1
|
Figurek A, Jankovic N, Hall AM. Quantitative Intravital Calcium Imaging in Mouse Kidney. Methods Mol Biol 2025; 2861:187-193. [PMID: 39395106 DOI: 10.1007/978-1-0716-4164-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Intracellular calcium is an important regulator of solute transport in renal epithelial cells, and disordered calcium signaling may underlie the pathogenesis of certain kidney diseases. Intravital multiphoton imaging of the kidney in transgenic mice expressing highly sensitive fluorescent reporters allows detailed study of calcium signals within different specialized segments of the renal tubule and how these are integrated with other cellular processes. Moreover, changes in activity can be observed in real time in response to physiological interventions or disease-causing insults. In this chapter, we will provide a detailed protocol for performing this powerful research technique.
Collapse
Affiliation(s)
- Andreja Figurek
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
| | - Nevena Jankovic
- Institute of Anatomy, University of Zurich, Zürich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zürich, Switzerland.
- Department of Nephrology, University Hospital Zurich, Zürich, Switzerland.
- Zurich Kidney Center, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
2
|
Wiesner E, Binz-Lotter J, Hackl A, Unnersjö-Jess D, Rutkowski N, Benzing T, Hackl MJ. Correlative multiphoton-STED microscopy of podocyte calcium levels and slit diaphragm ultrastructure in the renal glomerulus. Sci Rep 2024; 14:13019. [PMID: 38844492 PMCID: PMC11156906 DOI: 10.1038/s41598-024-63507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
In recent years functional multiphoton (MP) imaging of vital mouse tissues and stimulation emission depletion (STED) imaging of optically cleared tissues allowed new insights into kidney biology. Here, we present a novel workflow where MP imaging of calcium signals can be combined with super-resolved STED imaging for morphological analysis of the slit diaphragm (SD) within the same glomerulus. Mice expressing the calcium indicator GCaMP3 in podocytes served as healthy controls or were challenged with two different doses of nephrotoxic serum (NTS). NTS induced glomerular damage in a dose dependent manner measured by shortening of SD length. In acute kidney slices (AKS) intracellular calcium levels increased upon disease but showed a high variation between glomeruli. We could not find a clear correlation between intracellular calcium levels and SD length in the same glomerulus. Remarkably, analysis of the SD morphology of glomeruli selected during MP calcium imaging revealed a higher percentage of completely disrupted SD architecture than estimated by STED imaging alone. Our novel co-imaging protocol is applicable to a broad range of research questions. It can be used with different tissues and is compatible with diverse reporters and target proteins.
Collapse
Affiliation(s)
- Eva Wiesner
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Agnes Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nelli Rutkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Sivakumar S, Miellet S, Clarke C, Hartley PS. Insect nephrocyte function is regulated by a store operated calcium entry mechanism controlling endocytosis and Amnionless turnover. JOURNAL OF INSECT PHYSIOLOGY 2022; 143:104453. [PMID: 36341969 DOI: 10.1016/j.jinsphys.2022.104453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Insect nephrocytes are ultrafiltration cells that remove circulating proteins and exogenous toxins from the haemolymph. Experimental disruption of nephrocyte development or function leads to systemic impairment of insect physiology as evidenced by cardiomyopathy, chronic activation of immune signalling and shortening of lifespan. The genetic and structural basis of the nephrocyte's ultrafiltration mechanism is conserved between arthropods and mammals, making them an attractive model for studying human renal function and systemic clearance mechanisms in general. Although dynamic changes to intracellular calcium are fundamental to the function of many cell types, there are currently no studies of intracellular calcium signalling in nephrocytes. In this work we aimed to characterise calcium signalling in the pericardial nephrocytes of Drosophila melanogaster. To achieve this, a genetically encoded calcium reporter (GCaMP6) was expressed in nephrocytes to monitor intracellular calcium both in vivo within larvae and in vitro within dissected adults. Larval nephrocytes exhibited stochastically timed calcium waves. A calcium signal could be initiated in preparations of adult nephrocytes and abolished by EGTA, or the store operated calcium entry (SOCE) blocker 2-APB, as well as RNAi mediated knockdown of the SOCE genes Stim and Orai. Neither the presence of calcium-free buffer nor EGTA affected the binding of the endocytic cargo albumin to nephrocytes but they did impair the subsequent accumulation of albumin within nephrocytes. Pre-treatment with EGTA, calcium-free buffer or 2-APB led to significantly reduced albumin binding. Knock-down of Stim and Orai was non-lethal, caused an increase to nephrocyte size and reduced albumin binding, reduced the abundance of the endocytic cargo receptor Amnionless and disrupted the localisation of Dumbfounded at the filtration slit diaphragm. These data indicate that pericardial nephrocytes exhibit stochastically timed calcium waves in vivo and that SOCE mediates the localisation of the endocytic co-receptor Amnionless. Identifying the signals both up and downstream of SOCE may highlight mechanisms relevant to the renal and excretory functions of a broad range of species, including humans.
