (NPHP2), an autosomal recessive chronic tubulointerstitial nephropathy. Co‐immunoprecipitation assays show that Akt interacts with INVS via the C‐terminus. In vitro kinase assays demonstrate that Akt phosphorylates INVS at amino acids 864–866 that are required not only for Akt interaction, but also for INVS dimerization. Co‐localization of INVS and phosphorylated form of Akt at the basal body is augmented by PDGF‐AA. Akt‐null MEF cells as well as siRNA‐mediated inhibition of Akt attenuated ciliary growth, which was reversed by Akt reintroduction. Mutant phosphodead‐ or NPHP2‐related truncated INVS, which lack Akt phosphorylation sites, suppress cell growth and exhibit distorted lumen formation and misalignment of spindle axis during cell division. Further studies will be required for elucidating functional interactions of Akt–INVS at the primary cilia for identifying the molecular mechanisms underlying NPHP2.
Collapse
Affiliation(s)
- Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Noriyuki Hirata
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Kohki Kimura
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Tatsuma Edamura
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Tsutomu Tanaka
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Satoko Ishigaki
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| | - Thoria Donia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hiroko Noguchi
- Department of Pathology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Abstract
The global prevalence of diabetic nephropathy is rising in parallel with the increasing incidence of diabetes in most countries. Unfortunately, up to 40 % of persons diagnosed with diabetes may develop kidney complications. Diabetic nephropathy is associated with substantially increased risks of cardiovascular disease and premature mortality. An inherited susceptibility to diabetic nephropathy exists, and progress is being made unravelling the genetic basis for nephropathy thanks to international research collaborations, shared biological resources and new analytical approaches. Multiple epidemiological studies have highlighted the clinical heterogeneity of nephropathy and the need for better phenotyping to help define important subgroups for analysis and increase the power of genetic studies. Collaborative genome-wide association studies for nephropathy have reported unique genes, highlighted novel biological pathways and suggested new disease mechanisms, but progress towards clinically relevant risk prediction models for diabetic nephropathy has been slow. This review summarises the current status, recent developments and ongoing challenges elucidating the genetics of diabetic nephropathy.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK,
| | | | | |
Collapse
|
29
|
Verbitsky M, Sanna-Cherchi S, Fasel DA, Levy B, Kiryluk K, Wuttke M, Abraham AG, Kaskel F, Köttgen A, Warady BA, Furth SL, Wong CS, Gharavi AG. Genomic imbalances in pediatric patients with chronic kidney disease. J Clin Invest 2015; 125:2171-8. [PMID: 25893603 DOI: 10.1172/jci80877] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There is frequent uncertainty in the identification of specific etiologies of chronic kidney disease (CKD) in children. Recent studies indicate that chromosomal microarrays can identify rare genomic imbalances that can clarify the etiology of neurodevelopmental and cardiac disorders in children; however, the contribution of unsuspected genomic imbalance to the incidence of pediatric CKD is unknown. METHODS We performed chromosomal microarrays to detect genomic imbalances in children enrolled in the Chronic Kidney Disease in Children (CKiD) prospective cohort study, a longitudinal prospective multiethnic observational study of North American children with mild to moderate CKD. Patients with clinically detectable syndromic disease were excluded from evaluation. We compared 419 unrelated children enrolled in CKiD to multiethnic cohorts of 21,575 children and adults that had undergone microarray genotyping for studies unrelated to CKD. RESULTS We identified diagnostic copy number disorders in 31 children with CKD (7.4% of the cohort). We detected 10 known pathogenic genomic disorders, including the 17q12 deletion HNF1 homeobox B (HNF1B) and triple X syndromes in 19 of 419 unrelated CKiD cases as compared with 98 of 21,575 control individuals (OR 10.8, P = 6.1 × 10⁻²⁰). In an additional 12 CKiD cases, we identified 12 likely pathogenic genomic imbalances that would be considered reportable in a clinical setting. These genomic imbalances were evenly distributed among patients diagnosed with congenital and noncongenital forms of CKD. In the vast majority of these cases, the genomic lesion was unsuspected based on the clinical assessment and either reclassified the disease or provided information that might have triggered additional clinical care, such as evaluation for metabolic or neuropsychiatric disease. CONCLUSION A substantial proportion of children with CKD have an unsuspected genomic imbalance, suggesting genomic disorders as a risk factor for common forms of pediatric nephropathy. Detection of pathogenic imbalances has practical implications for personalized diagnosis and health monitoring in this population. TRIAL REGISTRATION ClinicalTrials.gov NCT00327860. FUNDING This work was supported by the NIH, the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Child Health and Human Development, and the National Heart, Lung, and Blood Institute.
