1
|
Zhang H, Deng Z, Wang Y, Zheng X, Zhou L, Yan S, Wang Y, Dai Y, Kanwar YS, Chen F, Deng F. CHIP drives proteasomal degradation of NUR77 to alleviate oxidative stress and intrinsic apoptosis in cisplatin-induced nephropathy. Commun Biol 2024; 7:1403. [PMID: 39462094 PMCID: PMC11513124 DOI: 10.1038/s42003-024-07118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Carboxy-terminus of Hsc70-interacting protein (CHIP), an E3 ligase, modulates the stability of its targeted proteins to alleviate various pathological perturbations in various organ systems. Cisplatin is a widely used chemotherapeutic agent, but it is also known for its alarming renal toxicity. The role of CHIP in the pathogenesis of cisplatin-induced acute kidney injury (AKI) has not been adequately investigated. Herein, we demonstrated that CHIP was abundantly expressed in the renal proximal tubular epithelia, and its expression was downregulated in cisplatin-induced AKI. Further investigation revealed that CHIP overexpression or activation alleviated, while its gene disruption promoted, oxidative stress and apoptosis in renal proximal tubular epithelia induced by cisplatin. In terms of mechanism, CHIP interacted with and ubiquitinated NUR77 to promote its degradation, which consequently shielded BCL2 to maintain mitochondrial permeability of renal proximal tubular cells in the presence of cisplatin. Also, we demonstrated that CHIP interacted with NUR77 via its central coiled-coil (CC) domain, a non-canonical interactive pattern. In conclusion, these findings indicated that CHIP ubiquitinated and degraded its substrate NUR77 to attenuate intrinsic apoptosis in cisplatin-treated renal proximal tubular epithelia, thus providing a novel insight for the pathogenesis of cisplatin-induced AKI.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Lizhi Zhou
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yashpal S Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, IL, USA
| | - Fangzhi Chen
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China.
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China.
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Zhou R, Liu H, Hou X, Liu Q, Sun S, Li X, Cao W, Nie W, Shi C, Chen W. Bi-functional KIT-PR1P peptides combine with VEGF to protect ischemic kidney in rats by targeting to Kim-1. Regen Ther 2024; 25:162-173. [PMID: 38178930 PMCID: PMC10765240 DOI: 10.1016/j.reth.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Acute kidney injury (AKI) was a disease with a high mortality mainly caused by renal ischemia/reperfusion injury (I/R). Although the current non-targeted administration of vascular endothelial growth factor (VEGF) for AKI had been revealed to facilitate the recovery of renal I/R, how to targeted deliver VEGF and to retain it efficiently in the ischemic kidney was critical for its clinical application. Methods In present study, bi-functional KIT-PR1P peptides were constructed which bond VEGF through PR1P domain, and targeted ischemic kidney through KIT domain to interact with biomarker of AKI-kidney injury molecule-1 (Kim-1). Then the targeted and therapeutic effects of KIT-PR1P/VEGF in AKI was explored in vitro and in vivo. Results The results showed KIT-PR1P exhibited better angiogenic capacity and targeting ability to hypoxia HK-2 cells with up-regulated Kim-1 in vitro. When KIT-PR1P/VEGF was used for the treatment of renal I/R through intravenous administration in vivo, KIT-PR1P could guide VEGF and retain its effective concentration in ischemic kidney. In addition, KIT-PR1P/VEGF promoted angiogenesis, alleviated renal tubular injury and fibrosis, and finally promoted functional recovery of renal I/R. Conclusion These results indicated that the bi-functional KIT-PR1P peptides combined with VEGF would be a promising strategy for the treatment of AKI by targeting to Kim-1.
Collapse
Affiliation(s)
- Runxue Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Hang Liu
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, 266700, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics Cand Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qi Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, 266000, China
| | - Shuwei Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaoge Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Weihong Nie
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
4
|
Yan Y, Liu H, Abedini A, Sheng X, Palmer M, Li H, Susztak K. Unraveling the epigenetic code: human kidney DNA methylation and chromatin dynamics in renal disease development. Nat Commun 2024; 15:873. [PMID: 38287030 PMCID: PMC10824731 DOI: 10.1038/s41467-024-45295-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
Epigenetic changes may fill a critical gap in our understanding of kidney disease development, as they not only reflect metabolic changes but are also preserved and transmitted during cell division. We conducted a genome-wide cytosine methylation analysis of 399 human kidney samples, along with single-nuclear open chromatin analysis on over 60,000 cells from 14 subjects, including controls, and diabetes and hypertension attributed chronic kidney disease (CKD) patients. We identified and validated differentially methylated positions associated with disease states, and discovered that nearly 30% of these alterations were influenced by underlying genetic variations, including variants known to be associated with kidney disease in genome-wide association studies. We also identified regions showing both methylation and open chromatin changes. These changes in methylation and open chromatin significantly associated gene expression changes, most notably those playing role in metabolism and expressed in proximal tubules. Our study further demonstrated that methylation risk scores (MRS) can improve disease state annotation and prediction of kidney disease development. Collectively, our results suggest a causal relationship between epigenetic changes and kidney disease pathogenesis, thereby providing potential pathways for the development of novel risk stratification methods.
Collapse
Affiliation(s)
- Yu Yan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Matthew Palmer
- Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Hongzhe Li
- Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA
- Department of Pathology, Perelman School of Medicine, Philadelphia, PA, 19014, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
- Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19014, USA.
| |
Collapse
|
5
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris RC, Gewin L, Brooks CR, Davidson AJ, de Caestecker M. Inhibition of retinoic acid signaling in proximal tubular epithelial cells protects against acute kidney injury. JCI Insight 2023; 8:e173144. [PMID: 37698919 PMCID: PMC10619506 DOI: 10.1172/jci.insight.173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI.
Collapse
Affiliation(s)
- Min Yang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lauren N. Lopez
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya Brewer
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Delgado
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Menshikh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelly Clouthier
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuantee Zhu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Haichun Yang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leslie Gewin
- Washington University in St. Louis School of Medicine and the St. Louis Veterans Affairs Hospital, St. Louis, Missouri, USA
| | - Craig R. Brooks
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan J. Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Mark de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
7
|
Yang Y, Jin S, Zhang J, Chen W, Lu Y, Chen J, Yan Z, Shen B, Ning Y, Shi Y, Chen J, Wang J, Xu S, Jia P, Teng J, Fang Y, Song N, Ding X. Acid-sensing ion channel 1a exacerbates renal ischemia-reperfusion injury through the NF-κB/NLRP3 inflammasome pathway. J Mol Med (Berl) 2023; 101:877-890. [PMID: 37246982 PMCID: PMC10300185 DOI: 10.1007/s00109-023-02330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), and there is no effective therapy. Microenvironmental acidification is generally observed in ischemic tissues. Acid-sensing ion channel 1a (ASIC1a) can be activated by a decrease in extracellular pH which mediates neuronal IRI. Our previous study demonstrated that, ASIC1a inhibition alleviates renal IRI. However, the underlying mechanisms have not been fully elucidated. In this study, we determined that renal tubule-specific deletion of ASIC1a in mice (ASIC1afl/fl/CDH16cre) attenuated renal IRI, and reduced the expression of NLRP3, ASC, cleaved-caspase-1, GSDMD-N, and IL-1β. Consistent with these in vivo results, inhibition of ASIC1a by the specific inhibitor PcTx-1 protected HK-2 cells from hypoxia/reoxygenation (H/R) injury, and suppressed H/R-induced NLRP3 inflammasome activation. Mechanistically, the activation of ASIC1a by either IRI or H/R induced the phosphorylation of NF-κB p65, which translocates to the nucleus and promotes the transcription of NLRP3 and pro-IL-1β. Blocking NF-κB by treatment with BAY 11-7082 validated the roles of H/R and acidosis in NLRP3 inflammasome activation. This further confirmed that ASIC1a promotes NLRP3 inflammasome activation, which requires the NF-κB pathway. In conclusion, our study suggests that ASIC1a contributes to renal IRI by affecting the NF-κB/NLRP3 inflammasome pathway. Therefore, ASIC1a may be a potential therapeutic target for AKI. KEY MESSAGES: Knockout of ASIC1a attenuated renal ischemia-reperfusion injury. ASIC1a promoted the NF-κB pathway and NLRP3 inflammasome activation. Inhibition of the NF-κB mitigated the NLRP3 inflammasome activation induced by ASIC1a.