Collapse
Affiliation(s)
- Shruthi Sivakumar
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, NSW, Australia
| | - Charlotte Clarke
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK
| | - Paul S Hartley
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK.
| |
Collapse
|
4
|
Martins JR, Haenni D, Bugarski M, Polesel M, Schuh C, Hall AM. Intravital kidney microscopy: entering a new era. Kidney Int 2021; 100:527-535. [PMID: 34015315 DOI: 10.1016/j.kint.2021.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
The development of intravital imaging with multiphoton microscopy has had a major impact on kidney research. It provides the unique opportunity to visualize dynamic behavior of cells and organelles in their native environment and to relate this to the complex 3-dimensional structure of the organ. Moreover, changes in cell/organelle function can be followed in real time in response to physiological interventions or disease-causing insults. However, realizing the enormous potential of this exciting approach has necessitated overcoming several substantial practical hurdles. In this article, we outline the nature of these challenges and how a variety of technical advances have provided effective solutions. In particular, improvements in laser/microscope technology, fluorescent probes, transgenic animals, and abdominal windows are collectively making previously opaque processes visible. Meanwhile, the rise of machine learning-based image analysis is facilitating the rapid generation of large amounts of quantitative data, amenable to deeper statistical interrogation. Taken together, the increased capabilities of multiphoton imaging are opening up huge new possibilities to study structure-function relationships in the kidney in unprecedented detail. In addition, they are yielding important new insights into cellular mechanisms of tissue damage, repair, and adaptive remodeling during disease states. Thus, intravital microscopy is truly entering an exciting new era in translational kidney research.
Collapse
Affiliation(s)
- Joana R Martins
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland; Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Claus Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Abstract
AbstractAcute kidney injury (AKI) is a common clinical symptom, which is mainly manifested by elevated serum creatinine and blood urea nitrogen levels. When AKI is not repaired in time, the patient is prone to develop chronic kidney disease (CKD). The kidney is composed of more than 30 different cells, and its structure is complex. It is extremely challenging to understand the lineage relationships and cell fate of these cells in the process of kidney injury and regeneration. Since the 20th century, lineage tracing technology has provided an important mean for studying organ development, tissue damage repair, and the differentiation and fate of single cells. However, traditional lineage tracing methods rely on sacrificing animals to make tissue slices and then take snapshots with conventional imaging tools to obtain interesting information. This method cannot achieve dynamic and continuous monitoring of cell actions on living animals. As a kind of intravital microscopy (IVM), two-photon microscopy (TPM) has successfully solved the above problems. Because TPM has the ability to penetrate deep tissues and can achieve imaging at the single cell level, lineage tracing technology with TPM is gradually becoming popular. In this review, we provided the key technical elements of lineage tracing, and how to use intravital imaging technology to visualize and quantify the fate of renal cells.
