1
|
Cheng C, Wang G, Zhu Y, Wu H, Zhang L, Liu Z, Huang Y, Zhang J. Multiplexed bulk and single-cell RNA-seq hybrid enables cost-efficient disease modeling with chimeric organoids. Nat Commun 2024; 15:3946. [PMID: 38729950 PMCID: PMC11087505 DOI: 10.1038/s41467-024-48282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Disease modeling with isogenic Induced Pluripotent Stem Cell (iPSC)-differentiated organoids serves as a powerful technique for studying disease mechanisms. Multiplexed coculture is crucial to mitigate batch effects when studying the genetic effects of disease-causing variants in differentiated iPSCs or organoids, and demultiplexing at the single-cell level can be conveniently achieved by assessing natural genetic barcodes. Here, to enable cost-efficient time-series experimental designs via multiplexed bulk and single-cell RNA-seq of hybrids, we introduce a computational method in our Vireo Suite, Vireo-bulk, to effectively deconvolve pooled bulk RNA-seq data by genotype reference, and thereby quantify donor abundance over the course of differentiation and identify differentially expressed genes among donors. Furthermore, with multiplexed scRNA-seq and bulk RNA-seq, we demonstrate the usefulness and necessity of a pooled design to reveal donor iPSC line heterogeneity during macrophage cell differentiation and to model rare WT1 mutation-driven kidney disease with chimeric organoids. Our work provides an experimental and analytic pipeline for dissecting disease mechanisms with chimeric organoids.
Collapse
Affiliation(s)
- Chen Cheng
- Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow for Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Gang Wang
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow for Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Hangdi Wu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow for Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhihong Liu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yuanhua Huang
- Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow for Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Schindler M, Endlich N. Zebrafish as a model for podocyte research. Am J Physiol Renal Physiol 2024; 326:F369-F381. [PMID: 38205541 DOI: 10.1152/ajprenal.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Semenikhina M, Fedoriuk M, Stefanenko M, Klemens CA, Cherezova A, Marshall B, Hall G, Levchenko V, Solanki A, Lipschutz JH, Ilatovskaya DV, Staruschenko A, Palygin O. β-Arrestin pathway activation by selective ATR1 agonism promotes calcium influx in podocytes, leading to glomerular damage. Clin Sci (Lond) 2023; 137:1789-1804. [PMID: 38051199 PMCID: PMC11194114 DOI: 10.1042/cs20230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Angiotensin receptor blockers (ARBs) are the first-line treatment for hypertension; they act by inhibiting signaling through the angiotensin 1 receptor (AT1R). Recently, a novel biased AT1R agonist, TRV120027 (TRV), which selectively activates the β-arrestin cascade and blocks the G-protein-coupled receptor pathway has been proposed as a potential blood pressure medication. Here, we explored the effects of TRV and associated β-arrestin signaling in podocytes, essential cells of the kidney filter. We used human podocyte cell lines to determine β-arrestin's involvement in calcium signaling and cytoskeletal reorganization and Dahl SS rats to investigate the chronic effects of TRV administration on glomerular health. Our experiments indicate that the TRV-activated β-arrestin pathway promotes the rapid elevation of intracellular Ca2+ in a dose-dependent manner. Interestingly, the amplitude of β-arrestin-mediated Ca2+ influx was significantly higher than the response to similar Ang II concentrations. Single-channel analyses show rapid activation of transient receptor potential canonical (TRPC) channels following acute TRV application. Furthermore, the pharmacological blockade of TRPC6 significantly attenuated the β-arrestin-mediated Ca2+ influx. Additionally, prolonged activation of the β-arrestin pathway in podocytes resulted in pathological actin cytoskeleton rearrangements, higher apoptotic cell markers, and augmented glomerular damage. TRV-activated β-arrestin signaling in podocytes may promote TRPC6 channel-mediated Ca2+ influx, foot process effacement, and apoptosis, possibly leading to severe defects in glomerular filtration barrier integrity and kidney health. Under these circumstances, the potential therapeutic application of TRV for hypertension treatment requires further investigation to assess the balance of the benefits versus possible deleterious effects and off-target damage.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
| | - Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Brendan Marshall
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Ashish Solanki
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Joshua H. Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
4
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Bezdicka M, Kaufman F, Krizova I, Dostalkova A, Rumlova M, Seeman T, Vondrak K, Fencl F, Zieg J, Soucek O. Alteration in DNA-binding affinity of Wilms tumor 1 protein due to WT1 genetic variants associated with steroid - resistant nephrotic syndrome in children. Sci Rep 2022; 12:8704. [PMID: 35610319 PMCID: PMC9130146 DOI: 10.1038/s41598-022-12760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Approximately one third of children with steroid-resistant nephrotic syndrome (SRNS) carry pathogenic variants in one of the many associated genes. The WT1 gene coding for the WT1 transcription factor is among the most frequently affected genes. Cases from the Czech national SRNS database were sequenced for exons 8 and 9 of the WT1 gene. Eight distinct exonic WT1 variants in nine children were found. Three children presented with isolated SRNS, while the other six manifested with additional features. To analyze the impact of WT1 genetic variants, wild type and mutant WT1 proteins were prepared and the DNA-binding affinity of these proteins to the target EGR1 sequence was measured by microscale thermophoresis. Three WT1 mutants showed significantly decreased DNA-binding affinity (p.Arg439Pro, p.His450Arg and p.Arg463Ter), another three mutants showed significantly increased binding affinity (p.Gln447Pro, p.Asp469Asn and p.His474Arg), and the two remaining mutants (p.Cys433Tyr and p.Arg467Trp) showed no change of DNA-binding affinity. The protein products of WT1 pathogenic variants had variable DNA-binding affinity, and no clear correlation with the clinical symptoms of the patients. Further research is needed to clarify the mechanisms of action of the distinct WT1 mutants; this could potentially lead to individualized treatment of a so far unfavourable disease.
Collapse
Affiliation(s)
- Martin Bezdicka
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic.
| | - Filip Kaufman
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Ivana Krizova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alzbeta Dostalkova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Rumlova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Seeman
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Karel Vondrak
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Filip Fencl
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Ondrej Soucek
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
6
|
Dorval G, Servais A, Boyer O. The genetics of steroid-resistant nephrotic syndrome in children. Nephrol Dial Transplant 2022; 37:648-651. [DOI: 10.1093/ndt/gfaa221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guillaume Dorval
- Service de génétique moléculaire, Hôpital Necker - Enfants Malades, APHP, Paris, France
- Inserm U1163, Institut Imagine, Université de Paris, Paris, France
| | - Aude Servais
- Inserm U1163, Institut Imagine, Université de Paris, Paris, France
- Néphrologie et Transplantation, centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France
| | - Olivia Boyer
- Inserm U1163, Institut Imagine, Université de Paris, Paris, France
- Néphrologie pédiatrique, centre de référence MARHEA, centre de référence du syndrome néphrotique idiopathique de l’enfant et de l’adulte, Hôpital Necker - Enfants Malades, APHP, Paris, France
| |
Collapse
|
7
|
Li Q, Zhu L, Shi S, Xu D, Lv J, Zhang H. Case Report: A Pathogenic Missense Variant of WT1 Cosegregates With Proteinuria in a Six-Generation Chinese Family With IgA Nephropathy. Front Med (Lausanne) 2022; 8:810940. [PMID: 35174184 PMCID: PMC8841721 DOI: 10.3389/fmed.2021.810940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is the most common type of primary glomerulonephritis worldwide. In addition to hematuria, proteinuria is observed in a considerable proportion of patients with IgAN and has proven to be a strong risk factor for disease progression. Although the exact pathogenesis of IgAN is still unclear, genetic factors are widely considered to play a role in its occurrence and development. Here, we investigated a large IgAN-associated pedigree of 47 members belonging to six generations. Two members of the family who presented with proteinuria and hematuria were diagnosed with IgAN through renal biopsy. Four other members also exhibited proteinuria or hematuria but without renal biopsy. Using whole-exome sequencing, we identified a likely pathogenic variant in WT1 (c.1397C>T; p.Ser466Phe) that cosegregated with proteinuria in the affected family members. In addition, another pathogenic variant in NPHS1 (c.3478C>T; p.Arg1160Ter) was identified; however, it did not cosegregate with abnormal proteinuria. Compared to individuals in the pedigree with only one heterozygous WT1 variant (c.1397C>T; p.Ser466Phe), the proband and her younger brother carried an additional WT1 variant (c.1433-10G>A) and presented with a more severe phenotype and rapid progression to end-stage kidney disease. Our findings suggest the WT1 missense variant (c.1397C>T; p.Ser466Phe)-induced primary podocyte injury might contribute to the proteinuria phenotype and IgAN progression in this pedigree.