Collapse
|
30
|
Saxena A, Denholm B, Bunt S, Bischoff M, VijayRaghavan K, Skaer H. Epidermal growth factor signalling controls myosin II planar polarity to orchestrate convergent extension movements during Drosophila tubulogenesis. PLoS Biol 2014; 12:e1002013. [PMID: 25460353 PMCID: PMC4251826 DOI: 10.1371/journal.pbio.1002013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022] Open
Abstract
A study in fruit flies shows that during the elongation of embryonic renal tubules, graded signalling provides axial information for polarized myosin pulses that shorten cells circumferentially, driving intercalation of the cells and elongation of the tubule. Most epithelial tubes arise as small buds and elongate by regulated morphogenetic processes including oriented cell division, cell rearrangements, and changes in cell shape. Through live analysis of Drosophila renal tubule morphogenesis we show that tissue elongation results from polarised cell intercalations around the tubule circumference, producing convergent-extension tissue movements. Using genetic techniques, we demonstrate that the vector of cell movement is regulated by localised epidermal growth factor (EGF) signalling from the distally placed tip cell lineage, which sets up a distal-to-proximal gradient of pathway activation to planar polarise cells, without the involvement for PCP gene activity. Time-lapse imaging at subcellular resolution shows that the acquisition of planar polarity leads to asymmetric pulsatile Myosin II accumulation in the basal, proximal cortex of tubule cells, resulting in repeated, transient shortening of their circumferential length. This repeated bias in the polarity of cell contraction allows cells to move relative to each other, leading to a reduction in cell number around the lumen and an increase in tubule length. Physiological analysis demonstrates that animals whose tubules fail to elongate exhibit abnormal excretory function, defective osmoregulation, and lethality. Many of the tissues in our bodies are built up around complex arrays of elongated cellular tubes, which permit the entry, exit, and transport of essential molecules such as oxygen, glucose, and water. These tubes often arise as short buds, which elongate dramatically as the organ grows. We sought to understand the mechanisms that govern such transformations of shape using the fly renal tubule as a model. We find that elongation of this tissue is predominantly driven by cell rearrangement. Cells move around the circumference of the tubule, intercalating with each other so that the cell number around the lumen reduces, while increasing along the length of the tube. Our next question was how cells sense the direction in which they should move. We show that cells orient their position in the tissue by reading a signal sent out by a specific pair of cells at the tip of each tube. Cells use this directional information to make polarised movements through the asymmetric activity of the cell's contractile machinery. We find that the activity of myosin—the motor protein that regulates contraction—is pulsatile and polarised within the cell. This activity shortens the cells' circumferential lengths, so that cells move past each other around the tube circumference, thereby intercalating and producing tube elongation. We go on to show that excretory physiology is severely impaired when elongation fails, underlining the importance of sculpting organs with appropriate dimensions.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Barry Denholm
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie Bunt
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marcus Bischoff
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; School of Biology, St Andrews, Scotland, United Kingdom
| | | | - Helen Skaer
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Naillat F, Veikkolainen V, Miinalainen I, Sipilä P, Poutanen M, Elenius K, Vainio SJ. ErbB4, a receptor tyrosine kinase, coordinates organization of the seminiferous tubules in the developing testis. Mol Endocrinol 2014; 28:1534-46. [PMID: 25058600 DOI: 10.1210/me.2013-1244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although close to every fifth couple nowadays has difficulty conceiving, the molecular mechanisms behind the decline in human reproduction remain poorly understood. We report here that the receptor tyrosine kinase Erbb4 is a candidate causal gene, because it is expressed in a sexually dimorphic manner and is abundant in the developing and adult testes in the mouse. Sertoli cell-specific Erbb4-knockout mice have a compromised 3-dimensional organization of the testicular seminiferous tubules that affects their fertility. More specifically, adhesion defects are observed in the absence of Erbb4, which are characterized by changes in the expression of laminin-1, N-cadherin, claudin-3, and certain cell-cell junction components between the Sertoli and germ cells. Interestingly, Erbb4 knockout also had an effect on the Leydig cells, which suggests a paracrine influence of Sertoli cells expressing ErbB4. Many of the defects observed in Erbb4-knockout mice are rescued in targeted ERBB4 gain-of-function mice, pointing to a coordination role for ErbB4 in the developing testis. Thus, the ErbB4 receptor tyrosine kinase promotes seminiferous tubule development by controlling Sertoli cell and germ cell adhesion.