Collapse
|
6
|
Park SJ, Li C, Chen YM. Endoplasmic Reticulum Calcium Homeostasis in Kidney Disease: Pathogenesis and Therapeutic Targets. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:256-265. [PMID: 33245915 DOI: 10.1016/j.ajpath.2020.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
Calcium (Ca2+) homeostasis is a crucial determinant of cellular function and survival. Endoplasmic reticulum (ER) acts as the largest intracellular Ca2+ store that maintains Ca2+ homeostasis through the ER Ca2+ uptake pump, sarco/ER Ca2+ ATPase, ER Ca2+ release channels, inositol 1,4,5-trisphosphate receptor channel, ryanodine receptor, and Ca2+-binding proteins inside of the ER lumen. Alterations in ER homeostasis trigger ER Ca2+ depletion and ER stress, which have been associated with the development of a variety of diseases. In addition, recent studies have highlighted the role of ER Ca2+ imbalance caused by dysfunction of sarco/ER Ca2+ ATPase, ryanodine receptor, and inositol 1,4,5-trisphosphate receptor channel in various kidney diseases. Despite progress in the understanding of the importance of these ER Ca2+ channels, pumps, and binding proteins in the pathogenesis of kidney disease, treatment is still lacking. This mini-review is focused on: i) Ca2+ homeostasis in the ER, ii) ER Ca2+ dyshomeostasis and apoptosis, and iii) altered ER Ca2+ homeostasis in kidney disease, including podocytopathy, diabetic nephropathy, albuminuria, autosomal dominant polycystic kidney disease, and ischemia/reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Sun-Ji Park
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Chuang Li
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
7
|
Martins JR, Haenni D, Bugarski M, Figurek A, Hall AM. Quantitative intravital Ca2+ imaging maps single cell behavior to kidney tubular structure. Am J Physiol Renal Physiol 2020; 319:F245-F255. [DOI: 10.1152/ajprenal.00052.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ca2+ is an important second messenger that translates extracellular stimuli into intracellular responses. Although there has been significant progress in understanding Ca2+ dynamics in organs such as the brain, the nature of Ca2+ signals in the kidney is still poorly understood. Here, we show that by using a genetically expressed highly sensitive reporter (GCaMP6s), it is possible to perform imaging of Ca2+ signals at high resolution in the mouse kidney in vivo. Moreover, by applying machine learning-based automated analysis using a Ca2+-independent signal, quantitative data can be extracted in an unbiased manner. By projecting the resulting data onto the structure of the kidney, we show that different tubular segments display highly distinct spatiotemporal patterns of Ca2+ signals. Furthermore, we provide evidence that Ca2+ activity in the proximal tubule decreases with increasing distance from the glomerulus. Finally, we demonstrate that substantial changes in intracellular Ca2+ can be detected in proximal tubules in a cisplatin model of acute kidney injury, which can be linked to alterations in cell structure and transport function. In summary, we describe a powerful new tool to investigate how single cell behavior is integrated with whole organ structure and function and how it is altered in disease states relevant to humans.
Collapse
Affiliation(s)
| | - Dominik Haenni
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Érsek B, Silló P, Cakir U, Molnár V, Bencsik A, Mayer B, Mezey E, Kárpáti S, Pós Z, Németh K. Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity. Cell Mol Life Sci 2020; 78:661-673. [PMID: 32328671 PMCID: PMC7581550 DOI: 10.1007/s00018-020-03517-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023]
Abstract
Abstract This study shows that melanoma-associated fibroblasts (MAFs) suppress cytotoxic T lymphocyte (CTL) activity and reveals a pivotal role played by arginase in this phenomenon. MAFs and normal dermal fibroblasts (DFs) were isolated from surgically resected melanomas and identified as Melan-A-/gp100-/FAP+ cells. CTLs of healthy blood donors were activated in the presence of MAF- and DF-conditioned media (CM). Markers of successful CTL activation, cytotoxic degranulation, killing activity and immune checkpoint regulation were evaluated by flow cytometry, ELISPOT, and redirected killing assays. Soluble mediators responsible for MAF-mediated effects were identified by ELISA, flow cytometry, inhibitor assays, and knock-in experiments. In the presence of MAF-CM, activated/non-naïve CTLs displayed dysregulated ERK1/2 and NF-κB signaling, impeded CD69 and granzyme B production, impaired killing activity, and upregulated expression of the negative immune checkpoint receptors TIGIT and BTLA. Compared to DFs, MAFs displayed increased amounts of VISTA and HVEM, a known ligand of BTLA on T cells, increased l-arginase activity and CXCL12 release. Transgenic arginase over-expression further increased, while selective arginase inhibition neutralized MAF-induced TIGIT and BTLA expression on CTLs. Our data indicate that MAF interfere with intracellular CTL signaling via soluble mediators leading to CTL anergy and modify immune checkpoint receptor availability via l-arginine depletion. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00018-020-03517-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Érsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary.,Office for Research Groups Attached to Universities and Other Institutions of the Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Pálma Silló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Ugur Cakir
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Viktor Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1083, Hungary
| | - András Bencsik
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Eva Mezey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20815, USA
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| | - Zoltán Pós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 4 Nagyvarad ter, VII/709, Budapest, 1089, Hungary.