Collapse
|
8
|
Bioengineered Cystinotic Kidney Tubules Recapitulate a Nephropathic Phenotype. Cells 2022; 11:cells11010177. [PMID: 35011739 PMCID: PMC8750898 DOI: 10.3390/cells11010177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life. Current in vitro cystinotic models cannot recapitulate all clinical features of the disease which limits their translational value. Therefore, the development of novel, complex in vitro models that better mimic the disease and exhibit characteristics not compatible with 2-dimensional cell culture is of crucial importance for novel therapies development. In this study, we developed a 3-dimensional bioengineered model of nephropathic cystinosis by culturing conditionally immortalized proximal tubule epithelial cells (ciPTECs) on hollow fiber membranes (HFM). Cystinotic kidney tubules showed lysosomal cystine accumulation, increased autophagy and vesicle trafficking deterioration, the impairment of several metabolic pathways, and the disruption of the epithelial monolayer tightness as compared to control kidney tubules. In particular, the loss of monolayer organization and leakage could be mimicked with the use of the cystinotic kidney tubules, which has not been possible before, using the standard 2-dimensional cell culture. Overall, bioengineered cystinotic kidney tubules recapitulate better the nephropathic phenotype at a molecular, structural, and functional proximal tubule level compared to 2-dimensional cell cultures.
Collapse
|
9
|
Arroyo-Parejo Drayer P, Seeherunvong W, Katsoufis CP, DeFreitas MJ, Seeherunvong T, Chandar J, Abitbol CL. Spectrum of Clinical Manifestations in Children With WT1 Mutation: Case Series and Literature Review. Front Pediatr 2022; 10:847295. [PMID: 35498778 PMCID: PMC9051246 DOI: 10.3389/fped.2022.847295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mutations of the Wilms tumor suppressor-1 gene (WT1) are associated with life-threatening glomerulopathy, disorders of sexual development, Wilm's tumor, and gonadal malignancies. Our objectives were to describe the clinical presentations, age of progression, and onset of complications of WT1 mutation through a case series and literature review. METHODS A retrospective study included all patients followed at the University of Miami/Holtz Children's Hospital from January 2000 to December 2020 with a diagnosis of WT1 mutation. A literature review of WT1 mutation cases was analyzed for clinical manifestations, karyotype, and long-term outcomes. RESULTS The WT1 mutation was identified in 9 children, median age at presentation of 0.9 years (range 1 week to 7 years). A total of four had female phenotypes, and 5 had abnormalities of male external genitalia, while all had XY karyotypes. All progressed to end-stage kidney disease (ESKD) and received a kidney transplant at a median age of 5 years (1.5-15 years). During a median time of follow-up of 9 years (range 2-28 years), there were 2 allograft losses after 7 and 10 years and no evidence of post-transplant malignancy. From 333 cases identified from the literature review, the majority had female phenotype 66% (219/333), but the predominant karyotype was XY (55%, 183/333). Of the female phenotypes, 32% (69/219) had XY sex reversal. Wilm's tumor occurred in 24%, predominantly in males with gonadal anomalies. CONCLUSIONS Early recognition of WT1 mutation is essential for comprehensive surveillance of potential malignancy, avoidance of immunosuppressants for glomerulopathy, and establishing long-term multidisciplinary management.
Collapse
Affiliation(s)
- Patricia Arroyo-Parejo Drayer
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wacharee Seeherunvong
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Chryso P Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marissa J DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States.,Pediatric Renal Transplantation, Miami Transplant Institute, Jackson Health System, Miami, FL, United States
| | - Tossaporn Seeherunvong
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States.,Pediatric Renal Transplantation, Miami Transplant Institute, Jackson Health System, Miami, FL, United States
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Arya S, Kumar S, Lila AR, Sarathi V, Memon SS, Barnabas R, Thakkar H, Patil VA, Shah NS, Bandgar TR. Exonic WT1 pathogenic variants in 46,XY DSD associated with gonadoblastoma. Endocr Connect 2021; 10:1522-1530. [PMID: 34727091 PMCID: PMC8679883 DOI: 10.1530/ec-21-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The literature regarding gonadoblastoma risk in exonic Wilms' tumor suppressor gene (WT1) pathogenic variants is sparse. The aim of this study is to describe the phenotypic and genotypic characteristics of Asian-Indian patients with WT1 pathogenic variants and systematically review the literature on association of exonic WT1 pathogenic variants and gonadoblastoma. DESIGN Combined retrospective-prospective analysis. METHODS In this study, 46,XY DSD patients with WT1 pathogenic variants detected by clinical exome sequencing from a cohort of 150 index patients and their affected relatives were included. The PubMed database was searched for the literature on gonadoblastoma with exonic WT1 pathogenic variants. RESULTS The prevalence of WT1 pathogenic variants among 46,XY DSD index patients was 2.7% (4/150). All the four patients had atypical genitalia and cryptorchidism. None of them had Wilms' tumor till the last follow-up, whereas one patient had late-onset nephropathy. 11p13 deletion was present in one patient with aniridia. The family with p.Arg458Gln pathogenic variant had varied phenotypic spectrum of Frasier syndrome; two siblings had gonadoblastoma, one of them had growing teratoma syndrome (first to report with WT1). On literature review, of >100 exonic point pathogenic variants, only eight variants (p.Arg462Trp, p.Tyr177*, p.Arg434His, p.Met410Arg, p.Gln142*, p.Glu437Lys, p.Arg458*, and p.Arg458Gln) in WT1 were associated with gonadoblastoma in a total of 15 cases (including our two cases). CONCLUSIONS WT1 alterations account for 3% of 46,XY DSD patients in our cohort. 46,XY DSD patients harboring exonic WT1 pathogenic variants carry a small but definitive risk of gonadoblastoma; hence, these patients require a gonadoblastoma surveillance with a more stringent surveillance in those harboring a gonadoblastoma-associated variant.
Collapse
Affiliation(s)
- Sneha Arya
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Sandeep Kumar
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Anurag R Lila
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
- Correspondence should be addressed to A R Lila:
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Saba Samad Memon
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Rohit Barnabas
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Hemangini Thakkar
- Department of Radiology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Virendra A Patil
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Tushar R Bandgar
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| |
Collapse
|
11
|
Albornoz Pardo AE, Keefe D, Neville Levin D, Lorenzo AJ, Munshey F. Anesthetic and surgical considerations for staged bilateral nephrectomies in a pediatric patient: A case report. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2021. [DOI: 10.5554/22562087.e1009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We present a 9-year-old patient with end-stage renal disease, on peritoneal dialysis, who underwent a staged prone retroperitoneoscopic bilateral nephrectomy. Bilateral nephrectomy was indicated in preparation for renal transplant in the context of genetic predisposition malignancy when immunosuppressed. The two mirror-image surgeries enable the comparison of the anesthetic management and outcomes in a single patient. Features of interest to anesthesiologists include approach to a child with chronic kidney disease, different requirements for intraoperative antihypertensives; pain management strategies, including a comparison of erector spinae plane block with and without adjunct dexmedetomidine; anesthetic management of retroperitoneoscopic pediatric surgery and the first description of using a Foley bag attached to a peritoneal dialysis catheter to aid in diagnosis and repair of posterior peritoneal cavity entry.