Collapse
Affiliation(s)
- Florence Naillat
- Oulu Centre for Cell-Matrix Research (F.N., S.J.V.), Biocenter Oulu, Infotech Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220 Oulu, Finland; Department of Medical Biochemistry and Genetics (V.V., K.E.), and Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland; Electron Microscopy Unit (I.M.), FI-90220 Oulu, Finland; Laboratory Animal Center (P.S.), University of Helsinki, FIN-00014 Helsinki, Finland; Department of Physiology (M.P.), Turku University Hospital, FI-2001 4 Turku, Finland; and Department of Oncology (K.E.), Turku University Hospital, FI-20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
32
|
Paatero I, Seagroves TN, Vaparanta K, Han W, Jones FE, Johnson RS, Elenius K. Hypoxia-inducible factor-1α induces ErbB4 signaling in the differentiating mammary gland. J Biol Chem 2014; 289:22459-69. [PMID: 24966332 DOI: 10.1074/jbc.m113.533497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conditional knock-out of Hif1a in the mouse mammary gland impairs lobuloalveolar differentiation during lactation. Here, we demonstrate that expression of ErbB4 was reduced in the lobulalveoli of mice with mammary gland-specific deletion of Hif1a. Erbb4 was not, however, a direct target gene for transcriptional regulation by HIF-1α in vitro. HIF-1α overexpression or HIF accumulating prolyl hydroxylase inhibitors reduced ErbB4 endocytosis, promoted transcriptional co-regulatory activity of ErbB4, and stimulated ErbB4-induced differentiation of mammary carcinoma cells. Consistently, RNA interference-mediated down-regulation of HIF-1α resulted in reduced ErbB4 protein amount and reduced mammary carcinoma cell differentiation. These findings indicate that HIF-1α is a physiologically relevant regulator of ErbB4 and that ErbB4 is involved in HIF-regulated differentiation of the mammary gland.
Collapse
Affiliation(s)
- Ilkka Paatero
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, 20520 Turku, Finland, the Turku Graduate School of Biomedical Sciences, 20520 Turku, Finland
| | - Tiffany N Seagroves
- the Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Katri Vaparanta
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Wen Han
- the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Frank E Jones
- the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Randall S Johnson
- the Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB2 1TN, United Kingdom, and
| | - Klaus Elenius
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, 20520 Turku, Finland, the Department of Oncology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
33
|
McKnight AJ, McKay GJ, Maxwell AP. Genetic and epigenetic risk factors for diabetic kidney disease. Adv Chronic Kidney Dis 2014; 21:287-96. [PMID: 24780457 DOI: 10.1053/j.ackd.2014.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
Diabetes is increasing at daunting rates worldwide, and approximately 40% of affected individuals will develop kidney complications. Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and there are significant healthcare costs providing appropriate renal replacement therapies to affected individuals. For several decades, investigators have sought to discover inherited risk factors and biomarkers for DKD. In recent years, advances in high-throughput laboratory techniques and computational analyses, coupled with the establishment of multicenter consortia, have helped to identify genetic loci that are replicated across multiple populations. Several genome-wide association studies (GWAS) have been conducted for DKD with further meta-analysis of GWAS and comprehensive "single gene" meta-analyses now published. Despite these efforts, much of the inherited predisposition to DKD remains unexplained. Meta-analyses and integrated-omics pathway studies are being used to help elucidate underlying genetic risks. Epigenetic phenomena are increasingly recognized as important drivers of disease risk, and several epigenome-wide association studies have now been completed. This review describes key findings and ongoing genetic and epigenetic initiatives for DKD.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom.
