1
|
Cheung CK, Alexander S, Reich HN, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol 2025; 21:9-23. [PMID: 39232245 PMCID: PMC7616674 DOI: 10.1038/s41581-024-00885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region - probably derived from the mucosal immune system - is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | - Heather N Reich
- Department of Medicine, Division of Nephrology, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, P. R. China
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
2
|
Al-Karawi AS, Kadhim AS. Correlation of autoimmune response and immune system components in the progression of IgA nephropathy: A comparative study. Hum Immunol 2024; 85:111181. [PMID: 39566436 DOI: 10.1016/j.humimm.2024.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/27/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Immunoglobin-IgA nephropathy (IgAN) stands as the most prevalent primary glomerulonephritis globally. Recently, several studies have mentioned the essential role of the autoimmune response as a mechanism causing Berger's disease, but it is not clear. AIM The aims of the study was to assess the correlation between autoimmune competences and explain the roles of certain immune contents in the progression of disease. MATERIAL AND METHOD One hundred and fifty patients participated in the study, including 75 patients with Berger's disease and 75 healthy controls. The chemiluminescence immunoassay technique was employing to assess the level of autoantibodies, while nephelometry was utilizing to quantify the concentration of immunoglobin-related disease and complement proteins (C1q and C4). Simpler, blood smears were accustomed to diagnosing fragments of RBCs (schistocytes), and simple flow cytometry was used to enumerate red blood cells (RBCs) and platelets. RESULTS The current study revealed a significantly increased in the schistocytes and lower counts of RBCs in the patients compared to the control. Also, the results showed that the level of ANA, ANCA and dsDNA was highly significant (p < 0.001) in the patients (67.1 ± 2.5 ng/ml, 55.9 ± 12.0 ng/ml, 65.0 ± 2.0 ng/ml respectively) than the control (5.5 ± 0.30 ng/ml, 15.4 ± 1.0 ng/ml, 12.5 ± 0.22 ng/ml, respectively). Furthermore, IgM level was significantly no different (p = 0.755) in a patient (2.8 ± 0.19 ng/ml) compared to the control (2.5 ± 0.26 ng/ml). While the level of IgA and IgG was highly significant (p < 0.001) in the patient (10.3 ± 0.99 ng/ml and 11.6 ± 12 ng/ml respectively) compared to the control (4.2 ± 0.69 ng/ml and 2.8 ± 0.99 ng/ml respectively). Additionally, levels of C4 and C1q were a significantly increase in serum patients than the control group. However, there is a direct correlation between autoimmune antibodies and complement. CONCLUSION There was a strong correlation between immune system components and blood factors, which was identified as a contributing factor in the development of Berger's disease.
Collapse
Affiliation(s)
| | - Ali Saad Kadhim
- Branch of Biology, Department of Science, College of Basic Education, Wasit University, Wasit, Iraq.
| |
Collapse
|
3
|
Strizzi CT, Ambrogio M, Zanoni F, Bonerba B, Bracaccia ME, Grandaliano G, Pesce F. Epitope Spreading in Immune-Mediated Glomerulonephritis: The Expanding Target. Int J Mol Sci 2024; 25:11096. [PMID: 39456878 PMCID: PMC11507388 DOI: 10.3390/ijms252011096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Epitope spreading is a critical mechanism driving the progression of autoimmune glomerulonephritis. This phenomenon, where immune responses broaden from a single epitope to encompass additional targets, contributes to the complexity and severity of diseases such as membranous nephropathy (MN), lupus nephritis (LN), and ANCA-associated vasculitis (AAV). In MN, intramolecular spreading within the phospholipase A2 receptor correlates with a worse prognosis, while LN exemplifies both intra- and intermolecular spreading, exacerbating renal involvement. Similarly, ANCA reactivity in AAV highlights the destructive potential of epitope diversification. Understanding these immunological cascades reveals therapeutic opportunities-targeting early epitope spreading could curb disease progression. Despite promising insights, the clinical utility of epitope spreading as a prognostic tool remains debated. This review provides a complete overview of the current evidence, exploring the dual-edged nature of epitope spreading, the intricate immune mechanisms behind it, and its therapeutic implications. By elucidating these dynamics, we aim to pave the way for more precise, targeted interventions in autoimmune glomerular diseases.
Collapse
Affiliation(s)
- Camillo Tancredi Strizzi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.A.); (B.B.); (G.G.)
- Nephrology, Dialysis and Transplantation Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Martina Ambrogio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.A.); (B.B.); (G.G.)
- Nephrology, Dialysis and Transplantation Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Zanoni
- Department of Nephrology, Dialysis, and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Bibiana Bonerba
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.A.); (B.B.); (G.G.)
- Nephrology, Dialysis and Transplantation Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Elena Bracaccia
- Division of Renal Medicine, Ospedale Isola Tiberina-Gemelli Isola, 00186 Rome, Italy;
| | - Giuseppe Grandaliano
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.A.); (B.B.); (G.G.)
- Nephrology, Dialysis and Transplantation Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Pesce
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.A.); (B.B.); (G.G.)