Collapse
|
12
|
Boyer O, Dorval G, Servais A. The genetics of steroid-resistant nephrotic syndrome in adults. Nephrol Dial Transplant 2021; 36:1600-1602. [PMID: 32040156 DOI: 10.1093/ndt/gfz257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Olivia Boyer
- Néphrologie Pédiatrique, Centre de référence MARHEA, Hôpital Necker-Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université de Paris, Paris, France
| | - Guillaume Dorval
- Néphrologie Pédiatrique, Centre de référence MARHEA, Hôpital Necker-Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université de Paris, Paris, France
| | - Aude Servais
- Inserm U1163, Institut Imagine, Université de Paris, Paris, France.,Néphrologie et Transplantation, Centre de référence MARHEA, Hôpital Necker-Enfants Malades, APHP, Paris, France
| |
Collapse
|
13
|
He S, Yang L, Xiao Z, Tang K, Xu D. Identification of key carcinogenic genes in Wilms' tumor. Genes Genet Syst 2021; 96:141-149. [PMID: 34334530 DOI: 10.1266/ggs.21-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to probe carcinogenic genes and pathways associated with Wilms' tumor (WT) onset and malignancy progression. After screening, three datasets acquired from the Gene Expression Omnibus database were analyzed. Differentially expressed genes (DEGs) were identified and GO functional enrichment, KEGG pathway enrichment and protein-protein interaction (PPI) were analyzed. The DEGs with top fold change values or top protein interaction scores were used to analyze overall survival based on the TARGET WT dataset. Together, 866 up-regulated genes in GDS1791, 585 up-regulated genes in GDS2010, and 277 down-regulated genes in GDS4802 were found, from which 46 key DEGs were selected for further analysis. In the PPI network, hub positions included COL5A1, COL4A1, ARPP21, SPARCL1, CD86, LY96 and PPP1R12B. The top DEGs (ARPP21, SYNPO, PRRC2B, PPP1R12B, EFCAB2 and LY96) were selected for survival analysis, and they consistently showed a significantly positive correlation with poor survival. Together, five key carcinogenic genes (SYNPO, PRRC2B, PPP1R12B, EFCAB2 and LY96) were highly associated with WT onset and patient survival. These risk genes, interaction networks and enrichments should improve our understanding of the complex molecular mechanisms in WT development and help clinical applications.
Collapse
Affiliation(s)
- Shaohua He
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | | | - Zhixiang Xiao
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | - Kunbin Tang
- Department of Pediatric Surgery, Fujian Provincial Hospital
| | - Di Xu
- Department of Pediatric Surgery, Fujian Provincial Hospital
| |
Collapse
|
14
|
Bondue T, Arcolino FO, Veys KRP, Adebayo OC, Levtchenko E, van den Heuvel LP, Elmonem MA. Urine-Derived Epithelial Cells as Models for Genetic Kidney Diseases. Cells 2021; 10:cells10061413. [PMID: 34204173 PMCID: PMC8230018 DOI: 10.3390/cells10061413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial cells exfoliated in human urine can include cells anywhere from the urinary tract and kidneys; however, podocytes and proximal tubular epithelial cells (PTECs) are by far the most relevant cell types for the study of genetic kidney diseases. When maintained in vitro, they have been proven extremely valuable for discovering disease mechanisms and for the development of new therapies. Furthermore, cultured patient cells can individually represent their human sources and their specific variants for personalized medicine studies, which are recently gaining much interest. In this review, we summarize the methodology for establishing human podocyte and PTEC cell lines from urine and highlight their importance as kidney disease cell models. We explore the well-established and recent techniques of cell isolation, quantification, immortalization and characterization, and we describe their current and future applications.
Collapse
Affiliation(s)
- Tjessa Bondue
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Fanny O. Arcolino
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
| | - Koenraad R. P. Veys
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Oyindamola C. Adebayo
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Elena Levtchenko
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lambertus P. van den Heuvel
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (T.B.); (F.O.A.); (K.R.P.V.); (O.C.A.); (E.L.); (L.P.v.d.H.)
- Department of Pediatric Nephrology, Radboud University Medical Center, 6500 Nijmegen, The Netherlands
| | - Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Correspondence:
| |
Collapse
|
15
|
Chen Q, Chen J, Wang C, Chen X, Liu J, Zhou L, Liu Y. MicroRNA-466o-3p mediates β-catenin-induced podocyte injury by targeting Wilms tumor 1. FASEB J 2020; 34:14424-14439. [PMID: 32888352 DOI: 10.1096/fj.202000464r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Podocytes are highly specialized cells that play an essential role in maintaining the integrity and function of the glomerular filtration barrier. Wilms tumor 1 (WT1) and β-catenin are two master regulators that play opposing roles in podocyte biology and mutually antagonize each other. However, exactly how β-catenin inhibits WT1 remains incompletely understood. In this study, we demonstrated the role of miR-466o-3p in mediating β-catenin-triggered podocyte injury by targeting WT1. The expression of miR-466o-3p was upregulated in cultured podocytes after β-catenin activation and in glomerular podocytes in adriamycin (ADR) nephropathy, remnant kidney after 5/6 renal ablation, and diabetic kidney disease. Bioinformatics analysis and luciferase reporter assay confirmed that miR-466o-3p directly targeted WT1 mRNA. Furthermore, overexpression of miR-466o-3p downregulated WT1 protein and promoted podocyte injury in vitro. Conversely, inhibition of miR-466o-3p alleviated β-catenin-induced podocyte dysfunction. In mouse model of ADR nephropathy, overexpression of miR-466o-3p inhibited WT1, aggravated podocytes injury and deteriorated proteinuria. In contrast, inhibition of renal miR-466o-3p by antagomiR, either prior to or after ADR injection, substantially restored WT1, alleviated podocytes injury and reduced renal fibrosis. These studies reveal a critical role for miR-466o-3p, a novel microRNA that has not been characterized previously, in mediating β-catenin-triggered WT1 inhibition. Our findings also uncover a new pathogenic mechanism by which β-catenin promotes podocyte injury and proteinuria in glomerular diseases.
Collapse
Affiliation(s)
- Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiongcheng Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhong Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Molinari E, Sayer JA. Disease Modeling To Understand the Pathomechanisms of Human Genetic Kidney Disorders. Clin J Am Soc Nephrol 2020; 15:855-872. [PMID: 32139361 PMCID: PMC7274277 DOI: 10.2215/cjn.08890719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The class of human genetic kidney diseases is extremely broad and heterogeneous. Accordingly, the range of associated disease phenotypes is highly variable. Many children and adults affected by inherited kidney disease will progress to ESKD at some point in life. Extensive research has been performed on various different disease models to investigate the underlying causes of genetic kidney disease and to identify disease mechanisms that are amenable to therapy. We review some of the research highlights that, by modeling inherited kidney disease, contributed to a better understanding of the underlying pathomechanisms, leading to the identification of novel genetic causes, new therapeutic targets, and to the development of new treatments. We also discuss how the implementation of more efficient genome-editing techniques and tissue-culture methods for kidney research is providing us with personalized models for a precision-medicine approach that takes into account the specificities of the patient and the underlying disease. We focus on the most common model systems used in kidney research and discuss how, according to their specific features, they can differentially contribute to biomedical research. Unfortunately, no definitive treatment exists for most inherited kidney disorders, warranting further exploitation of the existing disease models, as well as the implementation of novel, complex, human patient-specific models to deliver research breakthroughs.
Collapse
Affiliation(s)
- Elisa Molinari
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A. Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Nephrotic syndrome in a dish: recent developments in modeling in vitro. Pediatr Nephrol 2020; 35:1363-1372. [PMID: 30820702 PMCID: PMC7316697 DOI: 10.1007/s00467-019-4203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
Nephrotic syndrome is a heterogeneous disease, and one of the most frequent glomerular disorders among children. Depending on the etiology, it may result in end-stage renal disease and the need for renal replacement therapy. A dysfunctional glomerular filtration barrier, comprising of endothelial cells, the glomerular basement membrane and podocytes, characterizes nephrotic syndrome. Podocytes are often the primary target cells in the pathogenesis, in which not only the podocyte function but also their crosstalk with other glomerular cell types can be disturbed due to a myriad of factors. The pathophysiology of nephrotic syndrome is highly complex and studying molecular mechanisms in vitro requires state-of-the-art cell-based models resembling the in vivo situation and preferably a fully functional glomerular filtration barrier. Current advances in stem cell biology and microfluidic platforms have heralded a new era of three-dimensional (3D) cultures that might have the potential to recapitulate the glomerular filtration barrier in vitro. Here, we highlight the molecular basis of nephrotic syndrome and discuss requirements to accurately study nephrotic syndrome in vitro, including an overview of specific podocyte markers, cutting-edge stem cell organoids, and the implementation of microfluidic platforms. The development of (patho) physiologically relevant glomerular models will accelerate the identification of molecular targets involved in nephrotic syndrome and may be the harbinger of a new era of therapeutic avenues.