Collapse
Affiliation(s)
- Yan Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Weize Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jun Chen
- Department of Pathology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Zhixin Yan
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jialin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China.
- Fudan Zhangjiang Institute, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China.
| |
Collapse
|
8
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris R, Gewin L, Brooks C, Davidson A, de Caestecker MP. Inhibition of Retinoic Acid Signaling in Proximal Tubular Epithelial cells Protects against Acute Kidney Injury by Enhancing Kim-1-dependent Efferocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545113. [PMID: 37398101 PMCID: PMC10312711 DOI: 10.1101/2023.06.15.545113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development, but in the adult kidney is restricted to occasional collecting duct epithelial cells. We now show there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI), and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protects against experimental AKI but is associated with increased expression of the PTEC injury marker, Kim-1. However, Kim-1 is also expressed by de-differentiated, proliferating PTECs, and protects against injury by increasing apoptotic cell clearance, or efferocytosis. We show that the protective effect of inhibiting PTEC RAR signaling is mediated by increased Kim-1 dependent efferocytosis, and that this is associated with de-differentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate a novel functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI. Graphical abstract
Collapse
|
9
|
Wang H, Zhang M, Fang F, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. The nuclear receptor subfamily 4 group A1 in human disease. Biochem Cell Biol 2023; 101:148-159. [PMID: 36861809 DOI: 10.1139/bcb-2022-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China
| |
Collapse
|
10
|
Huang Y, Zheng G. Circ_UBE2D2 Attenuates the Progression of Septic Acute Kidney Injury in Rats by Targeting miR-370-3p/NR4A3 Axis. J Microbiol Biotechnol 2022; 32:740-748. [PMID: 35722711 PMCID: PMC9628902 DOI: 10.4014/jmb.2112.12038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
As circ_UBE2D2 has been confirmed to have targeted binding sites with multiple miRNAs involved in septic acute kidney injury (SAKI), efforts in this study are directed to unveiling the specific role and relevant mechanism of circ_UBE2D2 in SAKI. HK-2 cells were treated with lipopolysaccharide (LPS) to construct SAKI model in vitro. After sh-circ_UBE2D2 was transfected into cells, the transfection efficiency was detected by qRT-PCR, cell viability and apoptosis were determined by MTT assay and flow cytometry, and expressions of Bcl-2, Bax and Cleaved-caspase 3 were quantified by western blot. Target genes associated with circ_UBE2D2 were predicted using bioinformatics analysis. After the establishment of SAKI rat model, HE staining and TUNEL staining were exploited to observe the effect of circ_UBE2D2 on tissue damage and cell apoptosis. The expression of circ_UBE2D2 was overtly elevated in LPS-induced HK-2 cells. Sh-circ_UBE2D2 can offset the inhibition of cell viability and the promotion of cell apoptosis induced by LPS. Circ_UBE2D2 and miR-370-3p as well as miR-370-3p and NR4A3 have targeted binding sites. MiR-370-3p inhibitor reversed the promoting effect of circ_UB2D2 silencing on viability of LPS-treated cells, but shNR4A3 neutralized the above inhibitory effect of miR-370-3p inhibitor. MiR-370-3p inhibitor weakened the down-regulation of NR4A3, Bax and Cleaved caspase-3 and the up-regulation of Bcl-2 induced by circ_UB2D2 silencing, but these trends were reversed by shNR4A3. In addition, sh-circ_UBE2D2 could alleviate the damage of rat kidney tissue. Circ_UBE2D2 mitigates the progression of SAKI in rats by targeting miR-370-3p/NR4A3 axis.
Collapse
Affiliation(s)
- Yanghui Huang
- Emergency Medicine Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Sichuan Province, 610081, P.R. China,Corresponding author E-mail:
| | - Guangyu Zheng
- Emergency Medicine Department, The First People’s Hospital of Yibin, Yibin City, Sichuan Province 644000, P.R. China
| |
Collapse
|
11
|
Karmakova ТА, Sergeeva NS, Kanukoev КY, Alekseev BY, Kaprin АD. Kidney Injury Molecule 1 (KIM-1): a Multifunctional Glycoprotein and Biological Marker (Review). Sovrem Tekhnologii Med 2021; 13:64-78. [PMID: 34603757 PMCID: PMC8482821 DOI: 10.17691/stm2021.13.3.08] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
KIM-1 (kidney injury molecule 1) is a transmembrane glycoprotein also known as HAVcr-1 and TIM-1 belongs to the T-cell immunoglobulin and mucin domain family (TIM) of proteins. TIM glycoproteins are presented on the immune cells and participate in the regulation of immune reactions. KIM-1 differs from other members of its family in that it is expressed not only by immunocompetent cells but epithelial cells as well. Cellular and humoral effects mediated by KIM-1 are involved in a variety of physiological and pathophysiological processes. Current understanding of the mechanisms determining the participation of KIM-1 in viral invasion, the immune response regulation, adaptive reactions of the kidney epithelium to acute ischemic or toxic injury, in progression of chronic renal diseases, and kidney cancer development have been presented in this review. Data of clinical researches demonstrating the association of KIM-1 with viral diseases and immune disorders have also been analyzed. Potential application of KIM-1 as urinary or serological marker in renal and cardiovascular diseases has been considered.
Collapse
Affiliation(s)
- Т А Karmakova
- Leading Researcher, Department of Predicting the Effectiveness of Conservative Therapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia
| | - N S Sergeeva
- Professor, Head of the Department of Predicting the Effectiveness of Conservative Therapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia; Professor, Department of Biology; Pirogov Russian National Research Medical University, 1 Ostrovitianova St., Moscow, 117997, Russia
| | - К Yu Kanukoev
- Urologist, Department of Urology with Chemotherapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia
| | - B Ya Alekseev
- Professor, Deputy General Director for Science; National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| | - А D Kaprin
- Professor, Academician of the Russian Academy of Sciences, General Director; National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| |
Collapse
|
12
|
Ganguly S, Finkelstein D, Shaw TI, Michalek RD, Zorn KM, Ekins S, Yasuda K, Fukuda Y, Schuetz JD, Mukherjee K, Schuetz EG. Metabolomic and transcriptomic analysis reveals endogenous substrates and metabolic adaptation in rats lacking Abcg2 and Abcb1a transporters. PLoS One 2021; 16:e0253852. [PMID: 34255797 PMCID: PMC8277073 DOI: 10.1371/journal.pone.0253852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Abcg2/Bcrp and Abcb1a/Pgp are xenobiotic efflux transporters limiting substrate permeability in the gastrointestinal system and brain, and increasing renal and hepatic drug clearance. The systemic impact of Bcrp and Pgp ablation on metabolic homeostasis of endogenous substrates is incompletely understood. We performed untargeted metabolomics of cerebrospinal fluid (CSF) and plasma, transcriptomics of brain, liver and kidney from male Sprague Dawley rats (WT) and Bcrp/Pgp double knock-out (dKO) rats, and integrated metabolomic/transcriptomic analysis to identify putative substrates and perturbations in canonical metabolic pathways. A predictive Bayesian machine learning model was used to predict in silico those metabolites with greater substrate-like features for either transporters. The CSF and plasma levels of 169 metabolites, nutrients, signaling molecules, antioxidants and lipids were significantly altered in dKO rats, compared to WT rats. These metabolite changes suggested alterations in histidine, branched chain amino acid, purine and pyrimidine metabolism in the dKO rats. Levels of methylated and sulfated metabolites and some primary bile acids were increased in dKO CSF or plasma. Elevated uric acid levels appeared to be a primary driver of changes in purine and pyrimidine biosynthesis. Alterations in Bcrp/Pgp dKO CSF levels of antioxidants, precursors of neurotransmitters, and uric acid suggests the transporters may contribute to the regulation of a healthy central nervous system in rats. Microbiome-generated metabolites were found to be elevated in dKO rat plasma and CSF. The altered dKO metabolome appeared to cause compensatory transcriptional change in urate biosynthesis and response to lipopolysaccharide in brain, oxidation-reduction processes and response to oxidative stress and porphyrin biosynthesis in kidney, and circadian rhythm genes in liver. These findings present insight into endogenous functions of Bcrp and Pgp, the impact that transporter substrates, inhibitors or polymorphisms may have on metabolism, how transporter inhibition could rewire drug sensitivity indirectly through metabolic changes, and identify functional Bcrp biomarkers.