- Division of Renal Medicine, Ospedale Isola Tiberina-Gemelli Isola, 00186 Rome, Italy;
| |
Collapse
|
4
|
Novak J, King RG, Yother J, Renfrow MB, Green TJ. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Glycobiology 2024; 34:cwae060. [PMID: 39095059 PMCID: PMC11442006 DOI: 10.1093/glycob/cwae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, United States
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| |
Collapse
|
5
|
Novak J, Reily C, Steers NJ, Schumann T, Rizk DV, Julian BA, Kiryluk K, Gharavi AG, Green TJ. Emerging Biochemical and Immunologic Mechanisms in the Pathogenesis of IgA Nephropathy. Semin Nephrol 2024; 44:151565. [PMID: 40087124 PMCID: PMC11972156 DOI: 10.1016/j.semnephrol.2025.151565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
IgA nephropathy is a mesangioproliferative glomerular disease with significant morbidity and mortality. Most patients with IgA nephropathy develop kidney failure in their lifetime, reducing their life expectancy by a decade. Since its first description in 1968, it has been established that kidneys of IgA nephropathy patients are injured as "innocent bystanders" by nephritogenic IgA1-containing immune complexes. Results from clinical, biochemical, immunologic, and genetic studies suggest a multistep pathogenetic mechanism. In genetically predisposed individuals, this process results in formation of circulating immune complexes due to the binding of IgG/IgA autoantibodies to the polymeric IgA1 molecules with incomplete O-glycosylation. This event is followed by the addition of other proteins, such as complement C3, resulting in the formation of nephritogenic immune complexes. These complexes are not effectively removed from the circulation, and some of them pass through the fenestration of glomerular endothelial cells to enter the mesangial space and activate mesangial cells. It is thought that the process is initiated by soluble immune complexes and that their accumulation results in the formation of immunodeposits that further amplify glomerular injury. Here we summarize current understanding of the pathogenesis of IgA nephropathy and discuss experimental model systems that can inform development of new therapeutic strategies and targets.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL.
| | - Colin Reily
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL; Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | | | - Dana V Rizk
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
6
|
Novak J. Pathogenesis of IgA nephropathy: Omics data inform glycomedicine. Nephrology (Carlton) 2024; 29 Suppl 2:18-22. [PMID: 39327757 PMCID: PMC11441619 DOI: 10.1111/nep.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Roberts LE, Williams CEC, Oni L, Barratt J, Selvaskandan H. IgA Nephropathy: Emerging Mechanisms of Disease. Indian J Nephrol 2024; 34:297-309. [PMID: 39156850 PMCID: PMC11326799 DOI: 10.25259/ijn_425_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 08/20/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis reported across the world and is characterized by immunoglobulin A (IgA) dominant mesangial deposits, which are poorly O-glycosylated. This deposition leads to a cascade of glomerular and tubulointerstitial inflammation and fibrosis, which can progress to chronic kidney disease. The variability in rate of progression reflects the many genetic and environmental factors that drive IgAN. Here, we summarize the contemporary understanding of the disease mechanisms that drive IgAN and provide an overview of new and emerging therapies, which target these mechanisms.
Collapse
Affiliation(s)
- Lydia E Roberts
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Chloe E C Williams
- Royal Liverpool and Broadgreen University Hospital Trusts, Liverpool, United Kingdom
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Louise Oni
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Nephrology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Haresh Selvaskandan
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
8
|
Liu Z, Yang J, Du M, Xin W. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol 2023; 14:1238706. [PMID: 38074159 PMCID: PMC10702752 DOI: 10.3389/fphar.2023.1238706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial epigenetic mechanisms that regulate various cellular biological processes. The use of mass spectrometry (MS)-proteomics has led to the discovery of numerous novel types of protein PTMs, such as acetylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, protein propionylation and butyrylation, succinylation, malonylation, lactylation, and histone methylation. In this review, we specifically highlight the molecular mechanisms and roles of various histone and some non-histone PTMs in renal diseases, including diabetic kidney disease. PTMs exhibit diverse effects on renal diseases, which can be either protective or detrimental, depending on the specific type of protein PTMs and their respective targets. Different PTMs activate various signaling pathways in diverse renal pathological conditions, which could provide novel insights for studying epigenetic mechanisms and developing potential therapeutic strategies for renal diseases.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Minghui Du
- Biomedical Science College, Shandong First Medical University, Jinan, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Gentile M, Sanchez-Russo L, Riella LV, Verlato A, Manrique J, Granata S, Fiaccadori E, Pesce F, Zaza G, Cravedi P. Immune abnormalities in IgA nephropathy. Clin Kidney J 2023; 16:1059-1070. [PMID: 37398689 PMCID: PMC10310525 DOI: 10.1093/ckj/sfad025] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 09/10/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and it is characterized by mesangial IgA deposition. Asymptomatic hematuria with various degrees of proteinuria is the most common clinical presentation and up to 20%-40% of patients develop end-stage kidney disease within 20 years after disease onset. The pathogenesis of IgAN involves four sequential processes known as the "four-hit hypothesis" which starts with the production of a galactose-deficient IgA1 (gd-IgA1), followed by the formation of anti-gd-IgA1 IgG or IgA1 autoantibodies and immune complexes that ultimately deposit in the glomerular mesangium, leading to inflammation and injury. Although several key questions about the production of gd-IgA1 and the formation of anti-gd-IgA1 antibodies remain unanswered, a growing body of evidence is shedding light on the innate and adaptive immune mechanisms involved in this complex pathogenic process. Herein, we will focus on these mechanisms that, along with genetic and environmental factors, are thought to play a key role in disease pathogenesis.