Collapse
|
18
|
Abstract
Zusammenfassung
Das steroid-resistente nephrotische Syndrom (SRNS) mit dem histomorphologischen Korrelat der fokal-segmentalen Glomerulosklerose (FSGS) stellt eine bedeutende Ursache für eine terminale Niereninsuffizienz im Kindesalter, aber auch bei erwachsenen Patienten dar. Das Erkrankungsspektrum zeichnet sich durch eine große genetische Heterogenität aus, wobei auch nicht genetische Ursachen bei der FSGS beobachtet werden. Die genetische Grundlage des SRNS/FSGS-Komplexes ist v. a. für ältere Kinder/Jugendliche und Erwachsene bisher noch unzureichend verstanden. Die eindeutige Abgrenzung genetischer SRNS/FSGS-Ursachen ist unerlässlich, da sich bereits heute hieraus eine Vielzahl an klinischen Implikationen ergeben. Die Identifikation unbekannter Erkrankungsallele oder Erkrankungsgene kann zudem Erkenntnisse bringen, die ein gänzlich neues Verständnis der Pathomechanismen ermöglichen. Durch umfassende genetische Untersuchungen besteht die Möglichkeit, die ungelöste genetische Basis der Rekurrenz der FSGS-Erkrankung bei bislang Varianten-negativen Patienten zu finden.
Collapse
Affiliation(s)
- Julia Hoefele
- Aff1 Institut für Humangenetik Klinikum rechts der Isar, Technische Universität München Trogerstr. 32 81675 München Deutschland
| | - Bodo B. Beck
- Aff2 0000 0000 8852 305X grid.411097.a Institut für Humangenetik Uniklinik Köln Kerpener Str. 34 50937 Köln Deutschland
| | - Lutz T. Weber
- Aff3 0000 0000 8852 305X grid.411097.a Klinik und Poliklinik für Kinder- und Jugendmedizin Uniklinik Köln Kerpener Str. 62 50937 Köln Deutschland
| | - Paul Brinkkötter
- Aff4 0000 0000 8852 305X grid.411097.a Klinik II für Innere Medizin Uniklinik Köln Kerpener Str. 62 50937 Köln Deutschland
| |
Collapse
|
19
|
Hall G, Lane BM, Khan K, Pediaditakis I, Xiao J, Wu G, Wang L, Kovalik ME, Chryst-Stangl M, Davis EE, Spurney RF, Gbadegesin RA. The Human FSGS-Causing ANLN R431C Mutation Induces Dysregulated PI3K/AKT/mTOR/Rac1 Signaling in Podocytes. J Am Soc Nephrol 2018; 29:2110-2122. [PMID: 30002222 PMCID: PMC6065096 DOI: 10.1681/asn.2017121338] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We previously reported that mutations in the anillin (ANLN) gene cause familial forms of FSGS. ANLN is an F-actin binding protein that modulates podocyte cell motility and interacts with the phosphoinositide 3-kinase (PI3K) pathway through the slit diaphragm adaptor protein CD2-associated protein (CD2AP). However, it is unclear how the ANLN mutations cause the FSGS phenotype. We hypothesized that the R431C mutation exerts its pathogenic effects by uncoupling ANLN from CD2AP. METHODS We conducted in vivo complementation assays in zebrafish to determine the effect of the previously identified missense ANLN variants, ANLNR431C and ANLNG618C during development. We also performed in vitro functional assays using human podocyte cell lines stably expressing wild-type ANLN (ANLNWT ) or ANLNR431C . RESULTS Experiments in anln-deficient zebrafish embryos showed a loss-of-function effect for each ANLN variant. In human podocyte lines, expression of ANLNR431C increased cell migration, proliferation, and apoptosis. Biochemical characterization of ANLNR431C -expressing podocytes revealed hyperactivation of the PI3K/AKT/mTOR/p70S6K/Rac1 signaling axis and activation of mTOR-driven endoplasmic reticulum stress in ANLNR431C -expressing podocytes. Inhibition of mTOR, GSK-3β, Rac1, or calcineurin ameliorated the effects of ANLNR431C . Additionally, inhibition of the calcineurin/NFAT pathway reduced the expression of endogenous ANLN and mTOR. CONCLUSIONS The ANLNR431C mutation causes multiple derangements in podocyte function through hyperactivation of PI3K/AKT/mTOR/p70S6K/Rac1 signaling. Our findings suggest that the benefits of calcineurin inhibition in FSGS may be due, in part, to the suppression of ANLN and mTOR. Moreover, these studies illustrate that rational therapeutic targets for familial FSGS can be identified through biochemical characterization of dysregulated podocyte phenotypes.
Collapse
Affiliation(s)
- Gentzon Hall
- Departments of Pediatrics and
- Duke Molecular Physiology Institute, Durham, North Carolina; and
- Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Brandon M Lane
- Departments of Pediatrics and
- Duke Molecular Physiology Institute, Durham, North Carolina; and
| | - Kamal Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Igor Pediaditakis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Jianqiu Xiao
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Guanghong Wu
- Departments of Pediatrics and
- Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Liming Wang
- Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Maria E Kovalik
- Departments of Pediatrics and
- Duke Molecular Physiology Institute, Durham, North Carolina; and
- Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Megan Chryst-Stangl
- Departments of Pediatrics and
- Duke Molecular Physiology Institute, Durham, North Carolina; and
| | - Erica E Davis
- Departments of Pediatrics and
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Robert F Spurney
- Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Rasheed A Gbadegesin
- Departments of Pediatrics and
- Duke Molecular Physiology Institute, Durham, North Carolina; and
- Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
20
|
Gulati A, Somlo S. Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology. Pediatr Nephrol 2018; 33:745-761. [PMID: 28660367 DOI: 10.1007/s00467-017-3698-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022]
Abstract
The genesis of whole exome sequencing as a powerful tool for detailing the protein coding sequence of the human genome was conceptualized based on the availability of next-generation sequencing technology and knowledge of the human reference genome. The field of pediatric nephrology enriched with molecularly unsolved phenotypes is allowing the clinical and research application of whole exome sequencing to enable novel gene discovery and provide amendment of phenotypic misclassification. Recent studies in the field have informed us that newer high-throughput sequencing techniques are likely to be of high yield when applied in conjunction with conventional genomic approaches such as linkage analysis and other strategies used to focus subsequent analysis. They have also emphasized the need for the validation of novel genetic findings in large collaborative cohorts and the production of robust corroborative biological data. The well-structured application of comprehensive genomic testing in clinical and research arenas will hopefully continue to advance patient care and precision medicine, but does call for attention to be paid to its integrated challenges.
Collapse
Affiliation(s)
- Ashima Gulati
- Division of Nephrology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC. Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J 2018; 11:179-190. [PMID: 29644057 PMCID: PMC5888331 DOI: 10.1093/ckj/sfx143] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologic lesion resulting from a variety of pathogenic processes that cause injury to the podocytes. Recently, mutations in more than 50 genes expressed in podocyte or glomerular basement membrane were identified as causing genetic forms of FSGS, the majority of which are characterized by onset in childhood. The prevalence of adult-onset genetic FSGS is likely to be underestimated and its clinical and histological features have not been clearly described. A small number of studies of adult-onset genetic FSGS showed that there is heterogeneity in clinical and histological findings, with a presentation ranging from sub-nephrotic proteinuria to full nephrotic syndrome. A careful evaluation of adult-onset FSGS that do not have typical features of primary or secondary FSGS (familial cases, resistance to immunosuppression and absence of evident cause of secondary FSGS) should include a genetic evaluation. Indeed, recognizing genetic forms of adult-onset FSGS is of the utmost importance, given that this diagnosis will have major implications on treatment strategies, selecting of living-related kidney donor and renal transplantation success.