Collapse
Affiliation(s)
- Samit Ganguly
- Cancer & Developmental Biology Track, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Timothy I. Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | | | - Kimberly M. Zorn
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Kazuto Yasuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kamalika Mukherjee
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erin G. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chen A, Liu Y, Lu Y, Lee K, He JC. Disparate roles of retinoid acid signaling molecules in kidney disease. Am J Physiol Renal Physiol 2021; 320:F683-F692. [PMID: 33645319 PMCID: PMC8174805 DOI: 10.1152/ajprenal.00045.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retinoid acid (RA) is synthesized mainly in the liver and has multiple functions in development, cell differentiation and proliferation, and regulation of inflammation. RA has been used to treat multiple diseases, such as cancer and skin disorders. The kidney is a major organ for RA metabolism, which is altered in the diseased condition. RA is known to have renal-protective effects in multiple animal models of kidney disease. RA has been shown to ameliorate podocyte injury through induction of expression of differentiation markers and regeneration of podocytes from its progenitor cells in animal models of kidney disease. The effects of RA in podocytes are mediated mainly by activation of the cAMP/PKA pathway via RA receptor-α (RARα) and activation of its downstream transcription factor, Kruppel-like factor 15. Screening of RA signaling molecules in human kidney disease has revealed RAR responder protein 1 (RARRES1) as a risk gene for glomerular disease progression. RARRES1, a podocyte-specific growth arrest gene, is regulated by high doses of both RA and TNF-α. Mechanistically, RARRES1 is cleaved by matrix metalloproteinases to generate soluble RARRES1, which then induces podocyte apoptosis through interaction with intracellular RIO kinase 1. Therefore, a high dose of RA may induce podocyte toxicity through upregulation of RARRES1. Based on the current findings, to avoid potential side effects, we propose three strategies to develop future therapies of RA for glomerular disease: 1) develop RARα- and Kruppel-like factor 15-specific agonists, 2) use the combination of a low dose of RAR-α agonist with phosphodiesterase 4 inhibitors, and 3) use a combination of RARα agonist with RARRES1 inhibitors.NEW & NOTEWORTHY Retinoic acid (RA) exerts pleotropic cellular effects, including induction of cell differentiation while inhibiting proliferation and inflammation. These effects are mediated by both RA responsive element-dependent or -independent pathways. In kidneys, RA confers renoprotection by signaling through podocyte RA receptor (RAR)α and activation of cAMP/PKA/Kruppel-like factor 15 pathway to promote podocyte differentiation. Nevertheless, in kidney disease settings, RA can also promote podocyte apoptosis and loss through downstream expression of RAR responder protein 1, a recently described risk factor for glomerular disease progression. These disparate roles of RA underscore the complexity of its effects in kidney homeostasis and disease, and a need to target specific RA-mediated pathways for effective therapeutic treatments against kidney disease progression.
Collapse
Affiliation(s)
- Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Lu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
- Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, Massachusetts
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
14
|
Zhang Y, Li S, Wu J, Peng Y, Bai J, Ning B, Wang X, Fang Y, Han D, Ren S, Li S, Chen R, Li K, Du H, Gao Z. The orphan nuclear receptor Nur77 plays a vital role in BPA-induced PC12 cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112026. [PMID: 33582411 DOI: 10.1016/j.ecoenv.2021.112026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor that can migrate into organisms through skin contact, breathing, diet and various other approaches. The reproductive toxicity and neurotoxicity of BPA has been confirmed by several toxicological studies. However, the neurotoxicity of BPA is still controversial. In the present study, we used PC12 cells as a model to investigate the mechanism of BPA-induced neuronal apoptosis. BPA exposure reduced cell viability, altered cell morphology and aggravated intracellular Lactate dehydrogenase (LDH) release, intracellular Ca2+ concentration, Reactive oxygen species (ROS) levels, apoptosis and the reduction in the mitochondrial transmembrane potential (ΔΨm). Moreover, the results of the Western blot (WB) and Real-time quantitative polymerase chain reaction (RT-qPCR) assays indicated that the expression levels of Nur77 in the BPA group were down-regulated and accompanied by the downregulation of the NF-κb/Bcl-2 proteins and the upregulation of cleaved-caspase 3, which is a marker of apoptosis. However, these changes were significantly reversed with the upregulation of the Nur77 protein by introducing plasmids carrying the nur77 gene. These results indicated that BPA-induced apoptosis was closely related to Nur77-mediated inhibition of the NF-κb/Bcl-2 pathway.
Collapse
Affiliation(s)
- Yingchun Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Shuang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China.
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yuan Peng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Jialei Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Dianpeng Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Shuyue Ren
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Sen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Ruipeng Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Hongwei Du
- Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China.
| |
Collapse
|
15
|
Wei Q, Dong Z. The yin and yang of retinoic acid signaling in kidney diseases. J Clin Invest 2021; 130:5124-5126. [PMID: 32925167 DOI: 10.1172/jci141712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is involved in various physiological and pathological conditions, including development, tumorigenesis, inflammation, and tissue damage and repair. In kidneys, the beneficial effect of RA has been reported in multiple disease models, such as glomerulosclerosis, renal fibrosis, and acute kidney injury. In this issue of the JCI, Chen et al. report a pathway activated by RA signaling that is mediated by the retinoic acid receptor responder protein 1 (RARRES1). Specifically, RARRES1, which is proteolytically cleaved to release the extracellular domain, was endocytosed by podocytes to induce apoptosis and glomerular dysfunction kidney disease. These findings unveil the contrasting aspects, a Janus face, of RA signaling that may guide its therapeutic use.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
16
|
Wu J, Zheng C, Wan X, Shi M, McMillan K, Maique J, Cao C. Retinoic Acid Alleviates Cisplatin-Induced Acute Kidney Injury Through Activation of Autophagy. Front Pharmacol 2020; 11:987. [PMID: 32719599 PMCID: PMC7348052 DOI: 10.3389/fphar.2020.00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin-induced acute kidney injury (CIAKI) is a common complication in patients receiving cisplatin-based chemotherapy. But the effective therapies for CIAKI are not available. Retinoic acid (RA), the main derivative of vitamin A, has the potential to reduce inflammation and fibrosis in renal injury. However, the effect and mechanism of RA on CIAKI are still unclear. The aim of this study is to investigate whether RA can alleviate CIAKI through activation of autophagy. In this study, we evaluated the effect of RA, RA’s effect on autophagy and apoptosis after cisplatin-induced injury on renal tubular epithelial cells (RTECs) by LDH assay, immunoblotting and TUNEL staining. Then we established Atg5flox/flox:Cagg-Cre mice in which Cagg-Cre is tamoxifen inducible, and Atg5 is conditional deleted after tamoxifen injection. The effect of RA and RA’s effect on autophagy on CIAKI model were evaluated by biochemical assessment, hematoxylin and eosin (HE) staining, and immunoblotting in the control and autophagy deficient mice. In vitro, RA protected RTECs against cisplatin-induced injury, activated autophagy, and inhibited cisplatin-induced apoptosis. In vivo, RA attenuated cisplatin-induced tubular damage, shown by improved renal function, decreased renal cast formation, decreased NGAL expression, and activated autophagy in the control mice. Furthermore, the nephrotoxicity of cisplatin was aggravated, and the protective effect of RA was attenuated in autophagy deficient mice, indicating that RA works in an autophagy-dependent manner on CIAKI. RA activates autophagy and alleviates CIAKI in vivo and in vitro.Thus RA may be a renoprotective adjuvant for cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Junxia Wu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Canbin Zheng
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xin Wan
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjun Shi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kathryn McMillan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jenny Maique