| | - Krisztián Németh
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, 1085, Hungary
| |
Collapse
|
9
|
Perera T, Ranasinghe S, Alles N, Waduge R. Experimental rat model for acute tubular injury induced by high water hardness and high water fluoride: efficacy of primary preventive intervention by distilled water administration. BMC Nephrol 2020; 21:103. [PMID: 32204690 PMCID: PMC7092545 DOI: 10.1186/s12882-020-01763-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
Background High water hardness associated with high water fluoride and the geographical distribution of Chronic Kidney Disease of unknown etiology (CKDu) in Sri Lanka are well correlated. We undertook this study to observe the effects of high water hardness with high fluoride on kidney and liver in rats and efficacy of distilled water in reducing the effects. Methods Test water sample with high water hardness and high fluoride was collected from Mihinthale region and normal water samples were collected from Kandy region. Twenty-four rats were randomly divided into 8 groups and water samples were introduced as follows as daily water supply. Four groups received normal water for 60 (N1) and 90 (N2) days and test water for 60 (T1) and 90 (T2) days. Other four groups received normal (N3) and test (T3) water for 60 days and followed by distilled water for additional 60 days and normal (N4) and test (T4) water for 90 days followed by distilled water for another 90 days. The rats were sacrificed following treatment. Serum samples were subjected to biochemical tests; serum creatinine, urea, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and elemental analysis. Histopathological examinations were carried out using kidney and liver samples. Results Test water treated groups were associated with acute tubular injury with loss of brush border and test water followed with distilled water treated groups maintained a better morphology with minimal loss of brush border. Serum creatinine levels in T1 and T2 groups and urea level in T2 group were significantly (p < 0.05) increased compared to control groups. After administration of distilled water, both parameters were significantly reduced in T4 group (p < 0.05) compared to T2. Serum AST activity was increased in T4 group (p < 0.05) compared to control group with no histopathological changes in liver tissues. The serum sodium levels were found to be much higher compared to the other electrolytes in test groups. Conclusion Hard water with high fluoride content resulted in acute tubular injury with a significant increase in serum levels of creatinine, urea and AST activity. These alterations were minimized by administering distilled water.
Collapse
Affiliation(s)
- Thanusha Perera
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Shirani Ranasinghe
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka. .,Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Neil Alles
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Roshitha Waduge
- Department of Pathology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
10
|
Gyarmati G, Kadoya H, Moon JY, Burford JL, Ahmadi N, Gill IS, Hong YK, Dér B, Peti-Peterdi J. Advances in Renal Cell Imaging. Semin Nephrol 2019; 38:52-62. [PMID: 29291762 DOI: 10.1016/j.semnephrol.2017.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A great variety of cell imaging technologies are used routinely every day for the investigation of kidney cell types in applications ranging from basic science research to drug development and pharmacology, clinical nephrology, and pathology. Quantitative visualization of the identity, density, and fate of both resident and nonresident cells in the kidney, and imaging-based analysis of their altered function, (patho)biology, metabolism, and signaling in disease conditions, can help to better define pathomechanism-based disease subgroups, identify critical cells and structures that play a role in the pathogenesis, critically needed biomarkers of disease progression, and cell and molecular pathways as targets for novel therapies. Overall, renal cell imaging has great potential for improving the precision of diagnostic and treatment paradigms for individual acute kidney injury or chronic kidney disease patients or patient populations. This review highlights and provides examples for some of the recently developed renal cell optical imaging approaches, mainly intravital multiphoton fluorescence microscopy, and the new knowledge they provide for our better understanding of renal pathologies.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Hiroyuki Kadoya
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Ju-Young Moon
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Korea
| | - James L Burford
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nariman Ahmadi
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Inderbir S Gill
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Young-Kwon Hong
- Department of Surgery and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Bálint Dér
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
11
|
Orr SE, Barnes MC, Joshee L, Uchakina O, McKallip RJ, Bridges CC. Potential mechanisms of cellular injury following exposure to a physiologically relevant species of inorganic mercury. Toxicol Lett 2019; 304:13-20. [PMID: 30630035 DOI: 10.1016/j.toxlet.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
Abstract
Mercury is a toxic metal that is found ubiquitously in the environment. Humans are exposed to different forms of mercury via ingestion, inhalation, and/or dermal absorption. Following exposure, mercuric ions may gain access to target cells and subsequently lead to cellular intoxication. The mechanisms by which mercury accumulation leads to cellular injury and death are not understood fully. Therefore, purpose of this study was to identify the specific intracellular mechanisms that are altered by exposure to inorganic mercury (Hg2+). Normal rat kidney (NRK) cells were exposed to a physiologically relevant form of Hg2+, as a conjugate of cysteine (10 μM or 50 μM). Alterations in oxidative stress were estimated by measuring lipid peroxidation and mitochondrial oxidative stress. Alterations in actin and tubulin were measured using specific fluorescent dyes. Calcium levels were measured using Fluo-3 AM Calcium Indicator while autophagy was identified with Premo™ Autophagy Sensor LC3B-GFP. The current findings show that exposure to Hg2+ leads to enhanced oxidative stress, alterations in cytoskeletal structure, increases in intracellular calcium, and enhanced autophagy. We have established a more complete understanding of intoxication and cellular injury induced by a relevant form of Hg2+ in proximal tubule cells.