Collapse
Affiliation(s)
- Nicola Lepori
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Dialysis, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sanjeev Sethi
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gema Fernandez-Juarez
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Nephrology Division, Hospital Universitario Fundacion Alcorcon, Madrid, Spain
| | | |
Collapse
|
22
|
Yang JW, Dettmar AK, Kronbichler A, Gee HY, Saleem M, Kim SH, Shin JI. Recent advances of animal model of focal segmental glomerulosclerosis. Clin Exp Nephrol 2018; 22:752-763. [PMID: 29556761 DOI: 10.1007/s10157-018-1552-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
In the last decade, great advances have been made in understanding the genetic basis for focal segmental glomerulosclerosis (FSGS). Animal models using specific gene disruption of the slit diaphragm and cytoskeleton of the foot process mirror the etiology of the human disease. Many animal models have been developed to understand the complex pathophysiology of FSGS. Therefore, we need to know the usefulness and exact methodology of creating animal models. Here, we review classic animal models and newly developed genetic animal models. Classic animal models of FSGS involve direct podocyte injury and indirect podocyte injury due to adaptive responses. However, the phenotype depends on the animal background. Renal ablation and direct podocyte toxin (PAN, adriamycin) models are leading animal models for FSGS, which have some limitations depending on mice background. A second group of animal models were developed using combinations of genetic mutation and toxin, such as NEP25, diphtheria toxin, and Thy1.1 models, which specifically injure podocytes. A third group of animal models involves genetic engineering techniques targeting podocyte expression molecules, such as podocin, CD2-associated protein, and TRPC6 channels. More detailed information about podocytopathy and FSGS can be expected in the coming decade. Different animal models should be used to study FSGS depending on the specific aim and sometimes should be used in combination.
Collapse
Affiliation(s)
- Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea
| | - Anne Katrin Dettmar
- Pediatric Nephrology, Department of Pediatrics, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Universitätskliniken Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moin Saleem
- Paediatric Renal Medicine, University of Bristol, Bristol, UK.,Children's Renal Unit, Bristol Royal Hospital for Children, Bristol, UK
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Republic of Korea. .,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
23
|
Abstract
For more than 30 years, WT1 mutations have been associated with complex developmental syndromes involving the kidney. Acting as a transcription factor, WT1 is expressed throughout the nephron and controls the reciprocal interactions and phenotypic changes required for normal renal development. In the adult, WT1 expression remains extremely high in the renal podocyte, and at a lower level in the parietal epithelial cells. Wt1-null mice are unable to form kidneys [1]. Unsurprisingly, WT1 mutations lead to significant abnormalities of the renal and genitourinary tract, causing a number of human diseases including syndromes such as Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Recent methodological advances have improved the identification of WT1 mutations, highlighting its importance even in nonsyndromic renal disease, particularly in steroid-resistant nephrotic syndrome. This vast spectrum of WT1-related disease typifies the varied and complex activity of WT1 in development, disease, and tissue maintenance.
Collapse
Affiliation(s)
- Eve Miller-Hodges
- ECAT Clinical Lecturer-Nephrology, IGMM Human Genetics Unit, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
24
|
Abstract
Ultimately, the common final pathway of any glomerular disease is podocyte effacement, podocyte loss, and, eventually, glomerular scarring. There has been a long-standing debate on the underlying mechanisms for podocyte depletion, ranging from necrosis and apoptosis to detachment of viable cells from the glomerular basement membrane. However, this debate still continues because additional pathways of programmed cell death have been reported in recent years. Interestingly, viable podocytes can be isolated out of the urine of proteinuric patients easily, emphasizing the importance of podocyte detachment in glomerular diseases. In contrast, detection of apoptosis and other pathways of programmed cell death in podocytes is technically challenging. In fact, we still are lacking direct evidence showing, for example, the presence of apoptotic bodies in podocytes, leaving the question unanswered as to whether podocytes undergo mechanisms of programmed cell death. However, understanding the mechanisms leading to podocyte depletion is of particular interest because future therapeutic strategies might interfere with these to prevent glomerular scarring. In this review, we summarize our current knowledge on podocyte cell death, the different molecular pathways and experimental approaches to study these, and, finally, focus on the mechanisms that prevent the onset of programmed cell death.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Varner JD, Chryst-Stangl M, Esezobor CI, Solarin A, Wu G, Lane B, Hall G, Abeyagunawardena A, Matory A, Hunley TE, Lin JJ, Howell D, Gbadegesin R. Genetic Testing for Steroid-Resistant-Nephrotic Syndrome in an Outbred Population. Front Pediatr 2018; 6:307. [PMID: 30406062 PMCID: PMC6204400 DOI: 10.3389/fped.2018.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Steroid-resistant nephrotic syndrome (SRNS) is a leading cause of end-stage kidney disease in children and young adults. Despite advances in genomic science that have led to the discovery of >50 monogenic causes of SRNS, there are no clear guidelines for genetic testing in clinical practice. Methods: Using high throughput sequencing, we evaluated 492 individuals from 181 families for mutations in 40 known SRNS genes. Causative mutations were defined as missense, truncating, and obligatory splice site variants with a minor allele frequency <1% in controls. Non-synonymous variants were considered pathogenic if determined to be deleterious by at least two in silico models. We further evaluated for differences in age at disease onset, family history of SRNS or chronic kidney disease, race, sex, renal biopsy findings, and extra-renal manifestations in subgroups with and without disease causing variants. Results: We identified causative variants in 40 of 181 families (22.1%) with SRNS. Variants in INF2, COL4A3, and WT1 were the most common, accounting for over half of all causative variants. Causative variants were identified in 34 of 86 families (39.5%) with familial disease and 6 of 95 individuals (6.3%) with sporadic disease (χ2 p < 0.00001). Family history was the only significant clinical predictor of genetic SRNS. Conclusion: We identified causative mutations in almost 40% of all families with hereditary SRNS and 6% of individuals with sporadic disease, making family history the single most important clinical predictors of monogenic SRNS. We recommend genetic testing in all patients with SRNS and a positive family history, but only selective testing in those with sporadic disease.
Collapse
Affiliation(s)
- Jennifer D Varner
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Megan Chryst-Stangl
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | | | - Adaobi Solarin
- Department of Pediatrics, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | - Guanghong Wu
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Brandon Lane
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Gentzon Hall
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | | | - Ayo Matory
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States
| | - Tracy E Hunley
- Division of Nephrology, Department of Pediatrics, Vanderbilt University, Nashville, TN, United States
| | - Jen Jar Lin
- Department of Pediatrics, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - David Howell
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Rasheed Gbadegesin
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
26
|
Gehrig J, Pandey G, Westhoff JH. Zebrafish as a Model for Drug Screening in Genetic Kidney Diseases. Front Pediatr 2018; 6:183. [PMID: 30003073 PMCID: PMC6031734 DOI: 10.3389/fped.2018.00183] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic disorders account for a wide range of renal diseases emerging during childhood and adolescence. Due to the utilization of modern biochemical and biomedical techniques, the number of identified disease-associated genes is increasing rapidly. Modeling of congenital human disease in animals is key to our understanding of the biological mechanism underlying pathological processes and thus developing novel potential treatment options. The zebrafish (Danio rerio) has been established as a versatile small vertebrate organism that is widely used for studying human inherited diseases. Genetic accessibility in combination with elegant experimental methods in zebrafish permit modeling of human genetic diseases and dissecting the perturbation of underlying cellular networks and physiological processes. Beyond its utility for genetic analysis and pathophysiological and mechanistic studies, zebrafish embryos, and larvae are amenable for phenotypic screening approaches employing high-content and high-throughput experiments using automated microscopy. This includes large-scale chemical screening experiments using genetic models for searching for disease-modulating compounds. Phenotype-based approaches of drug discovery have been successfully performed in diverse zebrafish-based screening applications with various phenotypic readouts. As a result, these can lead to the identification of candidate substances that are further examined in preclinical and clinical trials. In this review, we discuss zebrafish models for inherited kidney disease as well as requirements and considerations for the technical realization of drug screening experiments in zebrafish.