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zhu Y, Ding A, Yang D, Cui T, Yang H, Zhang H, Wang C. CYP2J2-produced epoxyeicosatrienoic acids attenuate ischemia/reperfusion-induced acute kidney injury by activating the SIRT1-FoxO3a pathway. Life Sci 2020; 246:117327. [PMID: 31954161 DOI: 10.1016/j.lfs.2020.117327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 (CYP) epoxygenases can metabolize arachidonic acids to epoxyeicosatrienoic acids (EETs), which play a protective role in the renal system, but their involvement in ischemia/reperfusion (I/R)-induced acute kidney injury remains unknown. Here, using a rat model, we demonstrated that forced CYP2J2 expression attenuated I/R-induced renal dysfunction and protected histological integrity. We showed that CYP2J2 significantly decreased I/R-induced upregulation of blood urea nitrogen and serum creatinine and enhanced autophagy during I/R treatment. In addition, we determined the protective effect of CYP2J2 against I/R-caused apoptosis. We demonstrated that CYP2J2 overexpression attenuated the downregulation of SIRT1 and FoxO3a by I/R-induced injury. Moreover, exogenous 11,12-EET addition obviously promoted I/R-induced autophagic flux and suppressed I/R-induced apoptosis through SIRT1-FoxO3a signaling activation. Our data indicate that CYP2J2-produced EETs improve I/R-caused kidney injury by activating the SIRT1-FoxO3a signaling pathway, which protects from renal I/R injury.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| | - Ao Ding
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | | | - Tongxia Cui
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hui Yang
- Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hua Zhang
- Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Cheng Wang
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
18
|
Shi W, Dong J, Liang Y, Liu K, Peng Y. NR4A1 silencing protects against renal ischemia-reperfusion injury through activation of the β-catenin signaling pathway in old mice. Exp Mol Pathol 2019; 111:104303. [PMID: 31465766 DOI: 10.1016/j.yexmp.2019.104303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Renal ischemia-reperfusion injury (IRI), a major cause of acute kidney injury as well as a contributor to a rapid kidney dysfunction and high mortality rates, is a complex yet not fully understood process. Investigation on the underlying molecular mechanism including the inflammation initiation and progression can help to have a better understanding of the disease, and thereby lead to a potential therapeutic approach. We established renal IRI mouse model groups differing in their ages. These renal IRI mice were treated either only with si-nuclear receptor subfamily 4, group A, member 1 (NR4A1) or together with si-β-catenin by tail vein injection to analyze the role of NR4A1 and β-catenin in the development of renal IRI. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were examined for renal function analysis. Levels of the apoptosis markers B-cell lymphoma-2 (Bcl-2), Bcl-2 associated protein X (Bax), and cleaved caspase-3 were determined. NR4A1 gene was up-regulated in the renal tissues of all mice with IRI, which showed a much higher level in the old mice with IRI. si-NR4A1 treatment resulted in reduced SCr and BUN levels and a decrease of cell apoptosis, indicated by lower expression of Bax and cleaved Caspase-3, while in contrast increased levels of Bcl-2 were detected. Interestingly, also the β-catenin level was increased by knockdown of NR4A1. Furthermore, si-β-catenin reversed the effect of knockdown of NR4A1, leading to aggravated renal function damage, severe pathological injury and increased apoptosis. Thus, silencing NR4A1 ameliorates renal IRI via β-catenin signaling pathway activation. Down-regulated NR4A1 confirms renoprotective properties against renal IRI via the activation of β-catenin signaling pathway in old mice.
Collapse
Affiliation(s)
- Wenjian Shi
- Department of Nephrology, The Second Xiangya Hospital, Renal Research Institute of Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha 410011, PR China
| | - Jing Dong
- Intensive Care Unit, Hunan Cancer Hospital, Changsha 410006, PR China
| | - Yumei Liang
- Department of Nephrology, The Hunan Provincial People's Hospital, Changsha 410002, PR China
| | - Kanghan Liu
- Department of Nephrology, The Hunan Provincial People's Hospital, Changsha 410002, PR China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Renal Research Institute of Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha 410011, PR China.
| |
Collapse
|
19
|
Song N, Lu Z, Zhang J, Shi Y, Ning Y, Chen J, Jin S, Shen B, Fang Y, Zou J, Teng J, Chu XP, Shen L, Ding X. Acid-sensing ion channel 1a is involved in ischaemia/reperfusion induced kidney injury by increasing renal epithelia cell apoptosis. J Cell Mol Med 2019; 23:3429-3440. [PMID: 30793492 PMCID: PMC6484315 DOI: 10.1111/jcmm.14238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
Acidic microenvironment is commonly observed in ischaemic tissue. In the kidney, extracellular pH dropped from 7.4 to 6.5 within 10 minutes initiation of ischaemia. Acid‐sensing ion channels (ASICs) can be activated by pH drops from 7.4 to 7.0 or lower and permeates to Ca2+entrance. Thus, activation of ASIC1a can mediate the intracellular Ca2+ accumulation and play crucial roles in apoptosis of cells. However, the role of ASICs in renal ischaemic injury is unclear. The aim of the present study was to test the hypothesis that ischaemia increases renal epithelia cell apoptosis through ASIC1a‐mediated calcium entry. The results show that ASIC1a distributed in the proximal tubule with higher level in the renal tubule ischaemic injury both in vivo and in vitro. In vivo, Injection of ASIC1a inhibitor PcTx‐1 previous to ischaemia/reperfusion (I/R) operation attenuated renal ischaemic injury. In vitro, HK‐2 cells were pre‐treated with PcTx‐1 before hypoxia, the intracellular concentration of Ca2+, mitochondrial transmembrane potential (∆ψm) and apoptosis was measured. Blocking ASIC1a attenuated I/R induced Ca2+ overflow, loss of ∆ψm and apoptosis in HK‐2 cells. The results revealed that ASIC1a localized in the proximal tubular and contributed to I/R induced kidney injury. Consequently, targeting the ASIC1a may prove to be a novel strategy for AKI patients.
Collapse
Affiliation(s)
- Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Zhihui Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri -Kansas City, Missouri
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
20
|
Cai J, Jiao X, Fang Y, Yu X, Ding X. The orphan nuclear receptor RORα is a potential endogenous protector in renal ischemia/reperfusion injury. FASEB J 2019; 33:5704-5715. [PMID: 30673513 DOI: 10.1096/fj.201802248r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Emerging evidence indicates that retinoid-related orphan receptor (ROR)α, a member of the ROR nuclear receptor subfamily, mediates key cellular adaptions to hypoxia and contributes to the pathophysiology of many disease states. However, the effects of RORα in renal ischemia/reperfusion (I/R) injury remain unclear. Wild-type (WT) C57 black 6 (C57BL/6) mice and RORα-deficient stagger [ROR(sg/sg)] mice and their WT littermates were used for in vivo studies. The renal I/R injury model was induced by bilateral renal pedicle clamping for 35 min. Human proximal tubule cell line cells were treated with hypoxia (1% oxygen) to establish the cell hypoxia/reoxygenation (H/R) model. We investigated the renal expression and biologic function of RORα, and we found that RORα was significantly down-regulated after renal I/R injury. ROR(sg/sg) mice displayed dramatically augmented renal dysfunction and morphologic damage compared with WT mice at 24 h post-I/R. Further study revealed that the detrimental effects of RORα deficiency were attributable to tubular epithelial cell apoptosis and, consequently, renal inflammation and oxidative stress. The proapoptotic effect of RORα deficiency was associated with aggravated mitochondrial dysfunction in renal tubular cells after I/R. However, pretreatment of C57BL/6 mice with the RORα agonist SR1078 ameliorated I/R-induced renal dysfunction and damage and elicited a concomitant decrease in tubular epithelial cell apoptosis. In summary, our study provides experimental evidence showing that RORα is a novel endogenous protector against renal I/R injury and that ROR-α activation is a promising therapeutic strategy for the prevention of acute kidney injury.-Cai, J., Jiao, X., Fang, Y., Yu, X., Ding, X. The orphan nuclear receptor RORα is a potential endogenous protector in renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center for Kidney Disease, Shanghai, China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center for Kidney Disease, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center for Kidney Disease, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center for Kidney Disease, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Medical Center for Kidney Disease, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| |
Collapse
|
21
|
Dai Y, Jin W, Cheng L, Yu C, Chen C, Ni H. Nur77 is a promoting factor in traumatic brain injury-induced nerve cell apoptosis. Biomed Pharmacother 2018; 108:774-782. [PMID: 30248546 DOI: 10.1016/j.biopha.2018.09.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022] Open
Abstract
Traumatic brain injury (TBI) poses a serious threat to human health. TBI has a high mortality rate, resulting in a great burden on the affected individual's family as well as society as a whole. The incidence of craniocerebral fractures continues to rise as both the economy and transportation options grow, making it imperative that the mortality and disability rate of craniocerebral trauma be reduced. Nur77 is a transcription factor of the nuclear receptor superfamily. Following stimulation of extracellular apoptosis, Nur77 is involved in a variety of diseases as a powerful pro-apoptotic molecule. Here, we determined the effect and mechanism of Nur77 in TBI-induced nerve cell apoptosis in vitro and in vivo. We found that Nur77 and Bcl-2 protein expression increased as nerve cell apoptosis increased in TBI tissues. Furthermore, inhibition of Nur77 improved nerve cell injury by regulation of Bcl-2 and downstream pathways in vitro and in vivo.