| | - Gareth J McKay
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
34
|
Deletion of ErbB4 accelerates polycystic kidney disease progression in cpk mice. Kidney Int 2014; 86:538-47. [PMID: 24670412 PMCID: PMC4149866 DOI: 10.1038/ki.2014.84] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/24/2022]
Abstract
ErbB4 is highly expressed in the cystic kidneys with polycystic kidney diseases. To investigate its potential role in cystogenesis, cpk mice carrying a heart-rescued ErbB4 deletion were generated. Accelerated cyst progression and renal function deterioration were noted as early as 10 days postnatally in cpk mice with ErbB4 deletion compared to cpk mice, as indicated by increased cystic index, higher kidney weight to body weight ratios and elevated BUN levels. No apparent defects in renal development were noted with ErbB4 deletion itself. Increased cell proliferation was predominately seen in the cortex of cystic kidneys with or without ErbB4 deletion. However, there was significantly more cell proliferation in the cyst-lining epithelial cells in cpk mice with ErbB4 deletion. TUNEL staining localized apoptotic cells mainly to the renal medulla. There were significantly more apoptotic cells in the cyst-lining epithelial cells in ErbB4-deleted cpk kidneys, with decreased levels of cyclin D1, increased levels of p21, p27 and cleaved caspase 3. Thus, lack of ErbB4 may contribute to elevated cell proliferation and unbalanced cell apoptosis, resulting in accelerated cyst formation and early renal function deterioration. These studies suggest that the high level of ErbB4 expression seen in cpk mice may exert relative cytoprotective effects in renal epithelia.
Collapse
|
35
|
Brennan E, McEvoy C, Sadlier D, Godson C, Martin F. The genetics of diabetic nephropathy. Genes (Basel) 2013; 4:596-619. [PMID: 24705265 PMCID: PMC3927570 DOI: 10.3390/genes4040596] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/08/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022] Open
Abstract
Up to 40% of patients with type 1 and type 2 diabetes will develop diabetic nephropathy (DN), resulting in chronic kidney disease and potential organ failure. There is evidence for a heritable genetic susceptibility to DN, but despite intensive research efforts the causative genes remain elusive. Recently, genome-wide association studies have discovered several novel genetic variants associated with DN. The identification of such variants may potentially allow for early identification of at risk patients. Here we review the current understanding of the key molecular mechanisms and genetic architecture of DN, and discuss the merits of employing an integrative approach to incorporate datasets from multiple sources (genetics, transcriptomics, epigenetic, proteomic) in order to fully elucidate the genetic elements contributing to this serious complication of diabetes.