Collapse
Affiliation(s)
- Jochen Gehrig
- Acquifer is a Division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany
| | - Gunjan Pandey
- Acquifer is a Division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany.,Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Li Y, Wang Y, He Q, Dang X, Cao Y, Wu X, Mo S, He X, Yi Z. Genetic mutational testing of Chinese children with familial hematuria with biopsy‑proven FSGS. Mol Med Rep 2017; 17:1513-1526. [PMID: 29138824 PMCID: PMC5780091 DOI: 10.3892/mmr.2017.8023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2017] [Indexed: 12/27/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a pathological lesion rather than a disease, with a diverse etiology. FSGS may result from genetic and non‑genetic factors. FSGS is considered a podocyte disease due to the fact that in the majority of patients with proven‑FSGS, the lesion results from defects in the podocyte structure or function. However, FSGS does not result exclusively from podocyte‑associated genes, however also from other genes including collagen IV‑associated genes. Patients who carry the collagen type IVA3 chain (COL4A3) or COL4A4 mutations usually exhibit Alport Syndrome (AS), thin basement membrane neuropathy or familial hematuria (FH). Previous studies revealed that long‑time persistent microscopic hematuria may lead to FSGS. A case of a family is presented here where affected individuals exhibited FH with FSGS‑proven, or chronic kidney disease. Renal biopsies were unhelpful and failed to demonstrate glomerular or basement membrane defects consistent with an inherited glomerulopathy, and therefore a possible underlying genetic cause for a unifying diagnosis was pursued. Genomic DNA of the siblings affected by FH with biopsy‑proven FSGS was analyzed, and their father was screened for 18 gene mutations associated with FSGS [nephrin, podocin, CD2 associated protein, phospholipase C ε, actinin α 4, transient receptor potential cation channel subfamily C member 6, inverted formin, FH2 and WH2 domain containing, Wilms tumor 1, LIM homeobox transcription factor 1 β, laminin subunit β 2, laminin subunit β 3, galactosida α, integrin subunit β 4, scavenger receptor class B member 2, coenzyme Q2, decaprenyl diphosphate synthase subunit 2, mitochondrially encoded tRNA leucine 1 (UUA/G; TRNL1) and SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a like 1] using matrix‑assisted laser desorption/ionization time‑of‑flight mass spectrometry technology. Then whole exome sequencing (WES) was performed in the two probands to ascertain whether there were other known or unknown gene mutations that segregated with the disease. Using mass array technology, a TRNL1 missense homozygous mutation (m. 3290T>C) was identified in the probands diagnosed with FH and manifested as FSGS on biopsy. In addition, a COL4A4 missense mutation c. 4195A>T (p. M1399L) in heterozygous pattern was identified using WES. None of these variants were detected in their father. In the present study, a mutation in TRNL1 (m. 3290T>C) was identified, which was the first reported variant associated with FSGS. The COL4A4 (c. 4195A>T) may co‑segregate with FSGS. Screening for COL4A mutations in familial FSGS patients is suggested in the present study. Genetic investigations of families with similar clinical phenotypes should be a priority for nephrologists. The combination of mass array technology and WES may improve the detection rate of genetic mutation with a high level of accuracy.
Collapse
Affiliation(s)
- Yongzhen Li
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ying Wang
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qingnan He
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiqiang Dang
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Cao
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaochuan Wu
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shuanghong Mo
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaoxie He
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhuwen Yi
- Division of Pediatric Nephrology, Children's Medical Center of The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
28
|
Boyer O, Dorval G, Servais A. Hereditary Podocytopathies in Adults: The Next Generation. KIDNEY DISEASES 2017; 3:50-56. [PMID: 28868292 DOI: 10.1159/000477243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023]
Abstract
Idiopathic nephrotic syndrome may have two underlying mechanisms: either (1) an alteration of the immune system resulting in the production of a putative circulating factor of glomerular permeability; or (2) mutations in the structural genes of the glomerular filtration barrier in which case patients are typically multidrug resistant and do not recur after transplantation. The latter forms have been recently recognized as "hereditary podocytopathies." In the past few years, positional cloning approaches that allow the identification of gene mutations underlying diseases whose pathophysiology is unknown and animal models have helped decipher the pathophysiological mechanisms of the glomerular filtration process. Recently, the advent of next-generation sequencing (NGS) techniques has greatly facilitated the identification of numerous novel causative genes in hereditary podocytopathies. Moreover, it has revealed mutations in unexpected genes and has widened the phenotypes associated with podocyte gene mutations. The list of genes mutated in hereditary podocytopathies is constantly evolving and consists to date of more than 40 genes. However, the most recently identified genes are extremely rarely mutated and may concern only a couple of families worldwide. These discoveries provided crucial insight into the pathophysiological mechanisms linking podocyte proteins to kidney function. This review will focus on monogenic podocytopathies affecting adult patients.
Collapse
Affiliation(s)
- Olivia Boyer
- Néphrologie pédiatrique, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| | - Guillaume Dorval
- Néphrologie pédiatrique, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| | - Aude Servais
- Néphrologie, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
29
|
Mutation spectrum of genes associated with steroid-resistant nephrotic syndrome in Chinese children. Gene 2017; 625:15-20. [PMID: 28476686 DOI: 10.1016/j.gene.2017.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/21/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022]
Abstract
Approximately 20% of children with idiopathic nephrotic syndrome do not respond to steroid therapy. More than 30 genes have been identified as disease-causing genes for the steroid-resistant nephrotic syndrome (SRNS). Few reports were from the Chinese population. The coding regions of genes commonly associated with SRNS were analyzed to characterize the gene mutation spectrum in children with SRNS in central China. The first phase study involved 38 children with five genes (NPHS1, NPHS2, PLCE1, WT1, and TRPC6) by Sanger sequencing. The second phase study involved 33 children with 17 genes by next generation DNA sequencing (NGS. 22 new patients, and 11 patients from first phase study but without positive findings). Overall deleterious or putatively deleterious gene variants were identified in 19 patients (31.7%), including four NPHS1 variants among five patients and three PLCE1 variants among four other patients. Variants in COL4A3, COL4A4, or COL4A5 were found in six patients. Eight novel variants were identified, including two in NPHS1, two in PLCE1, one in NPHS2, LAMB2, COL4A3, and COL4A4, respectively. 55.6% of the children with variants failed to respond to immunosuppressive agent therapy, while the resistance rate in children without variants was 44.4%. Our results show that screening for deleterious variants in some common genes in children clinically suspected with SRNS might be helpful for disease diagnosis as well as prediction of treatment efficacy and prognosis.
Collapse
|
30
|
Dysregulation of WTI (-KTS) is Associated with the Kidney-Specific Effects of the LMX1B R246Q Mutation. Sci Rep 2017; 7:39933. [PMID: 28059119 PMCID: PMC5216339 DOI: 10.1038/srep39933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/28/2016] [Indexed: 01/11/2023] Open
Abstract
Mutations in the LIM homeobox transcription factor 1-beta (LMX1B) are a cause of nail patellar syndrome, a condition characterized by skeletal changes, glaucoma and focal segmental glomerulosclerosis. Recently, a missense mutation (R246Q) in LMX1B was reported as a cause of glomerular pathologies without extra-renal manifestations, otherwise known as nail patella-like renal disease (NPLRD). We have identified two additional NPLRD families with the R246Q mutation, though the mechanisms by which LMX1BR246Q causes a renal-specific phenotype is unknown. In this study, using human podocyte cell lines overexpressing either myc-LMX1BWT or myc-LMX1BR246Q, we observed dominant negative and haploinsufficiency effects of the mutation on the expression of podocyte genes such as NPHS1, GLEPP1, and WT1. Specifically, we observed a novel LMX1BR246Q-mediated downregulation of WT1(−KTS) isoforms in podocytes. In conclusion, we have shown that the renal-specific phenotype associated with the LMX1BR246Q mutation may be due to a dominant negative effect on WT1(−KTS) isoforms that may cause a disruption of the WT1 (−KTS):(+KTS) isoform ratio and a decrease in the expression of podocyte genes. Full delineation of the LMX1B gene regulon is needed to define its role in maintenance of glomerular filtration barrier integrity.