Collapse
Affiliation(s)
- Yuxiang Dai
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Jin
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Longyang Cheng
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chen Yu
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Cheng Chen
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Hongbin Ni
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
22
|
CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury. Nat Commun 2018; 9:3660. [PMID: 30202007 PMCID: PMC6131511 DOI: 10.1038/s41467-018-06094-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/15/2018] [Indexed: 01/12/2023] Open
Abstract
Kidney injury is a common complication of severe disease. Here, we report that injuries of the zebrafish embryonal kidney are rapidly repaired by a migratory response in 2-, but not in 1-day-old embryos. Gene expression profiles between these two developmental stages identify cxcl12a and myca as candidates involved in the repair process. Zebrafish embryos with cxcl12a, cxcr4b, or myca deficiency display repair abnormalities, confirming their role in response to injury. In mice with a kidney-specific knockout, Cxcl12 and Myc gene deletions suppress mitochondrial metabolism and glycolysis, and delay the recovery after ischemia/reperfusion injury. Probing these observations in zebrafish reveal that inhibition of glycolysis slows fast migrating cells and delays the repair after injury, but does not affect the slow cell movements during kidney development. Our findings demonstrate that Cxcl12 and Myc facilitate glycolysis to promote fast migratory responses during development and repair, and potentially also during tumor invasion and metastasis.
Collapse
|
23
|
Liu L, Yao J, Li Z, Zu G, Feng D, Li Y, Qasim W, Zhang S, Li T, Zeng H, Tian X. miR-381-3p knockdown improves intestinal epithelial proliferation and barrier function after intestinal ischemia/reperfusion injury by targeting nurr1. Cell Death Dis 2018. [PMID: 29540663 PMCID: PMC5852084 DOI: 10.1038/s41419-018-0450-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Impairment in gut barrier function induced by intestinal ischemia/reperfusion (I/R) injury is associated with high morbidity and mortality. Intestinal barrier function requires the tight coordination of epithelial migration, proliferation and differentiation. We previously observed that nuclear receptor-related protein 1 (nurr1)-mediated proliferative pathway was impaired in intestinal I/R injury. Here, we aimed to assess the effect of nurr1 on intestinal barrier function and to evaluate microRNA (miRNA)-nurr1-mediated restoration of intestinal barrier function in intestinal I/R injury. We induced an in vivo intestinal I/R injury mouse model by clamping and then releasing the superior mesenteric artery. We also performed an in vitro study in which we exposed Caco-2 and IEC-6 cells to hypoxia/reoxygenation (H/R) conditions to stimulate intestinal I/R injury. Our results demonstrated that nurr1 regulated intestinal epithelial development and barrier function after intestinal I/R injury. miR-381-3p, which directly suppressed nurr1 translation, was identified by microarray and bioinformatics analysis. miR-381-3p inhibition enhanced intestinal epithelial proliferation and barrier function in vitro and in vivo and also attenuated remote organ injury and improved survival. Importantly, nurr1 played an indispensable role in the protective effect of miR-381-3p inhibition. Collectively, these findings show that miR-381-3p inhibition mitigates intestinal I/R injury by enhancing nurr1-mediated intestinal epithelial proliferation and barrier function. This discovery may lead to the development of therapeutic interventions for intestinal I/R injury.
Collapse
Affiliation(s)
- Liwei Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China.
| | - Zhenlu Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Guo Zu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Dongcheng Feng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yang Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wasim Qasim
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Su Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Tong Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Huizhi Zeng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
24
|
Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int 2018; 93:27-40. [PMID: 29291820 DOI: 10.1016/j.kint.2017.07.030] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
The acutely injured mammalian kidney mounts a cellular and molecular response to repair itself. However, in patchy regions such intrinsic processes are impaired and dysregulated leading to chronic kidney disease. Currently, no therapy exists to treat established acute kidney injury per se. Strategies to augment human endogenous repair processes and retard associated profibrotic responses are urgently required. Recent studies have identified injury-induced activation of the intrinsic molecular driver of epithelial regeneration and induction of partial epithelial to the mesenchymal state, respectively. Activation of key developmental transcription factors drive such processes; however, whether these recruit comparable gene regulatory networks with target genes similar to those in nephrogenesis is unclear. Extensive complex molecular cross-talk between the nephron epithelia and immune, interstitial, and endothelial cells regulate renal recovery. In vitro-based M1/M2 macrophage subtypes have been increasingly linked to renal repair; however, the precise contribution of in vivo macrophage plasticity to repair responses is poorly understood. Endothelial cell-pericyte intimacy, balance of the angiocrine/antiangiocrine system, and endothelial cell-regulated inflammatory processes have an impact on renal recovery and fibrosis. Close scrutiny of cellular and molecular pathways in repairing human kidneys is imperative for the identification of promising therapeutic targets and biomarker of human renal repair processes.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
25
|
Kota SK, Pernicone E, Leaf DE, Stillman IE, Waikar SS, Kota SB. BPI Fold-Containing Family A Member 2/Parotid Secretory Protein Is an Early Biomarker of AKI. J Am Soc Nephrol 2017. [PMID: 28775000 DOI: 10.1681/asn.2016121265/-/dcsupplemental] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
AKI is a major cause of morbidity and mortality and an important contributor to the development and progression of CKD. Molecular biomarkers that improve the detection and prognostication of AKI are therefore required. We assessed the utility as such of BPI fold-containing family A member 2 (BPIFA2), also known as parotid secretory protein, which we identified via a multiplex quantitative proteomics screen of acutely injured murine kidneys. In physiologic conditions, BPIFA2 is expressed specifically in the parotid glands and is abundant in salivary secretions. In our study, AKI induced Bpifa2 expression in the kidneys of mice within 3 hours. Furthermore, we detected BPIFA2 protein in plasma and urine in these models as early as 6 hours after injury. However, renal injury did not induce the expression of Bpifa2 in mice lacking Nur77, an immediate early gene expressed in the kidneys during AKI. Notably, patients with AKI had higher blood and urine levels of BPIFA2 than did healthy individuals. Together, our results reveal that BPIFA2 is a potential early biomarker of AKI.
Collapse
Affiliation(s)
- Satya K Kota
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | | | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | - Sushrut S Waikar
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
26
|
Kota SK, Pernicone E, Leaf DE, Stillman IE, Waikar SS, Kota SB. BPI Fold-Containing Family A Member 2/Parotid Secretory Protein Is an Early Biomarker of AKI. J Am Soc Nephrol 2017; 28:3473-3478. [PMID: 28775000 DOI: 10.1681/asn.2016121265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/06/2017] [Indexed: 12/19/2022] Open
Abstract
AKI is a major cause of morbidity and mortality and an important contributor to the development and progression of CKD. Molecular biomarkers that improve the detection and prognostication of AKI are therefore required. We assessed the utility as such of BPI fold-containing family A member 2 (BPIFA2), also known as parotid secretory protein, which we identified via a multiplex quantitative proteomics screen of acutely injured murine kidneys. In physiologic conditions, BPIFA2 is expressed specifically in the parotid glands and is abundant in salivary secretions. In our study, AKI induced Bpifa2 expression in the kidneys of mice within 3 hours. Furthermore, we detected BPIFA2 protein in plasma and urine in these models as early as 6 hours after injury. However, renal injury did not induce the expression of Bpifa2 in mice lacking Nur77, an immediate early gene expressed in the kidneys during AKI. Notably, patients with AKI had higher blood and urine levels of BPIFA2 than did healthy individuals. Together, our results reveal that BPIFA2 is a potential early biomarker of AKI.