Collapse
Affiliation(s)
- Micaela Gentile
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Luis Sanchez-Russo
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Leonardo V Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Verlato
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Joaquin Manrique
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Simona Granata
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Enrico Fiaccadori
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “A. Moro”, Bari, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Paolo Cravedi
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
10
|
Mestecky J, Julian BA, Raska M. IgA Nephropathy: Pleiotropic impact of Epstein-Barr virus infection on immunopathogenesis and racial incidence of the disease. Front Immunol 2023; 14:1085922. [PMID: 36865536 PMCID: PMC9973316 DOI: 10.3389/fimmu.2023.1085922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
IgA nephropathy (IgAN) is an autoimmune disease in which poorly galactosylated IgA1 is the antigen recognized by naturally occurring anti-glycan antibodies, leading to formation of nephritogenic circulating immune complexes. Incidence of IgAN displays geographical and racial disparity: common in Europe, North America, Australia, and east Asia, uncommon in African Americans, many Asian and South American countries, Australian Aborigines, and rare in central Africa. In analyses of sera and cells from White IgAN patients, healthy controls, and African Americans, IgAN patients exhibited substantial enrichment for IgA-expressing B cells infected with Epstein-Barr virus (EBV), leading to enhanced production of poorly galactosylated IgA1. Disparities in incidence of IgAN may reflect a previously disregarded difference in the maturation of the IgA system as related to the timing of EBV infection. Compared with populations with higher incidences of IgAN, African Americans, African Blacks, and Australian Aborigines are more frequently infected with EBV during the first 1-2 years of life at the time of naturally occurring IgA deficiency when IgA cells are less numerous than in late childhood or adolescence. Therefore, in very young children EBV enters "non-IgA" cells. Ensuing immune responses prevent infection of IgA B cells during later exposure to EBV at older ages. Our data implicate EBV-infected cells as the source of poorly galactosylated IgA1 in circulating immune complexes and glomerular deposits in patients with IgAN. Thus, temporal differences in EBV primo-infection as related to naturally delayed maturation of the IgA system may contribute to geographic and racial variations in incidence of IgAN.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| |
Collapse
|
11
|
Groza Y, Jemelkova J, Kafkova LR, Maly P, Raska M. IL-6 and its role in IgA nephropathy development. Cytokine Growth Factor Rev 2022; 66:1-14. [PMID: 35527168 DOI: 10.1016/j.cytogfr.2022.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
IL-6 is considered one of the well characterized cytokines exhibiting homeostatic, pro- and anti-inflammatory activities, depending on the receptor variant and the induced intracellular cis- or trans-signaling responses. IL-6-activated pathways are involved in the regulation of cell proliferation, survival, differentiation, and cell metabolism changes. Deviations in IL-6 levels or abnormal response to IL-6 signaling are associated with several autoimmune diseases including IgA nephropathy (IgAN), one of most frequent primary glomerulonephritis worldwide. IgAN is associated with increased plasma concentration of IL-6 and increased plasma concentration of aberrantly galactosylated IgA1 immunoglobulin (Gd-IgA1). Gd-IgA1 is specifically recognized by autoantibodies, leading to the formation of circulating immune complexes (CIC) with nephritogenic potential, since CIC deposited in the glomerular mesangium induce mesangial cells proliferation and glomerular injury. Infection of the upper respiratory or digestive tract enhances IL-6 production and in IgAN patients is often followed by the macroscopic hematuria. This review recapitulates general aspects of IL-6 signaling and summarizes experimental evidences about IL-6 involvement in the etiopathogenesis of IgA nephropathy through the production of Gd-IgA1 and regulation of mesangial cell proliferation.
Collapse
Affiliation(s)
- Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Jana Jemelkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 779 00, Czech Republic
| | - Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 779 00, Czech Republic.
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 779 00, Czech Republic.
| |
Collapse
|
12
|
Hastings MC, Rizk DV, Kiryluk K, Nelson R, Zahr RS, Novak J, Wyatt RJ. IgA vasculitis with nephritis: update of pathogenesis with clinical implications. Pediatr Nephrol 2022; 37:719-733. [PMID: 33818625 PMCID: PMC8490493 DOI: 10.1007/s00467-021-04950-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
IgA vasculitis with nephritis (IgAVN) shares many pathogenetic features with IgA nephropathy (IgAN). The purpose of this review is to describe our current understanding of the pathogenesis of pediatric IgAVN, particularly as it relates to the four-hit hypothesis for IgAN. These individual steps, i.e., hits, in the pathogenesis of IgAN are (1) elevated production of IgA1 glycoforms with some O-glycans deficient in galactose (galactose-deficient IgA1; Gd-IgA1), (2) generation of circulating IgG autoantibodies specific for Gd-IgA1, (3) formation of pathogenic circulating Gd-IgA1-containing immune complexes, and (4) kidney deposition of the Gd-IgA1-IgG immune complexes from the circulation and induction of glomerular injury. Evidence supporting the four-hit hypothesis in the pathogenesis of pediatric IgAVN is detailed. The genetics, pediatric outcomes, and kidney histopathologic features and the impact of these findings on future treatment and potential biomarkers are discussed. In summary, the evidence points to the critical roles of Gd-IgA1-IgG immune complexes and complement activation in the pathogenesis of IgAVN. Future studies are needed to characterize the features of the immune and autoimmune responses that enable progression of IgA vasculitis to IgAVN.
Collapse
Affiliation(s)
- M Colleen Hastings
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Dana V Rizk
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Raoul Nelson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Rima S Zahr
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert J Wyatt
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
13
|
Lai L, Liu S, Azrad M, Hall S, Hao C, Novak J, Julian BA, Novak L. IgA Vasculitis with Nephritis in Adults: Histological and Clinical Assessment. J Clin Med 2021; 10:4851. [PMID: 34768371 PMCID: PMC8584405 DOI: 10.3390/jcm10214851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with IgA vasculitis (IgAV), an immune complex-mediated disease, may exhibit kidney involvement-IgAV with nephritis (IgAVN). The kidney-biopsy histopathologic features of IgAVN are similar to those of IgA nephropathy, but little is known about histopathologic disease severity based on the interval between purpura onset and diagnostic kidney biopsy. We assessed kidney histopathology and clinical and laboratory data in a cohort of adult patients with IgAVN (n = 110). The cases were grouped based on the interval between the onset of purpura and kidney biopsy: Group 1 (G1, <1 month, n = 14), Group 2 (G2, 1-6 months, n = 58), and Group 3 (G3, >6 months, n = 38). Glomerular leukocytes were more common in G1 than in the other groups (p = 0.0008). The proportion of neutrophils among peripheral-blood leukocytes was the highest in the patients biopsied within a month after onset of purpura (G1: 71 ± 8%). In the patients with an interval >6 months, the neutrophil proportion was lower, 60%. Moreover, the glomerular mesangial proliferation score correlated with the serum total IgA concentration (p = 0.0056). In conclusion, IgAVN patients biopsied <1 month from purpura onset showed an elevated percentage of blood neutrophils and glomerular leukocytes, consistent with an acute-onset inflammatory reaction. In all IgAVN patients, the mesangial proliferation score correlated with the serum IgA level.