Collapse
Affiliation(s)
- Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Caitríona McEvoy
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | | | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Finian Martin
- Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Skelton LA, Boron WF. Effect of acute acid-base disturbances on ErbB1/2 tyrosine phosphorylation in rabbit renal proximal tubules. Am J Physiol Renal Physiol 2013; 305:F1747-64. [PMID: 24133121 DOI: 10.1152/ajprenal.00307.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The renal proximal tubule (PT) is a major site for maintaining whole body pH homeostasis and is responsible for reabsorbing ∼80% of filtered HCO3(-), the major plasma buffer, into the blood. The PT adapts its rate of HCO3(-) reabsorption (JHCO3(-)) in response to acute acid-base disturbances. Our laboratory previously showed that single isolated perfused PTs adapt JHCO3(-) in response to isolated changes in basolateral (i.e., blood side) CO2 and HCO3(-) concentrations but, surprisingly, not to pH. The response to CO2 concentration can be blocked by the ErbB family tyrosine kinase inhibitor PD-168393. In the present study, we exposed enriched rabbit PT suspensions to five acute acid-base disturbances for 5 and 20 min using a panel of phosphotyrosine (pY)-specific antibodies to determine the influence of each disturbance on pan-pY, ErbB1-specific pY (four sites), and ErbB2-specific pY (two sites). We found that each acid-base treatment generated a distinct temporal pY pattern. For example, the summated responses of the individual ErbB1/2-pY sites to each disturbance showed that metabolic acidosis (normal CO2 concentration and reduced HCO3(-) concentration) produced a transient summated pY decrease (5 vs. 20 min), whereas metabolic alkalosis produced a transient increase. Respiratory acidosis (normal HCO3(-) concentration and elevated CO2 concentration) had little effect on summated pY at 5 min but produced an elevation at 20 min, whereas respiratory alkalosis produced a reduction at 20 min. Our data show that ErbB1 and ErbB2 in the PT respond to acute acid-base disturbances, consistent with the hypothesis that they are part of the signaling cascade.
Collapse
Affiliation(s)
- Lara A Skelton
- Dept. of Physiology and Biophysics, Case Western Reserve Univ. School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970.
| | | |
Collapse
|
37
|
Kogata N, Zvelebil M, Howard BA. Neuregulin 3 and erbb signalling networks in embryonic mammary gland development. J Mammary Gland Biol Neoplasia 2013; 18:149-54. [PMID: 23649700 DOI: 10.1007/s10911-013-9286-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022] Open
Abstract
We review the role of Neuregulin 3 (Nrg3) and Erbb receptor signalling in embryonic mammary gland development. Neuregulins are growth factors that bind and activate its cognate Erbb receptor tyrosine kinases, which form a signalling network with established roles in breast development and breast cancer. Studies have shown that Nrg3 expression profoundly impacts early stages of embryonic mammary development. Network analysis shows how Nrg/Erbb signals could integrate with other major regulators of embryonic mammary development to elicit the morphogenetic processes and cell fate decisions that occur as the mammary lineage is established.
Collapse
Affiliation(s)
- Naoko Kogata
- Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | | | | |
Collapse
|
38
|
Maeda S, Imamura M, Kurashige M, Araki S, Suzuki D, Babazono T, Uzu T, Umezono T, Toyoda M, Kawai K, Imanishi M, Hanaoka K, Maegawa H, Uchigata Y, Hosoya T. Replication study for the association of 3 SNP loci identified in a genome-wide association study for diabetic nephropathy in European type 1 diabetes with diabetic nephropathy in Japanese patients with type 2 diabetes. Clin Exp Nephrol 2013; 17:866-71. [PMID: 23543049 DOI: 10.1007/s10157-013-0797-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND A recent genome-wide association study for diabetic nephropathy in European type 1 diabetes identified 3 candidate loci for diabetic nephropathy. In this study, we examined the association of the 3 single nucleotide polymorphism (SNP) loci with susceptibility to diabetic nephropathy in Japanese subjects with type 2 diabetes. METHODS We genotyped 3 SNPs, rs7583877 in AFF3, rs12437854 in the RGMA-MCTP2 locus and rs7588550 in ERBB4, for 2,300 Japanese patients with type 2 diabetes [initial study, 1,055 nephropathy cases with overt proteinuria or with end-stage renal disease (ESRD) and 1,245 control patients with normoalbuminuria]. The association of these SNPs with diabetic nephropathy was examined by using a logistic regression analysis. RESULTS We observed a significant association of rs7588550 in ERBB4 with diabetic nephropathy in the Japanese patients with type 2 diabetes, although the effect direction was not consistent with that in the European study [p = 0.0126, odds ratio (OR) = 0.79, 95 % confidence interval (CI): 0.65-0.95]. We further examined the association of rs7588550 with diabetic nephropathy in an independent Japanese cohort (596 nephropathy cases and 311 controls) and observed the same trend of the association with the initial study. We did not observe any association of the remaining 2 SNP loci with diabetic nephropathy in the present Japanese sample. CONCLUSION The association of SNP loci derived from GWAS in European type 1 diabetes with diabetic nephropathy was not replicated in the Japanese patients with type 2 diabetes, although the ERBB4 locus may have some effect also in Japanese type 2 diabetes.