Collapse
|
31
|
Abstract
Most glomerulonephritides, even the more common types, are rare diseases. They are nevertheless important since they frequently affect young people, often cannot be cured, and can lead to chronic kidney disease, including end-stage renal failure, with associated morbidity and cost. For example, in young adults, IgA nephropathy is the most common cause of end-stage renal disease. In this Seminar, we summarise existing knowledge of clinical signs, pathogenesis, prognosis, and treatment of glomerulonephritides, with a particular focus on data published between 2008 and 2015, and the most common European glomerulonephritis types, namely IgA nephropathy, membranous glomerulonephritis, minimal change disease, focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis, and the rare complement-associated glomerulonephritides such as dense deposit disease and C3 glomerulonephritis.
Collapse
Affiliation(s)
- Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital, Rheinisch Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | - Kerstin Amann
- Department of Nephropathology, Department of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
33
|
Rheault MN, Gbadegesin RA. The Genetics of Nephrotic Syndrome. J Pediatr Genet 2015; 5:15-24. [PMID: 27617138 DOI: 10.1055/s-0035-1557109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
Abstract
Nephrotic syndrome (NS) is a common pediatric kidney disease and is defined as massive proteinuria, hypoalbuminemia, and edema. Dysfunction of the glomerular filtration barrier, which is made up of endothelial cells, glomerular basement membrane, and visceral epithelial cells known as podocytes, is evident in children with NS. While most children have steroid-responsive nephrotic syndrome (SSNS), approximately 20% have steroid-resistant nephrotic syndrome (SRNS) and are at risk for progressive kidney dysfunction. While the cause of SSNS is still not well understood, there has been an explosion of research into the genetic causes of SRNS in the past 15 years. More than 30 proteins regulating the function of the glomerular filtration barrier have been associated with SRNS including podocyte slit diaphragm proteins, podocyte actin cytoskeletal proteins, mitochondrial proteins, adhesion and glomerular basement membrane proteins, transcription factors, and others. A genetic cause of SRNS can be found in approximately 70% of infants presenting in the first 3 months of life and 50% of infants presenting between 4 and 12 months, with much lower likelihood for older patients. Identification of the underlying genetic etiology of SRNS is important in children because it allows for counseling of other family members who may be at risk, predicts risk of recurrent disease after kidney transplant, and predicts response to immunosuppressive therapy. Correlations between genetic mutation and clinical phenotype as well as genetic risk factors for SSNS and SRNS are reviewed in this article.
Collapse
Affiliation(s)
- Michelle N Rheault
- Division of Nephrology, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, United States
| | - Rasheed A Gbadegesin
- Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
34
|
Chen YM, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol 2015; 16:101. [PMID: 26156092 PMCID: PMC4496884 DOI: 10.1186/s12882-015-0090-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022] Open
Abstract
Recent advances show that human focal segmental glomerulosclerosis (FSGS) is a primary podocytopathy caused by podocyte-specific gene mutations including NPHS1, NPHS2, WT-1, LAMB2, CD2AP, TRPC6, ACTN4 and INF2. This review focuses on genes discovered in the investigation of complex FSGS pathomechanisms that may have implications for the current FSGS classification scheme. It also recounts recent recommendations for clinical management of FSGS based on translational studies and clinical trials. The advent of next-generation sequencing promises to provide nephrologists with rapid and novel approaches for the diagnosis and treatment of FSGS. A stratified and targeted approach based on the underlying molecular defects is evolving.
Collapse
Affiliation(s)
- Ying Maggie Chen
- Renal Division, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| | - Helen Liapis
- , Nephropath, Little Rock, Arkansas
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
35
|
Anderson BR, Howell DN, Soldano K, Garrett ME, Katsanis N, Telen MJ, Davis EE, Ashley-Koch AE. In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress. PLoS Genet 2015; 11:e1005349. [PMID: 26147622 PMCID: PMC4492502 DOI: 10.1371/journal.pgen.1005349] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/09/2015] [Indexed: 01/13/2023] Open
Abstract
African Americans have a disproportionate risk for developing nephropathy. This disparity has been attributed to coding variants (G1 and G2) in apolipoprotein L1 (APOL1); however, there is little functional evidence supporting the role of this protein in renal function. Here, we combined genetics and in vivo modeling to examine the role of apol1 in glomerular development and pronephric filtration and to test the pathogenic potential of APOL1 G1 and G2. Translational suppression or CRISPR/Cas9 genome editing of apol1 in zebrafish embryos results in podocyte loss and glomerular filtration defects. Complementation of apol1 morphants with wild-type human APOL1 mRNA rescues these defects. However, the APOL1 G1 risk allele does not ameliorate defects caused by apol1 suppression and the pathogenicity is conferred by the cis effect of both individual variants of the G1 risk haplotype (I384M/S342G). In vivo complementation studies of the G2 risk allele also indicate that the variant is deleterious to protein function. Moreover, APOL1 G2, but not G1, expression alone promotes developmental kidney defects, suggesting a possible dominant-negative effect of the altered protein. In sickle cell disease (SCD) patients, we reported previously a genetic interaction between APOL1 and MYH9. Testing this interaction in vivo by co-suppressing both transcripts yielded no additive effects. However, upon genetic or chemical induction of anemia, we observed a significantly exacerbated nephropathy phenotype. Furthermore, concordant with the genetic interaction observed in SCD patients, APOL1 G2 reduces myh9 expression in vivo, suggesting a possible interaction between the altered APOL1 and myh9. Our data indicate a critical role for APOL1 in renal function that is compromised by nephropathy-risk encoding variants. Moreover, our interaction studies indicate that the MYH9 locus is also relevant to the phenotype in a stressed microenvironment and suggest that consideration of the context-dependent functions of both proteins will be required to develop therapeutic paradigms. African Americans have a disproportionate risk for developing chronic kidney disease compared to European Americans. Previous studies have identified a region on chromosome 22 containing two genes, MYH9 and APOL1, which likely accounts for nearly all of this difference. Previous reports provided strong statistical evidence implicating APOL1 as the major contributor to nephropathy risk in African Americans, driven by two coding variants, termed G1 and G2. However, other groups still report statistical evidence for MYH9 association in kidney disease, and animal models have demonstrated biological relevance for MYH9 function in the kidney. Here, we show that suppressing apol1 in zebrafish embryos results in perturbed kidney function. Importantly, using this in vivo assay, we show that the G1 variant appears to cause a loss of APOL1 function, while the G2 variant results in an altered protein that may be acting antagonistically in the presence of normal APOL1. We also report a genetic interaction between apol1 and myh9 under anemic stress, which is consistent with our previous findings in sickle cell disease (SCD) nephropathy patients. Finally, we provide functional evidence in vivo that the G2-altered APOL1 may be interacting with MYH9 to confer nephropathy risk.