Collapse
Affiliation(s)
- Lingyun Lai
- Division of Nephrology, Fudan University Huashan Hospital, Shanghai 200040, China; (L.L.); (S.L.); (C.H.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.H.); (J.N.)
| | - Shaojun Liu
- Division of Nephrology, Fudan University Huashan Hospital, Shanghai 200040, China; (L.L.); (S.L.); (C.H.)
| | - Maria Azrad
- Department of Nutrition, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.H.); (J.N.)
| | - Chuanming Hao
- Division of Nephrology, Fudan University Huashan Hospital, Shanghai 200040, China; (L.L.); (S.L.); (C.H.)
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.H.); (J.N.)
| | - Bruce A. Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lea Novak
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
15
|
Scionti K, Molyneux K, Selvaskandan H, Barratt J, Cheung CK. New Insights into the Pathogenesis and Treatment Strategies in IgA Nephropathy. GLOMERULAR DISEASES 2021; 2:15-29. [PMID: 36751267 PMCID: PMC9677740 DOI: 10.1159/000519973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Background Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. It is defined by mesangial IgA deposition, with consequent mesangial cell proliferation, inflammation, and tubulointerstitial fibrosis. Summary Approximately 30% of affected patients will progress to end-stage kidney disease within 20 years of diagnosis. Currently, there is no disease-specific treatment available and management recommendations are, in general, limited to optimization of lifestyle measures and use of renin-angiotensin-aldosterone system blockers. More recently, advances in the understanding of the pathogenesis of IgAN have informed the development of novel therapeutic strategies that are now being tested in clinical trials. These have focused on different areas that include modulating the production of poorly galactosylated IgA1, which is central to the development of IgAN, and inhibiting the downstream signaling pathways and complement activation that are triggered following mesangial IgA1 deposition. In this review, we will summarize important pathogenic mechanisms in IgAN and highlight important areas of interest where treatment strategies are being developed. Key messages IgAN is a common form of primary glomerulonephritis for which there is no current approved specific therapy. Recent advances in the understanding of its pathogenesis have led to the development of novel therapies, with the hope that new treatment options will be available soon to treat this condition.
Collapse
Affiliation(s)
- Katrin Scionti
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Karen Molyneux
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom,*Jonathan Barratt,
| | - Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
16
|
Suzuki H, Novak J. IgA glycosylation and immune complex formation in IgAN. Semin Immunopathol 2021; 43:669-678. [PMID: 34570260 DOI: 10.1007/s00281-021-00883-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022]
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. This disease, discovered in 1968, is characterized by IgA-IgG glomerular immunodeposits with a mesangial pattern. It is thought that these immunodeposits originate from the immune complexes formed in the circulation. It is hypothesized that the pathogenesis of IgAN is driven by aberrant glycoforms of IgA1 (galactose-deficient IgA1, Gd-IgA1). Gd-IgA1, in genetically susceptible individuals, represents the initiating factor for the formation of circulating immune complexes due to its recognition by IgG autoantibodies and the subsequent formation of pathogenic IgA1-IgG immune complexes. Complement activation through alternative and/or lectin pathways is likely playing an important role in the pathogenic properties of these complexes and may further upregulate local inflammatory responses and glomerular injury.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, AL, 35294, Birmingham, USA.
| |
Collapse
|
17
|
Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. J Clin Med 2021; 10:jcm10194501. [PMID: 34640530 PMCID: PMC8509647 DOI: 10.3390/jcm10194501] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
IgA nephropathy, initially described in 1968 as a kidney disease with glomerular “intercapillary deposits of IgA-IgG”, has no disease-specific treatment and is a common cause of kidney failure. Clinical observations and laboratory analyses suggest that IgA nephropathy is an autoimmune disease wherein the kidneys are damaged as innocent bystanders due to deposition of IgA1-IgG immune complexes from the circulation. A multi-hit hypothesis for the pathogenesis of IgA nephropathy describes four sequential steps in disease development. Specifically, patients with IgA nephropathy have elevated circulating levels of IgA1 with some O-glycans deficient in galactose (galactose-deficient IgA1) and these IgA1 glycoforms are recognized as autoantigens by unique IgG autoantibodies, resulting in formation of circulating immune complexes, some of which deposit in glomeruli and activate mesangial cells to induce kidney injury. This proposed mechanism is supported by observations that (i) glomerular immunodeposits in patients with IgA nephropathy are enriched for galactose-deficient IgA1 glycoforms and the corresponding IgG autoantibodies; (ii) circulatory levels of galactose-deficient IgA1 and IgG autoantibodies predict disease progression; and (iii) pathogenic potential of galactose-deficient IgA1 and IgG autoantibodies was demonstrated in vivo. Thus, a better understanding of the structure–function of these immunoglobulins as autoantibodies and autoantigens will enable development of disease-specific treatments.