Collapse
Affiliation(s)
- Shiro Maeda
- Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Carsten A Böger
- Department of Internal Medicine II, Nephrology, University Medical Center Regensburg, Regensburg, Germany.
| | | |
Collapse
|
40
|
Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, McKay GJ, Williams WW, Sadlier DM, Mäkinen VP, Swan EJ, Palmer C, Boright AP, Ahlqvist E, Deshmukh HA, Keller BJ, Huang H, Ahola AJ, Fagerholm E, Gordin D, Harjutsalo V, He B, Heikkilä O, Hietala K, Kytö J, Lahermo P, Lehto M, Lithovius R, Österholm AM, Parkkonen M, Pitkäniemi J, Rosengård-Bärlund M, Saraheimo M, Sarti C, Söderlund J, Soro-Paavonen A, Syreeni A, Thorn LM, Tikkanen H, Tolonen N, Tryggvason K, Tuomilehto J, Wadén J, Gill GV, Prior S, Guiducci C, Mirel DB, Taylor A, Hosseini SM, Parving HH, Rossing P, Tarnow L, Ladenvall C, Alhenc-Gelas F, Lefebvre P, Rigalleau V, Roussel R, Tregouet DA, Maestroni A, Maestroni S, Falhammar H, Gu T, Möllsten A, Cimponeriu D, Ioana M, Mota M, Mota E, Serafinceanu C, Stavarachi M, Hanson RL, Nelson RG, Kretzler M, Colhoun HM, Panduru NM, Gu HF, Brismar K, Zerbini G, Hadjadj S, Marre M, Groop L, Lajer M, Bull SB, Waggott D, Paterson AD, Savage DA, Bain SC, Martin F, Hirschhorn JN, Godson C, Florez JC, Groop PH, Maxwell AP. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 2012; 8:e1002921. [PMID: 23028342 PMCID: PMC3447939 DOI: 10.1371/journal.pgen.1002921] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/12/2012] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 × 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 × 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | - Rany M. Salem
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Endocrine Research Unit, Department of Endocrinology, Children's Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Eoin P. Brennan
- Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Mater Misericordiae Hospital, Dublin, Ireland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Tamara Isakova
- Division of Nephrology and Hypertension, University of Miami, Miami, Florida, United States of America
| | - Gareth J. McKay
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Winfred W. Williams
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Denise M. Sadlier
- Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Mater Misericordiae Hospital, Dublin, Ireland
| | - Ville-Petteri Mäkinen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Institute of Clinical Medicine, Department of Internal Medicine, Biocenter Oulu and Clinical Research Center, University of Oulu, Oulu, Finland
| | - Elizabeth J. Swan
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Cameron Palmer
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Endocrine Research Unit, Department of Endocrinology, Children's Hospital, Boston, Massachusetts, United States of America
| | | | - Emma Ahlqvist
- Department of Clinical Sciences, Diabetes, and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Harshal A. Deshmukh
- Wellcome Trust Centre for Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Benjamin J. Keller
- Computer Science, Eastern Michigan University, Ypsilanti, Michigan, United States of America
| | - Huateng Huang
- Division of Nephrology, Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aila J. Ahola
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Emma Fagerholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Bing He
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Outi Heikkilä
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Kustaa Hietala
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, Helsinki University Central Hospital, Helsinki, Finland
| | - Janne Kytö
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, Helsinki University Central Hospital, Helsinki, Finland
| | - Päivi Lahermo
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Raija Lithovius
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Anne-May Österholm
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maija Parkkonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Janne Pitkäniemi
- Hjelt Institute, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Milla Rosengård-Bärlund
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Markku Saraheimo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Cinzia Sarti
- Hjelt Institute, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jenny Söderlund
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Aino Soro-Paavonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Lena M. Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Heikki Tikkanen
- Unit for Sports and Exercise Medicine, Institute of Clinical Medicine, University of Helsinki, Finland
| | - Nina Tolonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jaakko Tuomilehto
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- South Ostrobothnia Central Hospital, Seinäjoki, Finland
- Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, Madrid, Spain
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
| | - Johan Wadén
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Geoffrey V. Gill
- Diabetes Endocrine Unit, Clinical Sciences Centre, Aintree University Hospital, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Prior
- Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Candace Guiducci