Collapse
Affiliation(s)
- Sarah E Orr
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Mary C Barnes
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Lucy Joshee
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Olga Uchakina
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Robert J McKallip
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Christy C Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
12
|
Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech 2017; 9:1419-1433. [PMID: 27935823 PMCID: PMC5200898 DOI: 10.1242/dmm.027276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rat has classically been the species of choice for pharmacological studies and disease modeling, providing a source of high-quality physiological data on cardiovascular and renal pathophysiology over many decades. Recent developments in genome engineering now allow us to capitalize on the wealth of knowledge acquired over the last century. Here, we review rat models of hypertension, diabetic nephropathy, and acute and chronic kidney disease. These models have made important contributions to our understanding of renal diseases and have revealed key genes, such as Ace and P2rx7, involved in renal pathogenic processes. By targeting these genes of interest, researchers are gaining a better understanding of the etiology of renal pathologies, with the promised potential of slowing disease progression or even reversing the damage caused. Some, but not all, of these target genes have proved to be of clinical relevance. However, it is now possible to generate more sophisticated and appropriate disease models in the rat, which can recapitulate key aspects of human renal pathology. These advances will ultimately be used to identify new treatments and therapeutic targets of much greater clinical relevance. Summary: This Review highlights the key role that the rat continues to play in improving our understanding of the etiologies of renal pathologies, and how these insights have opened up new therapeutic avenues.
Collapse
Affiliation(s)
- Linda J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryan R Conway
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert I Menzies
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
13
|
Bhattacharyya S, Jean-Alphonse FG, Raghavan V, McGarvey JC, Rbaibi Y, Vilardaga JP, Carattino MD, Weisz OA. Cdc42 activation couples fluid shear stress to apical endocytosis in proximal tubule cells. Physiol Rep 2017; 5:5/19/e13460. [PMID: 29038362 PMCID: PMC5641940 DOI: 10.14814/phy2.13460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022] Open
Abstract
Cells lining the kidney proximal tubule (PT) respond to acute changes in glomerular filtration rate and the accompanying fluid shear stress (FSS) to regulate reabsorption of ions, glucose, and other filtered molecules and maintain glomerulotubular balance. Recently, we discovered that exposure of PT cells to FSS also stimulates an increase in apical endocytic capacity (Raghavan et al. PNAS, 111:8506–8511, 2014). We found that FSS triggered an increase in intracellular Ca2+ concentration ([Ca2+]i) that required release of extracellular ATP and the presence of primary cilia. In this study, we elucidate steps downstream of the increase in [Ca2+]i that link FSS‐induced calcium increase to increased apical endocytic capacity. Using an intramolecular FRET probe, we show that activation of Cdc42 is a necessary step in the FSS‐stimulated apical endocytosis cascade. Cdc42 activation requires the primary cilia and the FSS‐mediated increase in [Ca2+]i. Moreover, Cdc42 activity and FSS‐stimulated endocytosis are coordinately modulated by activators and inhibitors of calmodulin. Together, these data suggest a mechanism by which PT cell exposure to FSS is translated into enhanced endocytic uptake of filtered molecules.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frédéric G Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Venkatesan Raghavan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jennifer C McGarvey
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Szabó Z, Héja L, Szalay G, Kékesi O, Füredi A, Szebényi K, Dobolyi Á, Orbán TI, Kolacsek O, Tompa T, Miskolczy Z, Biczók L, Rózsa B, Sarkadi B, Kardos J. Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo. Sci Rep 2017; 7:6018. [PMID: 28729692 PMCID: PMC5519671 DOI: 10.1038/s41598-017-06073-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation.