Collapse
|
18
|
Moldoveanu Z, Suzuki H, Reily C, Satake K, Novak L, Xu N, Huang ZQ, Knoppova B, Khan A, Hall S, Yanagawa H, Brown R, Winstead CJ, O'Quinn DB, Weinmann A, Gharavi AG, Kiryluk K, Julian BA, Weaver CT, Suzuki Y, Novak J. Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J Autoimmun 2021; 118:102593. [PMID: 33508637 DOI: 10.1016/j.jaut.2021.102593] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND IgA nephropathy is thought to be an autoimmune disease wherein galactose-deficient IgA1 (Gd-IgA1) is recognized by IgG autoantibodies, resulting in formation and renal accumulation of nephritogenic immune complexes. Although this hypothesis is supported by recent findings that, in renal immunodeposits of IgA nephropathy patients, IgG is enriched for Gd-IgA1-specific autoantibodies, experimental proof is still lacking. METHODS IgG isolated from sera of IgA nephropathy patients or produced as a recombinant IgG (rIgG) was mixed with human Gd-IgA1 to form immune complexes. IgG from healthy individuals served as a control. Nude and SCID mice were injected with human IgG and Gd-IgA1, in immune complexes or individually, and their presence in kidneys was ascertained by immunofluorescence. Pathologic changes in the glomeruli were evaluated by quantitative morphometry and exploratory transcriptomic profiling was performed by RNA-Seq. RESULTS Immunodeficient mice injected with Gd-IgA1 mixed with IgG autoantibodies from patients with IgA nephropathy, but not Gd-IgA1 mixed with IgG from healthy individuals, displayed IgA, IgG, and mouse complement C3 glomerular deposits and mesangioproliferative glomerular injury with hematuria and proteinuria. Un-complexed Gd-IgA1 or IgG did not induce pathological changes. Moreover, Gd-IgA1-rIgG immune complexes injected into immunodeficient mice induced histopathological changes characteristic of human disease. Exploratory transcriptome profiling of mouse kidney tissues indicated that these immune complexes altered gene expression of multiple pathways, in concordance with the changes observed in kidney biopsies of patients with IgA nephropathy. CONCLUSIONS This study provides the first in vivo evidence for a pathogenic role of IgG autoantibodies specific for Gd-IgA1 in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
| | - Hitoshi Suzuki
- University of Alabama at Birmingham, Birmingham, AL, USA; Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Colin Reily
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenji Satake
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Lea Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nuo Xu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Atlas Khan
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroyuki Yanagawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Rhubell Brown
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Amy Weinmann
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ali G Gharavi
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Bruce A Julian
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey T Weaver
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Chang S, Li XK. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front Med (Lausanne) 2020; 7:92. [PMID: 32266276 PMCID: PMC7105732 DOI: 10.3389/fmed.2020.00092] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis worldwide, with diverse clinical manifestations characterized by recurrent gross hematuria or microscopic hematuria, and pathological changes featuring poorly O-galactosylated IgA1 deposition in the glomerular mesangium. Pathogenesis has always been the focus of IgAN studies. After 50 years of research, most scholars agree that IgAN is a group of clinicopathological syndromes with certain common immunopathological characteristics, and multiple mechanisms are involved in its pathogenesis, including immunology, genetics, and environmental or nutritional factors. However, the precise pathogenetic mechanisms have not been fully determined. One hypothesis about the pathogenesis of IgAN suggests that immunological factors are engaged in all aspects of IgAN development and play a critical role. A variety of immune cells (e.g., dendritic cells, NK cells, macrophages, T-lymphocyte subsets, and B-lymphocytes, etc.) and molecules (e.g., IgA receptors, Toll-like receptors, complements, etc.) in innate and adaptive immunity are involved in the pathogenesis of IgAN. Moreover, the abnormality of mucosal immune regulation is the core of IgAN immunopathogenesis. The roles of tonsil immunity or intestinal mucosal immunity, which have received more attention in recent years, are supported by mounting evidence. In this review, we will explore the latest research insights on the role of immune modulation in the pathogenesis of IgAN. With a better understanding of immunopathogenesis of IgAN, emerging therapies will soon become realized.
Collapse
Affiliation(s)
- Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education NHC Key Laboratory of Organ Transplantation Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Zachova K, Kosztyu P, Zadrazil J, Matousovic K, Vondrak K, Hubacek P, Julian BA, Moldoveanu Z, Novak Z, Kostovcikova K, Raska M, Mestecky J. Role of Epstein-Barr Virus in Pathogenesis and Racial Distribution of IgA Nephropathy. Front Immunol 2020; 11:267. [PMID: 32184780 PMCID: PMC7058636 DOI: 10.3389/fimmu.2020.00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/03/2020] [Indexed: 02/04/2023] Open
Abstract
IgA nephropathy (IgAN) is the dominant type of primary glomerulonephritis worldwide. However, IgAN rarely affects African Blacks and is uncommon in African Americans. Polymeric IgA1 with galactose-deficient hinge-region glycans is recognized as auto-antigen by glycan-specific antibodies, leading to formation of circulating immune complexes with nephritogenic consequences. Because human B cells infected in vitro with Epstein-Barr virus (EBV) secrete galactose-deficient IgA1, we examined peripheral blood B cells from adult IgAN patients, and relevant controls, for the presence of EBV and their phenotypic markers. We found that IgAN patients had more lymphoblasts/plasmablasts that were surface-positive for IgA, infected with EBV, and displayed increased expression of homing receptors for targeting the upper respiratory tract. Upon polyclonal stimulation, these cells produced more galactose-deficient IgA1 than did cells from healthy controls. Unexpectedly, in healthy African Americans, EBV was detected preferentially in surface IgM- and IgD-positive cells. Importantly, most African Blacks and African Americans acquire EBV within 2 years of birth. At that time, the IgA system is naturally deficient, manifested as low serum IgA levels and few IgA-producing cells. Consequently, EBV infects cells secreting immunoglobulins other than IgA. Our novel data implicate Epstein-Barr virus infected IgA+ cells as the source of galactose-deficient IgA1 and basis for expression of relevant homing receptors. Moreover, the temporal sequence of racial-specific differences in Epstein-Barr virus infection as related to the naturally delayed maturation of the IgA system explains the racial disparity in the prevalence of IgAN.