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Daniel B. Mirel
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Andrew Taylor
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - S. Mohsen Hosseini
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - DCCT/EDIC Research Group
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, United States of America
- Biostatics Division, The George Washington University, Washington, D.C., United States of America
| | - Hans-Henrik Parving
- Department of Medical Endocrinology, University Hospital of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
| | - Peter Rossing
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Lise Tarnow
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes, and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - François Alhenc-Gelas
- INSERM U872, Paris-Descartes University, Pierre and Marie Curie University, Paris, France
| | | | | | - Ronan Roussel
- AP-HP, Hôpital Bichat, Diabetology Endocrinology Nutrition, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR 738, Paris, France
- INSERM, UMR872, Equipe 2, Centre de Recherche des Cordeliers, Paris, France
| | - David-Alexandre Tregouet
- INSERM UMR_S 937, ICAN Institute for Cardiometabolism and Nutrition, Pierre and Marie Curie University, Paris, France
| | - Anna Maestroni
- Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milano, Italy
| | - Silvia Maestroni
- Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milano, Italy
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism, and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Tianwei Gu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Möllsten
- Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden
| | | | - Mihai Ioana
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Maria Mota
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Eugen Mota
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | | | - Robert L. Hanson
- Diabetes Epidemiology and Clinical Research Section, NIDDK, Phoenix, Arizona, United States of America
| | - Robert G. Nelson
- Diabetes Epidemiology and Clinical Research Section, NIDDK, Phoenix, Arizona, United States of America
| | - Matthias Kretzler
- Internal Medicine, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Helen M. Colhoun
- Wellcome Trust Centre for Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | | | - Harvest F. Gu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism, and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milano, Italy
| | - Samy Hadjadj
- CHU Poitiers–Endocrinology, University of Poitiers, Poitiers, France
- INSERM CIC0802, CHU Poitiers, Poitiers, France
| | - Michel Marre
- AP-HP, Hôpital Bichat, Diabetology Endocrinology Nutrition, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR 738, Paris, France
- INSERM, U695 (Genetic Determinants of Type 2 Diabetes and Its Vascular Complications), Paris, France
| | - Leif Groop
- Department of Clinical Sciences, Diabetes, and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Shelley B. Bull
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Daryl Waggott
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - David A. Savage
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Stephen C. Bain
- Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Finian Martin
- Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Mater Misericordiae Hospital, Dublin, Ireland
| | - Joel N. Hirschhorn
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Endocrine Research Unit, Department of Endocrinology, Children's Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catherine Godson
- Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Mater Misericordiae Hospital, Dublin, Ireland
| | - Jose C. Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Alexander P. Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
41
|
Murugan S, Saarela U, Airenne K, Shan J, Skovorodkin I, Ylä-Herttuala S, Vainio SJ. Conditional expression of Lodavin, an avidin-tagged LDL receptor, for biotin-mediated applications in vivo. Genesis 2012; 50:693-9. [PMID: 22467513 DOI: 10.1002/dvg.22028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/12/2022]
Abstract
Lodavin represents an engineered fusion protein that consists of a cytoplasmic and a transmembrane domain of the human low-density lipoprotein receptor coupled to an extracellular avidin monomer. Biotinylated compounds have been successfully targeted to Lodavin-expressing cells that have been transduced by a Lodavin-containing virus, and the targeting is based on the high affinity between biotin and avidin. We engineered a Rosa26 (R26R) knock-in Lodavin mouse to develop biotin-based applications such as targeted drug delivery, cell purification, and tissue imaging in vivo. A cDNA encoding Lodavin was inserted downstream of a floxed βgeo resistance gene in the R26R locus in embryonic stem cells, and a germ line-derived R26RLodavin mouse line was generated. Efficient removal of the floxed βgeo cassette and conditional activation of Lodavin expression was achieved as a result of crossing the R26RLodavin mice with HoxB7-Cre, Wnt4-Cre, or Tie1-Cre mice. In summary, the R26RLodavin mouse line may provide a useful tool for testing and developing applications with the aid of avidin and biotin interaction.