Collapse
Affiliation(s)
- Zsolt Szabó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| | - Gergely Szalay
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Orsolya Kékesi
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - András Füredi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Institute of Cancer Research, Medical University Wien, Borschkegasse 8a, 1090, Wien, Austria
| | - Kornélia Szebényi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Institute of Cancer Research, Medical University Wien, Borschkegasse 8a, 1090, Wien, Austria
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1C, 1117, Budapest, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tamás Tompa
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Rózsa
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
15
|
Surgical preparation of rats and mice for intravital microscopic imaging of abdominal organs. Methods 2017; 128:129-138. [PMID: 28698070 DOI: 10.1016/j.ymeth.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/12/2017] [Accepted: 07/04/2017] [Indexed: 01/20/2023] Open
Abstract
Intravital microscopy is a powerful research tool that can provide insight into cellular and subcellular events that take place in organs in the body. However, meaningful results can only be obtained from animals whose physiology is preserved during the process of microscopy. Here I discuss the importance of preserving the overall state of health of the animal, methods of anesthesia, surgical techniques for intravital microscopy of various abdominal organs, methods to maintain and monitor the physiology of the animal during microscopy and associated peri- and post-operative recovery considerations.
Collapse
|
16
|
Hall AM, Schuh CD, Haenni D. New frontiers in intravital microscopy of the kidney. Curr Opin Nephrol Hypertens 2017; 26:172-178. [DOI: 10.1097/mnh.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Intravital imaging of the kidney. Methods 2017; 128:33-39. [PMID: 28410977 DOI: 10.1016/j.ymeth.2017.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Two-photon intravital microscopy is a powerful tool that allows the examination of dynamic cellular processes in the live animal with unprecedented resolution. Indeed, it offers the ability to address unique biological questions that may not be solved by other means. While two-photon intravital microscopy has been successfully applied to study many organs, the kidney presents its own unique challenges that need to be overcome in order to optimize and validate imaging data. For kidney imaging, the complexity of renal architecture and salient autofluorescence merit special considerations as these elements directly impact image acquisition and data interpretation. Here, using illustrative cases, we provide practical guides and discuss issues that may arise during two-photon live imaging of the rodent kidney.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The review aims to provide a brief summary and evaluation of the current state of research that uses multiphoton fluorescence microscopy for intravital kidney imaging. RECENT FINDINGS Direct visualization of the glomerular filter, proximal and distal tubule segments, and the renal vasculature in the living, intact kidney in zebrafish, mouse, and rat models with high temporal and spatial resolution provided new insights into the function of the normal and diseased kidney. New technical developments in fluorescence excitation and detection, in combination with transgenic animal models for cell function and fate mapping, and serial imaging of the same glomerulus in the same animal over several days further advanced the field of nephrology research, and the understanding of disease mechanisms. SUMMARY Intravital multiphoton imaging has solved many critical technical barriers in kidney research and allowed the dynamic portrayal of the structure and function of various renal cell types in vivo. It has become a widely used research technique, with significant past achievements, and tremendous potential for future development and applications for the study and better understanding of kidney diseases.
Collapse
|
19
|
Kolacsek O, Pergel E, Varga N, Apáti Á, Orbán TI. Ct shift: A novel and accurate real-time PCR quantification model for direct comparison of different nucleic acid sequences and its application for transposon quantifications. Gene 2017; 598:43-49. [DOI: 10.1016/j.gene.2016.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
20
|
Park JE, Zhang XF, Choi SH, Okahara J, Sasaki E, Silva AC. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci Rep 2016; 6:34931. [PMID: 27725685 PMCID: PMC5057151 DOI: 10.1038/srep34931] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Chronic monitoring of neuronal activity in the living brain with optical imaging techniques became feasible owing to the continued development of genetically encoded calcium indicators (GECIs). Here we report for the first time the successful generation of transgenic marmosets (Callithrix jacchus), an important nonhuman primate model in neurophysiological research, which were engineered to express the green fluorescent protein (GFP)-based family of GECIs, GCaMP, under control of either the CMV or the hSyn promoter. High titer lentiviral vectors were produced, and injected into embryos collected from donor females. The infected embryos were then transferred to recipient females. Eight transgenic animals were born and shown to have stable and functional GCaMP expression in several different tissues. Germline transmission of the transgene was confirmed in embryos generated from two of the founder transgenic marmosets that reached sexual maturity. These embryos were implanted into six recipient females, three of which became pregnant and are in advanced stages of gestation. We believe these transgenic marmosets will be invaluable non-human primate models in neuroscience, allowing chronic in vivo monitoring of neural activity with functional confocal and multi-photon optical microscopy imaging of intracellular calcium dynamics.