Collapse
Affiliation(s)
- Katerina Zachova
- Department of Immunology, Faculty of Medicine and Dentistry, University Hospital Olomouc, Palacky University Olomouc, Olomouc, Czechia
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, University Hospital Olomouc, Palacky University Olomouc, Olomouc, Czechia
| | - Josef Zadrazil
- Department of Internal Medicine III Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Palacky University Olomouc, Olomouc, Czechia
| | - Karel Matousovic
- Department of Medicine, Second Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czechia
| | - Karel Vondrak
- Department of Pediatrics, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Petr Hubacek
- Department of Medical Microbiology, Second Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czechia
| | - Bruce A Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zdenek Novak
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, University Hospital Olomouc, Palacky University Olomouc, Olomouc, Czechia.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jiri Mestecky
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
21
|
Abstract
The IgA nephropathy is the most frequent form of glomerulonephritis worldwide. In approximately 30% of patients a reduction in the glomerular filtration rate of approximately 50% is observed within 10 years. Patients with IgA nephropathy form IgG autoantibodies against galactose-deficient IgA1 antibodies. This results in deposition of these antibodies in the mesangium and activation of complement with mesangial hypercellularity, endocapillary hypercellularity, segmental glomerulosclerosis and atrophying interstitial fibrosis. The basic treatment for patients with IgA nephropathy consists of removing risk factors, in particular hypertension, with blockade of the renin-angiotensin-aldosterone system. Immunosuppressives were also investigated in various studies but a clear advantage was not observed.
Collapse
Affiliation(s)
- R Bollin
- Klinik für Nieren- und Hochdruckerkrankungen, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - H Haller
- Klinik für Nieren- und Hochdruckerkrankungen, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| |
Collapse
|
22
|
Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Dębska-Ślizień A, Witkowski JM. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol 2019; 23:291-303. [PMID: 30406499 PMCID: PMC6394565 DOI: 10.1007/s10157-018-1665-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN), the most frequent cause of primary glomerulonephritis worldwide, is an autoimmune disease with complex pathogenesis. In this review, we focus on T cells and summarize knowledge about their involvement in pathophysiology and treatment of IgAN METHODS: We reviewed the literature for (1) alterations of T cell subpopulations in IgAN, (2) experimental and clinical proofs for T cells' participation in IgAN pathogenesis, (3) clinical correlations with T cell-associated alterations, and (4) influence of drugs used in IgAN therapy on T cell subpopulations. RESULTS We found that IgAN is characterized by higher proportions of circulatory Th2, Tfh, Th17, Th22 and γδ T cells, but lower Th1 and Treg cells. We discuss genetic and epigenetic makeup that may contribute to this immunological phenotype. We found that Th2, Th17 and Tfh-type interleukins contribute to elevated synthesis of galactose-deficient IgA1 (Gd-IgA1) and that the production of anti-Gd-IgA1 autoantibodies may be stimulated by Tfh cells. We described the roles of Th2, Th17, Th22 and Treg cells in the renal injury and summarized correlations between T cell-associated alterations and clinical features of IgAN (proteinuria, reduced GFR, hematuria). We detailed the impact of immunosuppressive drugs on T cell subpopulations and found that the majority of drugs have nonoptimal influence on T cells in IgAN patients. CONCLUSIONS T cells play an important role in IgAN pathogenesis and are correlated with its clinical severity. Clinical trials with the drugs targeting the reported alterations of the T-cell compartment are highly desirable.
Collapse
Affiliation(s)
- Jakub Ruszkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Katarzyna A Lisowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Małgorzata Pindel
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Zbigniew Heleniak
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| |
Collapse
|
23
|
Abstract
IgA nephropathy, the most common primary glomerulonephritis in the world and a frequent cause of end-stage renal disease, is characterized by typical mesangial deposits of IgA1, as described by Berger and Hinglaise in 1968. Since then, it has been discovered that aberrant IgA1 O-glycosylation is involved in disease pathogenesis. Progress in glycomic, genomic, clinical, analytical, and biochemical studies has shown autoimmune features of IgA nephropathy. The autoimmune character of the disease is explained by a multihit pathogenesis model, wherein overproduction of aberrantly glycosylated IgA1, galactose-deficient in some O-glycans, by IgA1-secreting cells leads to increased levels of circulatory galactose-deficient IgA1. These glycoforms induce production of autoantibodies that subsequently bind hinge-region of galactose-deficient IgA1 molecules, resulting in the formation of nephritogenic immune complexes. Some of these complexes deposit in the kidney, activate mesangial cells, and incite glomerular injury. Thus, galactose-deficient IgA1 is central to the disease process. In this article, we review studies concerning IgA1 O-glycosylation that have contributed to the current understanding of the role of IgA1 in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL..