Collapse
Affiliation(s)
- Satya K Kota
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts.,Harvard Stem Cell Institute, Cambridge, Massachusetts
| | | | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | - Sushrut S Waikar
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
27
|
Sapiro JM, Monks TJ, Lau SS. All- trans-retinoic acid-mediated cytoprotection in LLC-PK 1 renal epithelial cells is coupled to p-ERK activation in a ROS-independent manner. Am J Physiol Renal Physiol 2017; 313:F1200-F1208. [PMID: 28768661 DOI: 10.1152/ajprenal.00085.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/13/2017] [Accepted: 07/23/2017] [Indexed: 02/05/2023] Open
Abstract
Although all-trans-retinoic acid (ATRA) provides protection against a variety of conditions in vivo, particularly ischemia, the molecular mechanisms underpinning these effects remain unclear. The present studies were designed to assess potential mechanisms by which ATRA affords cytoprotection against renal toxicants in LLC-PK1 cells. Pretreatment of LLC-PK1 cells with ATRA (25 μM) for 24 h afforded cytoprotection against oncotic cell death induced by p-aminophenol (PAP), 2-(glutathion-S-yl)hydroquinone (MGHQ), and iodoacetamide but not against apoptotic cell death induced by cisplatin. Inhibition of protein synthesis with cycloheximide blunted ATRA protection, indicating essential cell survival pathways must be engaged before toxicant exposure to provide cytoprotection. Interestingly, ATRA did not prevent the PAP-induced generation of reactive oxygen species (ROS) nor did it alter glutathione levels. Moreover, ATRA had no significant effect on Nrf2 protein expression, and the Nrf2 inducers sulforaphane and MG132 did not influence ATRA cytoprotection, suggesting cytoprotective pathways beyond those that influence ROS levels contribute to ATRA protection. In contrast, ATRA rapidly (15 min) induced levels of the cellular stress kinases p-ERK and p-AKT at concentrations of ATRA (10 and 25 μM) required for cytoprotection. Consistent with a role for p-ERK in ATRA-mediated cytoprotection, inhibition of p-ERK with PD98059 reduced the ability of ATRA to afford protection against PAP toxicity. Collectively, these data suggest that p-ERK and its downstream targets, independent of ROS and antioxidant signaling, are important contributors to the cytoprotective effects of ATRA against oncotic cell death.
Collapse
Affiliation(s)
- Jessica M Sapiro
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Terrence J Monks
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and .,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Serrine S Lau
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
28
|
Graf AE, Lallier SW, Waidyaratne G, Thompson MD, Tipple TE, Hester ME, Trask AJ, Rogers LK. Maternal high fat diet exposure is associated with increased hepcidin levels, decreased myelination, and neurobehavioral changes in male offspring. Brain Behav Immun 2016; 58:369-378. [PMID: 27519153 PMCID: PMC5611850 DOI: 10.1016/j.bbi.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022] Open
Abstract
Maternal obesity induces chronic inflammatory responses that impact the fetus/neonate during the perinatal period. Inflammation, iron regulation, and myelination are closely interconnected and disruptions in these processes may have deleterious effects on neurodevelopment. Hepcidin levels are increased in response to inflammation causing subsequent decreases in ferroportin and available iron needed for myelination. Our current studies were designed to test the hypotheses that: 1) maternal high fat diet (HFD) prior to and during pregnancy is sufficient to induce inflammation and alter iron regulation in the brain of the offspring, and 2) HFD exposure is associated with altered myelination and neurobehavioral deficits in the offspring. Our data revealed modest increases in inflammatory cytokines in the serum of dams fed HFD prior to pregnancy compared to dams fed a control diet (CD). Early increases in IL-5 and decreases in IL-10 were observed in serum at PN7 while IL-5 remained elevated at PN21 in the HFD-exposed pups. At PN0, most cytokine levels in whole brain homogenates were higher in the pups born to HFD-fed dams but were not different or were lower than in pups born to CD-fed dams at PN21. Conversely, the inflammation mediated transcription factor Nurr77 remained elevated at PN21. At birth, brain hepcidin, ferroportin, and l-ferritin levels were elevated in pups born to HFD-fed dams compared to pups born to CD-fed dams. Hepcidin levels remained elevated at PN7 and PN21 while ferroportin and l-ferritin levels were lower at PN7 and were not different at PN21. Decreases in myelination in the medial cortex were observed in male but not in female pups born to maternal HFD-fed dams at PN21. These structural changes correlated with changes in behavior (novel object recognition) in at 4months in males only. Our data indicate that maternal obesity (HFD) results in disruption of iron regulation in the brains of the offspring with structural and neurobehavioral deficits in males.
Collapse
Affiliation(s)
- Amanda E. Graf
- Centers for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, United States,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Scott W. Lallier
- Centers for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, United States
| | - Gavisha Waidyaratne
- Centers for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, United States
| | - Michael D. Thompson
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Trent E. Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mark E. Hester
- Centers for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, United States
| | - Aaron J. Trask
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States,Cardiovascular Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lynette K. Rogers
- Centers for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, United States,Department of Pediatrics, The Ohio State University, Columbus, OH, United States,Corresponding author at:. Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, 575 Children’s Cross Road, Columbus, OH 43215, United States. (L.K. Rogers)
| |
Collapse
|
29
|
Hamers AAJ, Argmann C, Moerland PD, Koenis DS, Marinković G, Sokolović M, de Vos AF, de Vries CJM, van Tiel CM. Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance. BMC Genomics 2016; 17:162. [PMID: 26932821 PMCID: PMC4774191 DOI: 10.1186/s12864-016-2469-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023] Open
Abstract
Background The nuclear orphan receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to modulate the inflammatory response of macrophages. To further elucidate the role of Nur77 in macrophage physiology, we compared the transcriptome of bone marrow-derived macrophages (BMM) from wild-type (WT) and Nur77-knockout (KO) mice. Results In line with previous observations, SDF-1α (CXCL12) was among the most upregulated genes in Nur77-deficient BMM and we demonstrated that Nur77 binds directly to the SDF-1α promoter, resulting in inhibition of SDF-1α expression. The cytokine receptor CX3CR1 was strongly downregulated in Nur77-KO BMM, implying involvement of Nur77 in macrophage tolerance. Ingenuity pathway analyses (IPA) to identify canonical pathways regulation and gene set enrichment analyses (GSEA) revealed a potential role for Nur77 in extracellular matrix homeostasis. Nur77-deficiency increased the collagen content of macrophage extracellular matrix through enhanced expression of several collagen subtypes and diminished matrix metalloproteinase (MMP)-9 activity. IPA upstream regulator analyses discerned the small GTPase Rac1 as a novel regulator of Nur77-mediated gene expression. We identified an inhibitory feedback loop with increased Rac1 activity in Nur77-KO BMM, which may explain the augmented phagocytic activity of these cells. Finally, we predict multiple chronic inflammatory diseases to be influenced by macrophage Nur77 expression. GSEA and IPA associated Nur77 to osteoarthritis, chronic obstructive pulmonary disease, rheumatoid arthritis, psoriasis, and allergic airway inflammatory diseases. Conclusions Altogether these data identify Nur77 as a modulator of macrophage function and an interesting target to treat chronic inflammatory disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2469-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anouk A J Hamers
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: Department of Inflammation Biology, La Jolla Institute for Allergy and Immunology, San Diego, USA.
| | - Carmen Argmann
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: Institute for Genomics and Multiscale Biology Mount Sinai Hospital, New York, USA.
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Duco S Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Goran Marinković
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Milka Sokolović
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: European Food Information Council, Brussels, Belgium.
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE, Roman BL, Zhang MZ, Harris R, Hukriede NA, de Caestecker MP. Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. J Am Soc Nephrol 2015; 27:495-508. [PMID: 26109319 DOI: 10.1681/asn.2014111108] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) has been used therapeutically to reduce injury and fibrosis in models of AKI, but little is known about the regulation of this pathway and what role it has in regulating injury and repair after AKI. In these studies, we show that RA signaling is activated in mouse and zebrafish models of AKI, and that these responses limit the extent of injury and promote normal repair. These effects were mediated through a novel mechanism by which RA signaling coordinated the dynamic equilibrium of inflammatory M1 spectrum versus alternatively activated M2 spectrum macrophages. Our data suggest that locally synthesized RA represses proinflammatory macrophages, thereby reducing macrophage-dependent injury post-AKI, and activates RA signaling in injured tubular epithelium, which in turn promotes alternatively activated M2 spectrum macrophages. Because RA signaling has an essential role in kidney development but is repressed in the adult, these findings provide evidence of an embryonic signaling pathway that is reactivated after AKI and involved in reducing injury and enhancing repair.