Collapse
Affiliation(s)
- Subramanian Murugan
- Oulu Centre for Cell-Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
42
|
Paatero I, Jokilammi A, Heikkinen PT, Iljin K, Kallioniemi OP, Jones FE, Jaakkola PM, Elenius K. Interaction with ErbB4 promotes hypoxia-inducible factor-1α signaling. J Biol Chem 2012; 287:9659-9671. [PMID: 22308027 DOI: 10.1074/jbc.m111.299537] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor-tyrosine kinase ErbB4 was identified as a direct regulator of hypoxia-inducible factor-1α (HIF-1α) signaling. Cleaved intracellular domain of ErbB4 directly interacted with HIF-1α in the nucleus, and stabilized HIF-1α protein in both normoxic and hypoxic conditions by blocking its proteasomal degradation. The mechanism of HIF stabilization was independent of VHL and proline hydroxylation but dependent on RACK1. ErbB4 activity was necessary for efficient HRE-driven promoter activity, transcription of known HIF-1α target genes, and survival of mammary carcinoma cells in vitro. In addition, mammary epithelial specific targeting of Erbb4 in the mouse significantly reduced the amount of HIF-1α protein in vivo. ERBB4 expression also correlated with the expression of HIF-regulated genes in a series of 4552 human normal and cancer tissue samples. These data demonstrate that soluble ErbB4 intracellular domain promotes HIF-1α stability and signaling via a novel mechanism.
Collapse
Affiliation(s)
- Ilkka Paatero
- Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland,; Turku Doctoral Programme of Biomedical Sciences, FI-20520 Turku, Finland
| | - Anne Jokilammi
- Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Pekka T Heikkinen
- Turku Doctoral Programme of Biomedical Sciences, FI-20520 Turku, Finland; Turku Centre for Biotechnology, FI-20520 Turku, Finland
| | - Kristiina Iljin
- Turku Centre for Biotechnology, FI-20520 Turku, Finland; Medical Biotechnology, VTT Technical Research Centre, FI-20520 Turku, Finland
| | - Olli-Pekka Kallioniemi
- Turku Centre for Biotechnology, FI-20520 Turku, Finland; Medical Biotechnology, VTT Technical Research Centre, FI-20520 Turku, Finland,; FIMM - Institute for Molecular Medicine Finland, and the Genome-Scale Biology Research Program, Biomedicum, University of Helsinki, FI-00014 Helsinki, Finland
| | - Frank E Jones
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| | - Panu M Jaakkola
- Turku Centre for Biotechnology, FI-20520 Turku, Finland; Department of Oncology, Turku University Hospital, FI-20520 Turku, Finland
| | - Klaus Elenius
- Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland,; Department of Oncology, Turku University Hospital, FI-20520 Turku, Finland.
| |
Collapse
|
43
|
|