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Bruce A Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL.; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
24
|
Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol 2018; 33:763-777. [PMID: 28624979 PMCID: PMC5861174 DOI: 10.1007/s00467-017-3699-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022]
Abstract
IgA nephropathy is the most common form of glomerulonephritis in many parts of the world and remains an important cause of end-stage renal disease. Current evidence suggests that IgA nephropathy is not due to a single pathogenic insult, but rather the result of multiple sequential pathogenic "hits". An abnormally increased level of circulating poorly O-galactosylated IgA1 and the production of O-glycan-specific antibodies leads to the formation of IgA1-containing immune complexes, and their subsequent mesangial deposition results in inflammation and glomerular injury. While this general framework has formed the foundation of our current understanding of the pathogenesis of IgA nephropathy, much work is ongoing to try to precisely define the genetic, epigenetic, immunological, and molecular basis of IgA nephropathy. In particular, the precise origin of poorly O-galactosylated IgA1 and the inciting factors for the production of O-glycan-specific antibodies continue to be intensely evaluated. The mechanisms responsible for mesangial IgA1 deposition and subsequent renal injury also remain incompletely understood. In this review, we summarize the current understanding of the key steps involved in the pathogenesis of IgA nephropathy. It is hoped that further advances in our understanding of this common glomerulonephritis will lead to novel diagnostic and prognostic biomarkers, and targeted therapies to ameliorate disease progression.
Collapse
Affiliation(s)
- See Cheng Yeo
- Department of Renal Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Chee Kay Cheung
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, UK
- The John Walls Renal Unit, Leicester General Hospital, Leicester, UK
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, UK.
- The John Walls Renal Unit, Leicester General Hospital, Leicester, UK.
| |
Collapse
|
25
|
Kosztyu P, Hill M, Jemelkova J, Czernekova L, Kafkova LR, Hruby M, Matousovic K, Vondrak K, Zadrazil J, Sterzl I, Mestecky J, Raska M. Glucocorticoids Reduce Aberrant O-Glycosylation of IgA1 in IgA Nephropathy Patients. Kidney Blood Press Res 2018. [PMID: 29529610 DOI: 10.1159/000487903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS IgA nephropathy is associated with aberrant O-glycosylation of IgA1, which is recognized by autoantibodies leading to the formation of circulating immune complexes. Some of them, after deposition into kidney mesangium, trigger glomerular injury. In patients with active disease nonresponding to angiotensin-converting enzyme inhibitors or angiotensin II blockers, corticosteroids are recommended. METHODS The relationship between the corticosteroid therapy and serum levels of IgA, aberrantly O-glycosylated IgA1, IgA-containing immune complexes and their mesangioproliferative activity was analyzed in IgA nephropathy patients and disease and healthy controls. RESULTS Prednisone therapy significantly reduced proteinuria and levels of serum IgA, galactose-deficient IgA1, and IgA-IgG immune complexes in IgA nephropathy patients and thus reduced differences in all of the above parameters between IgAN patients and control groups. A moderate but not significant reduction of mesangioproliferative potential of IgA-IgG immune complexes and IgA sialylation was detected. CONCLUSION The prednisone therapy reduces overall aberrancy in IgA1 O-glycosylation in IgA nephropathy patients, but the measurement of IgA1 parameters does not allow us to predict the prednisone therapy outcome in individual patients.
Collapse
Affiliation(s)
- Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Martin Hill
- Department of Steroids and Proteohormones and Department of Clinical Immunology, Institute of Endocrinology, Prague, Czech Republic
| | - Jana Jemelkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Lydie Czernekova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Miroslav Hruby
- Department of Internal Medicine III Nephrology, Rheumatology and Endocrinology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Karel Matousovic
- Department of Medicine, Second School of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Karel Vondrak
- Department of Pediatrics, Second School of Medicine, Charles University, Prague and University Hospital Motol, Prague, Czech Republic
| | - Josef Zadrazil
- Department of Internal Medicine III Nephrology, Rheumatology and Endocrinology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Ivan Sterzl
- Department of Steroids and Proteohormones and Department of Clinical Immunology, Institute of Endocrinology, Prague, Czech Republic
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Immunology and Gnotobiology Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.,Institute of Immunology and Microbiology, First School of Medicine, Charles University, Prague, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
26
|
Placzek WJ, Yanagawa H, Makita Y, Renfrow MB, Julian BA, Rizk DV, Suzuki Y, Novak J, Suzuki H. Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS One 2018; 13:e0190967. [PMID: 29324897 PMCID: PMC5764330 DOI: 10.1371/journal.pone.0190967] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023] Open
Abstract
IgA nephropathy is an autoimmune disease characterized by IgA1-containing glomerular immune deposits. We previously proposed a multi-hit pathogenesis model in which patients with IgA nephropathy have elevated levels of circulatory IgA1 with some O-glycans deficient in galactose (Gd-IgA1, autoantigen). Gd-IgA1 is recognized by anti-glycan IgG and/or IgA autoantibodies, resulting in formation of pathogenic immune complexes. Some of these immune complexes deposit in the kidney, activate mesangial cells, and incite glomerular injury leading to clinical presentation of IgA nephropathy. Several studies have demonstrated that elevated circulatory levels of either Gd-IgA1 or the corresponding autoantibodies predict progressive loss of renal clearance function. In this study we assessed a possible association between serum levels of Gd-IgA1 and IgG or IgA autoantibodies specific for Gd-IgA1 in serum samples from 135 patients with biopsy-proven IgA nephropathy, 76 patients with other renal diseases, and 106 healthy controls. Our analyses revealed a correlation between the concentrations of the autoantigen and the corresponding IgG autoantibodies in sera of patients with IgA nephropathy, but not of disease or healthy controls. Moreover, our data suggest that IgG is the predominant isotype of Gd-IgA1-specific autoantibodies in IgA nephropathy. This work highlights the importance of both initial hits in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- William J. Placzek
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| | - Hiroyuki Yanagawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuko Makita
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bruce A. Julian
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dana V. Rizk
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan Novak
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Renfrow MB, Novak J. What insights can proteomics give us into IgA nephropathy (Berger's disease)? Expert Rev Proteomics 2017; 14:645-647. [PMID: 28535694 DOI: 10.1080/14789450.2017.1331738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Matthew B Renfrow
- a Department of Biochemistry and Molecular Genetics , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Jan Novak
- b Department of Microbiology , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
28
|
Abstract
IgA nephropathy (IgAN) is a leading cause of CKD and renal failure. Recent international collaborative efforts have led to important discoveries that have improved our understanding of some of the key steps involved in the immunopathogenesis of IgAN. Furthermore, establishment of multicenter networks has contributed to rigorous design and execution of clinical trials that have provided important insights regarding immunotherapy in IgAN. In this article, we review emerging developments in clinical and translational IgAN research and describe how these novel findings will influence future strategies to improve the outcome of patients with IgAN.