Collapse
Affiliation(s)
- Takuto Chiba
- Division of Nephrology, Department of Medicine, Departments of Cell and Developmental Biology, and
| | | | | | | | | | | | | | | | - Haichun Yang
- Pathology, Vanderbilt University, Nashville, Tennessee
| | - Catherine E Alford
- Department of Pathology and Laboratory Medicine, Veteran Affairs Tennessee Valley Health Authority, Nashville, Tennessee; and
| | | | | | | | - Neil A Hukriede
- Departments of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Departments of Cell and Developmental Biology, and
| |
Collapse
|
31
|
Hedrick E, Lee SO, Kim G, Abdelrahim M, Jin UH, Safe S, Abudayyeh A. Nuclear Receptor 4A1 (NR4A1) as a Drug Target for Renal Cell Adenocarcinoma. PLoS One 2015; 10:e0128308. [PMID: 26035713 PMCID: PMC4452731 DOI: 10.1371/journal.pone.0128308] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022] Open
Abstract
The orphan nuclear receptor NR4A1 exhibits pro-oncogenic activity in cancer cell lines. NR4A1 activates mTOR signaling, regulates genes such as thioredoxin domain containing 5 and isocitrate dehydrogenase 1 that maintain low oxidative stress, and coactivates specificity protein 1 (Sp1)-regulated pro-survival and growth promoting genes. Transfection of renal cell carcinoma (RCC) ACHN and 786-O cells with oligonucleotides that target NR4A1 results in a 40–60% decrease in cell proliferation and induction of apoptosis. Moreover, knockdown of NR4A1 in RCC cells decreased bcl-2, survivin and epidermal growth factor receptor expression, inhibited of mTOR signaling, induced oxidative and endoplasmic reticulum stress, and decreased TXNDC5 and IDH1. We have recently demonstrated that selected 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methane (C-DIM) compounds including the p-hydroxyphenyl (DIM-C-pPhOH) and p-carboxymethyl (DIM-C-pPhCO2Me) analogs bind NR4A1 and act as antagonists. Both DIM-C-pPhOH and DIM-C-pPhCO2Me inhibited growth and induced apoptosis in ACHN and 786-O cells, and the functional and genomic effects of the NR4A1 antagonists were comparable to those observed after NR4A1 knockdown. These results indicate that NR4A1 antagonists target multiple growth promoting and pro-survival pathways in RCC cells and in tumors (xenograft) and represent a novel chemotherapy for treating RCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/therapy
- Cell Proliferation
- Fluorescent Antibody Technique
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- Male
- Mice
- Mice, Nude
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Oligonucleotides, Antisense/genetics
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Gyungeun Kim
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX, United States of America
| | - Maen Abdelrahim
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX, United States of America
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX, United States of America
- * E-mail: (SS), (AA)
| | - Ala Abudayyeh
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- * E-mail: (SS), (AA)
| |
Collapse
|
32
|
Yeung MY, Ding Q, Brooks CR, Xiao S, Workman CJ, Vignali DA, Ueno T, Padera RF, Kuchroo VK, Najafian N, Rothstein DM. TIM-1 signaling is required for maintenance and induction of regulatory B cells. Am J Transplant 2015; 15:942-53. [PMID: 25645598 PMCID: PMC4530122 DOI: 10.1111/ajt.13087] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/09/2014] [Accepted: 10/28/2014] [Indexed: 01/25/2023]
Abstract
Apart from their role in humoral immunity, B cells can exhibit IL-10-dependent regulatory activity (Bregs). These regulatory subpopulations have been shown to inhibit inflammation and allograft rejection. However, our understanding of Bregs has been hampered by their rarity, lack of a specific marker, and poor insight into their induction and maintenance. We previously demonstrated that T cell immunoglobulin mucin domain-1 (TIM-1) identifies over 70% of IL-10-producing B cells, irrespective of other markers. We now show that TIM-1 is the primary receptor responsible for Breg induction by apoptotic cells (ACs). However, B cells that express a mutant form of TIM-1 lacking the mucin domain (TIM-1(Δmucin) ) exhibit decreased phosphatidylserine binding and are unable to produce IL-10 in response to ACs or by specific ligation with anti-TIM-1. TIM-1(Δmucin) mice also exhibit accelerated allograft rejection, which appears to be due in part to their defect in both baseline and induced IL-10(+) Bregs, since a single transfer of WT TIM-1(+) B cells can restore long-term graft survival. These data suggest that TIM-1 signaling plays a direct role in Breg maintenance and induction both under physiological conditions (in response to ACs) and in response to therapy through TIM-1 ligation. Moreover, they directly demonstrate that the mucin domain regulates TIM-1 signaling.
Collapse
Affiliation(s)
- Melissa Y. Yeung
- Transplantation Research Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Ding
- Thomas E. Starzl Transplantation Institute, Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Craig R. Brooks
- Renal Division, Harvard Medical School, Boston, Massachusetts, USA
| | - Sheng Xiao
- Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dario A.A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Takuya Ueno
- Transplantation Research Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert F. Padera
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vijay K. Kuchroo
- Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts, USA
| | - Nader Najafian
- Transplantation Research Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Nephrology, Cleveland Clinic Florida, Weston, FL, USA
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute, Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Dai Y, Zhang W, Zhou X, Shi J. Inhibition of c-Jun N-terminal kinase ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Neurochem Res 2014; 39:1603-11. [PMID: 24928238 DOI: 10.1007/s11064-014-1355-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022]
Abstract
Nur77 is a potent pro-apoptotic member of the orphan nuclear receptor superfamily. Our previous study revealed Nur77-mediated apoptotic also involved in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). Previous researches show that c-Jun N-terminal kinase (JNK) positively regulates Nur77 nuclear export and apoptosis by phosphorylating Nur77. To determine whether activation of JNK is directly associated with Nur77 dependent apoptosis pathway. We hypothesized that SP600125, a chemical inhibitor of JNK, may effectively ameliorate EBI by inhibiting Nur77 phosphorylation and its transcriptional activity. Hence, in this study was designed to explore the neuroprotective effects of SP600125 in EBI after SAH. Adult male SD rats were randomly assigned to four groups: control; SAH + DMSO; SAH + SP10 and SAH + SP30, a dose of 10 and 30 mg/kg SP600125 was directly administered intraperitoneally 30 min before and 2 h after SAH induction. SP600125 markedly decreased expressions of p-JNK, p-Nur77, Bcl-2, cyto C, caspase-3 and inhibited apoptosis. Improvement of neurological deficit, alleviation of brain edema and amelioration of EBI were obtained after treatment of SP600125. Transferase-mediated dUTP nick end labeling-positive cells were reduced markedly in brain cortex by SP600125. Our studies indicate JNK plays important roles in Nur77 activation. These findings strongly support the hypothesis that SP600125 treatment can ameliorate EBI after experimentally induced SAH by inhibiting a Nur77-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Yuxiang Dai
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | |
Collapse
|
34
|
Dai Y, Zhang W, Sun Q, Zhang X, Zhou X, Hu Y, Shi J. Nuclear receptor nur77 promotes cerebral cell apoptosis and induces early brain injury after experimental subarachnoid hemorrhage in rats. J Neurosci Res 2014; 92:1110-21. [PMID: 24737679 DOI: 10.1002/jnr.23392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
Abstract
Nur77 is a potent proapoptotic member of the nuclear receptor superfamily that is expressed predominantly in brain tissue. It has been demonstrated that Nur77 mediates apoptosis in multiple organs. Nur77-mediated early brain injury (EBI) involves a conformational change in BCL-2 and triggers cytochrome C (cytoC) release resulting in cellular apoptosis. This study investigates whether Nur77 can promote cerebral cell apoptosis after experimentally induced subarachnoid hemorrhage (SAH) in rats. Sprague Dawley rats were randomly assigned to three groups: 1) untreated group, 2) treatment control group, and 3) SAH group. The experimental SAH group was divided into four subgroups, corresponding to 12 hr, 24 hr, 48 hr, and 72 hr after experimentally induced SAH. It remains unclear whether Nur77 can play an important role during EBI after SAH as a proapoptotic protein in cerebral cells. Cytosporone B (Csn-B) was used to demonstrate that Nur77 could be enriched and used to aggravate EBI after SAH. Rats treated with Csn-B were given an intraperitoneal injection (13 mg/kg) 30 min after experimentally induced SAH. We found that Nur77 promotes cerebral cell apoptosis by mediating EBI and triggering a conformational change in BCL-2, resulting in cytoC release. Nur77 activity, along with cerebral cell apoptosis, peaked at 24 hr after SAH onset. After induction of SAH, an injection of Csn-B, an agonist for Nur77, enhanced the expression and function of Nur77. In summary, we have demonstrated the proapoptotic effect of Nur77 within cerebral cells, an effect that can be further exacerbated with Csn-B stimulation.