Collapse
Affiliation(s)
- Jung Eun Park
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xian Feng Zhang
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sang-Ho Choi
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Junko Okahara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa 210-0821, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa 210-0821, Japan.,Keio advanced Research Center, Keio University, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Jemnitz K, Bátai-Konczos A, Szabó M, Ioja E, Kolacsek O, Orbán TI, Török G, Homolya L, Kovács E, Jablonkai I, Veres Z. A transgenic rat hepatocyte - Kupffer cell co-culture model for evaluation of direct and macrophage-related effect of poly(amidoamine) dendrimers. Toxicol In Vitro 2016; 38:159-169. [PMID: 27717685 DOI: 10.1016/j.tiv.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022]
Abstract
Increasing number of papers demonstrate that Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI). Furthermore, elevated intracellular Ca2+ level of hepatocytes is considered as a common marker of DILI. Here we applied an in vitro model based on hepatocyte mono- and hepatocyte/KC co-cultures (H/KC) isolated from transgenic rats stably expressing the GCaMP2 fluorescent Ca2+ sensor protein to investigate the effects of polycationic (G5), polyanionic (G4.5) and polyethylene-glycol coated neutral (G5 Peg) dendrimers known to accumulate in the liver, primarily in KCs. Following dendrimer exposure, hepatocyte homeostasis was measured by MTT cytotoxicity assay and by Ca2+ imaging, while hepatocyte functions were studied by CYP2B1/2 inducibility, and bilirubin and taurocholate transport. G5 was significantly more cytotoxic than G4.5 for hepatocytes and induced Ca2+ oscillation and sustained Ca2+ signals at 1μM and10 μM, respectively both in hepatocytes and KCs. Dendrimer-induced Ca2+ signals in hepatocytes were attenuated by macrophages. Activation of KCs by lipopolysaccharide and G5 decreased the inducibility of CYP2B1/2, which was restored by depleting the KCs with gadolinium-chloride and pentoxyphylline, suggesting a role of macrophages in the hindrance of CYP2B1/2 induction by G5 and lipopolysaccharide. In the H/KC, but not in the hepatocyte mono-culture, G5 reduced the canalicular efflux of bilirubin and stimulated the uptake and canalicular efflux of taurocholate. In conclusion, H/KC provides a good model for the prediction of hepatotoxic potential of drugs, especially of nanomaterials known to be trapped by macrophages, activation of which presumably contributes to DILI.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Attila Bátai-Konczos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mónika Szabó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Enikő Ioja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Török
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - István Jablonkai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsa Veres
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
22
|
Calcium signaling in human pluripotent stem cells. Cell Calcium 2016; 59:117-23. [PMID: 26922096 DOI: 10.1016/j.ceca.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/24/2023]
Abstract
Human pluripotent stem cells provide new tools for developmental and pharmacological studies as well as for regenerative medicine applications. Calcium homeostasis and ligand-dependent calcium signaling are key components of major cellular responses, including cell proliferation, differentiation or apoptosis. Interestingly, these phenomena have not been characterized in detail as yet in pluripotent human cell sates. Here we review the methods applicable for studying both short- and long-term calcium responses, focusing on the expression of fluorescent calcium indicator proteins and imaging methods as applied in pluripotent human stem cells. We discuss the potential regulatory pathways involving calcium responses in hPS cells and compare these to the implicated pathways in mouse PS cells. A recent development in the stem cell field is the recognition of so called "naïve" states, resembling the earliest potential forms of stem cells during development, as well as the "fuzzy" stem cells, which may be alternative forms of pluripotent cell types, therefore we also discuss the potential role of calcium homeostasis in these PS cell types.
Collapse
|
23
|
Multiplexed 3D FRET imaging in deep tissue of live embryos. Sci Rep 2015; 5:13991. [PMID: 26387920 PMCID: PMC4585674 DOI: 10.1038/srep13991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 02/03/2023] Open
Abstract
Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca(2+) and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms.
Collapse
|
24
|
Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling. Sci Rep 2015; 5:12645. [PMID: 26234466 PMCID: PMC4522653 DOI: 10.1038/srep12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na+/Ca2+ exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.
Collapse
|