Collapse
Affiliation(s)
- Blair R. Anderson
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David N. Howell
- Department of Pathology, Division of Pathology Clinical Services, Duke University, Durham, North Carolina, United States of America
| | - Karen Soldano
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Melanie E. Garrett
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marilyn J. Telen
- Department of Medicine, Division of Hematology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Allison E. Ashley-Koch
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 2015; 11:535-45. [PMID: 26055352 DOI: 10.1038/nrneph.2015.88] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that are integral components of the kidney glomerular filtration barrier. Podocytes are vulnerable to a variety of injuries and in response they undergo a series of changes ranging from hypertrophy, autophagy, dedifferentiation, mesenchymal transition and detachment to apoptosis, depending on the nature and extent of the insult. Emerging evidence indicates that Wnt/β-catenin signalling has a central role in mediating podocyte dysfunction and proteinuria. Wnts are induced and β-catenin is activated in podocytes in various proteinuric kidney diseases. Genetic or pharmacologic activation of β-catenin is sufficient to impair podocyte integrity and causes proteinuria in healthy mice, whereas podocyte-specific ablation of β-catenin protects against proteinuria after kidney injury. Mechanistically, Wnt/β-catenin controls the expression of several key mediators implicated in podocytopathies, including Snail1, the renin-angiotensin system and matrix metalloproteinase 7. Wnt/β-catenin also negatively regulates Wilms tumour protein, a crucial transcription factor that safeguards podocyte integrity. Targeted inhibition of Wnt/β-catenin signalling preserves podocyte integrity and ameliorates proteinuria in animal models. This Review highlights advances in our understanding of the pathomechanisms of Wnt/β-catenin signalling in mediating podocyte injury, and describes the therapeutic potential of targeting this pathway for the treatment of proteinuric kidney disease.
Collapse
|
37
|
Lehnhardt A, Karnatz C, Ahlenstiel-Grunow T, Benz K, Benz MR, Budde K, Büscher AK, Fehr T, Feldkötter M, Graf N, Höcker B, Jungraithmayr T, Klaus G, Koehler B, Konrad M, Kranz B, Montoya CR, Müller D, Neuhaus TJ, Oh J, Pape L, Pohl M, Royer-Pokora B, Querfeld U, Schneppenheim R, Staude H, Spartà G, Timmermann K, Wilkening F, Wygoda S, Bergmann C, Kemper MJ. Clinical and molecular characterization of patients with heterozygous mutations in wilms tumor suppressor gene 1. Clin J Am Soc Nephrol 2015; 10:825-31. [PMID: 25818337 DOI: 10.2215/cjn.10141014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/20/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES The Wilms tumor suppressor gene 1 (WT1) plays an essential role in urogenital and kidney development. Genotype/phenotype correlations of WT1 mutations with renal function and proteinuria have been observed in world-wide cohorts with nephrotic syndrome or Wilms tumor (WT). This study analyzed mid-European patients with known constitutional heterozygous mutations in WT1, including patients without proteinuria or WT. DESIGN, SETTING, PARTICIPANTS & MEASUREMENTS Retrospective analysis of genotype, phenotype, and treatment of 53 patients with WT1 mutation from all pediatric nephrology centers in Germany, Austria, and Switzerland performed from 2010 to 2012. RESULTS Median age was 12.4 (interquartile range [IQR], 6-19) years. Forty-four of 53 (83%) patients had an exon mutation (36 missense, eight truncating), and nine of 53 (17%) had an intronic lysine-threonine-serine (KTS) splice site mutation. Fifty of 53 patients (94%) had proteinuria, which occurred at an earlier age in patients with missense mutations (0.6 [IQR, 0.1-1.5] years) than in those with truncating (9.7 [IQR, 5.7-11.9]; P<0.001) and splice site (4.0 [IQR, 2.6-6.6]; P=0.004) mutations. Thirteen of 50 (26%) were treated with steroids and remained irresponsive, while three of five partially responded to cyclosporine A. Seventy-three percent of all patients required RRT, those with missense mutations significantly earlier (at 1.1 [IQR, 0.01-9.3] years) than those with truncating mutations (16.5 [IQR, 16.5-16.8]; P<0.001) and splice site mutations (12.3 [IQR, 7.9-18.2]; P=0.002). Diffuse mesangial sclerosis was restricted to patients with missense mutations, while focal segmental sclerosis occurred in all groups. WT occurred only in patients with exon mutations (n=19). Fifty of 53 (94%) patients were karyotyped: Thirty-one (62%) had XY and 19 (38%) had XX chromosomes, and 96% of male karyotypes had urogenital malformations. CONCLUSIONS Type and location of WT1 mutations have predictive value for the development of proteinuria, renal insufficiency, and WT. XY karyotype was more frequent and associated with urogenital malformations in most cases.
Collapse
Affiliation(s)
- Anja Lehnhardt
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material.
| | - Claartje Karnatz
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Thurid Ahlenstiel-Grunow
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Kerstin Benz
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Marcus R Benz
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Klemens Budde
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Anja K Büscher
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Thomas Fehr
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Markus Feldkötter
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Norbert Graf
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Britta Höcker
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Therese Jungraithmayr
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Günter Klaus
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Birgit Koehler
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Martin Konrad
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Birgitta Kranz
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Carmen R Montoya
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Dominik Müller
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Thomas J Neuhaus
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Jun Oh
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Lars Pape
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Martin Pohl
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Brigitte Royer-Pokora
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Uwe Querfeld
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Reinhard Schneppenheim
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Hagen Staude
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Giuseppina Spartà
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Kirsten Timmermann
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Frauke Wilkening
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Simone Wygoda
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Carsten Bergmann
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| | - Markus J Kemper
- Due to the number of contributing authors,the affiliations are provided in the Supplemental Material
| |
Collapse
|
38
|
Hall G, Gbadegesin RA. Translating genetic findings in hereditary nephrotic syndrome: the missing loops. Am J Physiol Renal Physiol 2015; 309:F24-8. [PMID: 25810439 DOI: 10.1152/ajprenal.00683.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/14/2015] [Indexed: 12/28/2022] Open
Abstract
Nephrotic syndrome (NS) is a clinicopathological entity characterized by proteinuria, hypoalbuminemia, peripheral edema, and hyperlipidemia. It is the most common cause of glomerular disease in children and adults. Although the molecular pathogenesis of NS is not completely understood, data from the study of familial NS suggest that it is a "podocytopathy." Virtually all of the genes mutated in hereditary NS localize to the podocyte or its secreted products and the slit diaphragm. Since the completion of human genome sequence and the advent of next generation sequencing, at least 29 causes of single-gene NS have been identified. However, these findings have not been matched by therapeutic advances owing to suboptimal in vitro and in vivo models for the study of human glomerular disease and podocyte injury phenotypes. Multidisciplinary collaboration between clinicians, geneticists, cell biologists, and molecular physiologists has the potential to overcome this barrier and thereby speed up the translation of genetic findings into improved patient care.
Collapse
Affiliation(s)
- Gentzon Hall
- Department of Medicine and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina; and
| | - Rasheed A Gbadegesin
- Department of Pediatrics and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
39
|
Bierzynska A, Soderquest K, Koziell A. Genes and podocytes - new insights into mechanisms of podocytopathy. Front Endocrinol (Lausanne) 2014; 5:226. [PMID: 25667580 PMCID: PMC4304234 DOI: 10.3389/fendo.2014.00226] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/09/2014] [Indexed: 12/24/2022] Open
Abstract
After decades of primarily morphological study, positional cloning of the NPHS1 gene was the landmark event that established aberrant podocyte genetics as a pivotal cause of malfunction of the glomerular filter. This ended any uncertainty whether genetic mutation plays a significant role in hereditary nephrotic syndromes (NS) and confirmed podocytes as critical players in regulating glomerular protein filtration. Although subsequent sequencing of candidate genes chosen on the basis of podocyte biology had less success, unbiased analysis of genetically informative kindreds and syndromic disease has led to further gene discovery. However, the 45 genes currently associated with human NS explain not more than 20-30% of hereditary and only 10-20% of sporadic cases. It is becoming increasingly clear both from genetic analysis and phenotypic data - including occasional response to immunosuppressive agents and post-transplant disease recurrence in Mendelian disease - that monogenic inheritance of abnormalities in podocyte-specific genes disrupting filter function is only part of the story. Recent advances in genetic screening technology combined with increasingly robust bioinformatics are set to allow identification and characterization of novel disease causing variants and more importantly, disease modifying genes. Emerging data also support a significant but incompletely characterized immunoregulatory component.
Collapse
Affiliation(s)
- Agnieszka Bierzynska
- Academic Renal Unit, School of Clinical Sciences, Bristol University, Bristol, UK
| | - Katrina Soderquest
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ania Koziell
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
- *Correspondence: Ania Koziell, Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, 5th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK e-mail:
| |
Collapse
|