Collapse
Affiliation(s)
- Yuxiang Dai
- Jinling Hospital, School of Medicine, Department of Neurosurgery, Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Westbrook L, Johnson AC, Regner KR, Williams JM, Mattson DL, Kyle PB, Henegar JR, Garrett MR. Genetic susceptibility and loss of Nr4a1 enhances macrophage-mediated renal injury in CKD. J Am Soc Nephrol 2014; 25:2499-510. [PMID: 24722447 DOI: 10.1681/asn.2013070786] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nuclear hormone receptors of the NR4A subgroup have been implicated in cancer, atherosclerosis, and metabolic disease. However, little is known about the role of these receptors in kidney health or disease. Nr4a1-deficient rats (Nr4a1(-/-)) developed on a genetic background susceptible to kidney injury (fawn-hooded hypertensive rat [FHH]) were evaluated for BP, proteinuria, renal function, and metabolic parameters from 4 to 24 weeks-of-age. By week 24, Nr4a1(-/-) rats exhibited significantly higher proteinuria (approximately 4-fold) and decreased GFR compared with FHH controls. The severity of tubular atrophy, tubular casts, and interstitial fibrosis increased significantly in Nr4a1(-/-) rats and was accompanied by a large increase in immune cell infiltration, predominantly macrophages and to a lesser extent T cells and B cells. Global transcriptome and network analyses at weeks 8, 16, and 24 identified several proinflammatory genes and pathways differentially regulated between strains. Bone marrow crosstransplantation studies demonstrated that kidney injury in Nr4a1(-/-) rats was almost completely rescued by bone marrow transplanted from FHH controls. In vitro, macrophages isolated from Nr4a1(-/-) rats demonstrated increased immune activation compared with FHH-derived macrophages. In summary, the loss of Nr4a1 in immune cells appears to cause the increased kidney injury and reduced renal function observed in the Nr4a1(-/-) model.
Collapse
Affiliation(s)
| | | | | | - Jan M Williams
- Departments of Pharmacology and Toxicology, Medicine, and
| | - David L Mattson
- Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Patrick B Kyle
- Pathology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jeffery R Henegar
- Pathology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | | |
Collapse
|
36
|
Dai Y, Sun Q, Zhang X, Hu Y, Zhou M, Shi J. Cyclosporin A ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Brain Res 2014; 1556:67-76. [DOI: 10.1016/j.brainres.2014.01.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 12/25/2022]
|
37
|
McHugh KM. Megabladder mouse model of congenital obstructive nephropathy: genetic etiology and renal adaptation. Pediatr Nephrol 2014; 29:645-50. [PMID: 24276861 PMCID: PMC3928515 DOI: 10.1007/s00467-013-2658-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 01/23/2023]
Abstract
Congenital obstructive nephropathy remains one of the leading causes of chronic renal failure in children. The direct link between obstructed urine flow and abnormal renal development and subsequent dysfunction represents a central paradigm of urogenital pathogenesis that has far-reaching clinical implications. Even so, a number of diagnostic, prognostic, and therapeutic quandaries still exist in the management of congenital obstructive nephropathy. Studies in our laboratory have characterized a unique mutant mouse line that develops in utero megabladder, variable hydronephrosis, and progressive renal failure. Megabladder mice represent a valuable functional model for the study of congenital obstructive nephropathy. Recent studies have begun to shed light on the genetic etiology of mgb (-/-) mice as well as the molecular pathways controlling disease progression in these animals.
Collapse
Affiliation(s)
- Kirk M. McHugh
- Department of Pediatrics and Division of Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,Center for Molecular and Human Genetics, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| |
Collapse
|
38
|
Niu G, Lu L, Gan J, Zhang D, Liu J, Huang G. Dual roles of orphan nuclear receptor TR3/Nur77/NGFI-B in mediating cell survival and apoptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:219-58. [PMID: 25376494 DOI: 10.1016/b978-0-12-800177-6.00007-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a transcriptional factor, Nur77 has sparked interests across different research fields in recent years. A number of studies have demonstrated the functional complexity of Nur77 in mediating survival/apoptosis in a variety of cells, including tumor cells. Conflicting observations also exist in clinical reports, in that TR3 behaves like an oncogene in tumors of the GI tract, lung, and breast, that is negatively associated with tumor stage and patient prognosis; while functions as a tumor suppressor gene in malignancies of the hematological and lymphatic system, skin, and ovary whose malfunction results in carcinogenesis. This chapter summarizes the apparent opposing effects of Nur77 on cells and explicates the mechanisms that determine the functional preference of Nur77. We conclude that in addition to cell type and agent context, other factors such as cellular localization, signaling pathway, and posttranslational modification also determine the final effects of Nur77 on cells.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Lu
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jun Gan
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Zhang
- Main Library, Shanghai Jiao Tong University, Shanghai, China
| | - Jingzheng Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Molecular basis of renal adaptation in a murine model of congenital obstructive nephropathy. PLoS One 2013; 8:e72762. [PMID: 24023768 PMCID: PMC3762787 DOI: 10.1371/journal.pone.0072762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/15/2013] [Indexed: 12/02/2022] Open
Abstract
Congenital obstructive nephropathy is a common cause of chronic kidney disease and a leading indication for renal transplant in children. The cellular and molecular responses of the kidney to congenital obstruction are incompletely characterized. In this study, we evaluated global transcription in kidneys with graded hydronephrosis in the megabladder (mgb−/−) mouse to better understand the pathophysiology of congenital obstructive nephropathy. Three primary pathways associated with kidney remodeling/repair were induced in mgb−/− kidneys independent of the degree of hydronephrosis. These pathways included retinoid signaling, steroid hormone metabolism, and renal response to injury. Urothelial proliferation and the expression of genes with roles in the integrity and maintenance of the renal urothelium were selectively increased in mgb−/− kidneys. Ngal/Lcn2, a marker of acute kidney injury, was elevated in 36% of kidneys with higher grades of hydronephrosis. Evaluation of Ngalhigh versus Ngallow kidneys identified the expression of several novel candidate markers of renal injury. This study indicates that the development of progressive hydronephrosis in mgb−/− mice results in renal adaptation that includes significant changes in the morphology and potential functionality of the renal urothelium. These observations will permit the development of novel biomarkers and therapeutic approaches to progressive renal injury in the context of congenital obstruction.
Collapse
|
40
|
Balasubramanian S, Kota SK, Kuchroo VK, Humphreys BD, Strom TB. TIM family proteins promote the lysosomal degradation of the nuclear receptor NUR77. Sci Signal 2012; 5:ra90. [PMID: 23233528 DOI: 10.1126/scisignal.2003200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
T cell immunoglobulin and mucin domain (TIM) proteins are cell-surface signaling receptors in T cells and scavenger receptors in antigen-presenting cells and kidney tubular epithelia. Here, we demonstrated a function for TIM proteins in mediating the degradation of NUR77, a nuclear receptor implicated in apoptosis and cell survival. TIM proteins interacted with and mediated the lysosomal degradation of NUR77 in a phosphoinositide 3-kinase-dependent pathway. We also showed dynamic cycling of TIM-1 to and from the cell surface through clathrin-dependent constitutive endocytosis. Blocking this process or mutating the phosphatidylserine-binding pocket in TIM-1 abrogated TIM-1-mediated degradation of NUR77. In an in vitro model of kidney injury, silencing TIM-1 increased NUR77 abundance and decreased epithelial cell survival. These results show that TIM proteins may affect immune cell function and the response of the kidney to injury.
Collapse
Affiliation(s)
- Savithri Balasubramanian
- Harvard Medical School, Department of Medicine, The Transplant Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
41
|
Zhou TB, Qin YH. The signaling pathways of LMX1B and its role in glomerulosclerosis. J Recept Signal Transduct Res 2012; 32:285-9. [PMID: 23046462 DOI: 10.3109/10799893.2012.727832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 2012; 303:F1487-94. [PMID: 22993069 DOI: 10.1152/ajprenal.00352.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a well-controlled, reliable animal model of ischemic AKI.
Collapse
Affiliation(s)
- Qingqing Wei
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences Univ., Augusta, GA 30912, USA
| | | |
Collapse
|