Collapse
Affiliation(s)
- Jennifer C Rodrigues
- Department of Medicine, University of Toronto and Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Heather N Reich
- Department of Medicine, University of Toronto and Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Gabor Zellerman Chair in Nephrology Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, Ferlin A, Yin P, Nelson CP, Stanescu H, Samani NJ, Kleta R, Yu X, Barratt J. Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1. J Am Soc Nephrol 2017; 28:2158-2166. [PMID: 28209808 DOI: 10.1681/asn.2016091043] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 11/03/2022] Open
Abstract
IgA nephropathy (IgAN), an important cause of kidney failure, is characterized by glomerular IgA deposition and is associated with changes in O-glycosylation of the IgA1 molecule. Here, we sought to identify genetic factors contributing to levels of galactose-deficient IgA1 (Gd-IgA1) in white and Chinese populations. Gd-IgA1 levels were elevated in IgAN patients compared with ethnically matched healthy subjects and correlated with evidence of disease progression. White patients with IgAN exhibited significantly higher Gd-IgA1 levels than did Chinese patients. Among individuals without IgAN, Gd-IgA1 levels did not correlate with kidney function. Gd-IgA1 level heritability (h2), estimated by comparing midparental and offspring Gd-IgA1 levels, was 0.39. Genome-wide association analysis by linear regression identified alleles at a single locus spanning the C1GALT1 gene that strongly associated with Gd-IgA1 level (β=0.26; P=2.35×10-9). This association was replicated in a genome-wide association study of separate cohorts comprising 308 patients with membranous GN from the UK (P<1.00×10-6) and 622 controls with normal kidney function from the UK (P<1.00×10-10), and in a candidate gene study of 704 Chinese patients with IgAN (P<1.00×10-5). The same extended haplotype associated with elevated Gd-IgA1 levels in all cohorts studied. C1GALT1 encodes a galactosyltransferase enzyme that is important in O-galactosylation of glycoproteins. These findings demonstrate that common variation at C1GALT1 influences Gd-IgA1 level in the population, which independently associates with risk of progressive IgAN, and that the pathogenic importance of changes in IgA1 O-glycosylation may vary between white and Chinese patients with IgAN.
Collapse
Affiliation(s)
| | - Karen Molyneux
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - David Wimbury
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Patricia Higgins
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Adam P Levine
- Division of Medicine, University College London, London, United Kingdom
| | | | | | - Peiran Yin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; and
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Leicester, United Kingdom
| | | | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Leicester, United Kingdom
| | | | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; and
| | - Jonathan Barratt
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
30
|
Galactose-Deficient IgA1 as a Candidate Urinary Polypeptide Marker of IgA Nephropathy? DISEASE MARKERS 2016; 2016:7806438. [PMID: 27647947 PMCID: PMC5018335 DOI: 10.1155/2016/7806438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022]
Abstract
In patients with IgA nephropathy (IgAN), circulatory IgA1 and IgA1 in mesangial deposits contain elevated amounts of galactose-deficient IgA1 (Gd-IgA1). We hypothesized that a fraction of Gd-IgA1 from the glomerular deposits and/or circulation may be excreted into the urine and thus represent a disease-specific biomarker. Levels of urinary IgA and Gd-IgA1 were determined in 207 patients with IgAN, 205 patients with other renal diseases, and 57 healthy controls, recruited in USA, Japan, and Italy. Urinary IgA was similarly elevated in patients with IgAN and renal-disease controls compared with healthy controls. However, urinary Gd-IgA1 levels were higher in patients with IgAN (IgAN, 28.0 ± 17.9; disease controls, 20.6 ± 17.4 units/mg urinary creatinine; P < 0.0001). Lectin western blotting data confirmed these results. In IgAN patients, levels of urinary Gd-IgA1 correlated with proteinuria (P < 0.001). When we purified IgA from serum and urine of an IgAN patient, the relative proportion of Gd-IgA1 to total IgA1 was higher in the urine compared with serum, suggesting selective excretion of Gd-IgA1 in IgAN. In summary, urinary excretion of Gd-IgA1 was elevated in patients with IgAN and the urinary Gd-IgA1 levels correlated with proteinuria. Urinary Gd-IgA1 may thus represent a disease-specific biomarker of IgAN.
Collapse
|
31
|
Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA, Novak J. The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Front Immunol 2016; 7:117. [PMID: 27148252 PMCID: PMC4828451 DOI: 10.3389/fimmu.2016.00117] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis, frequently leading to end-stage renal disease, as there is no disease-specific therapy. IgAN is diagnosed from pathological assessment of a renal biopsy specimen based on predominant or codominant IgA-containing immunodeposits, usually with complement C3 co-deposits and with variable presence of IgG and/or IgM. The IgA in these renal deposits is galactose-deficient IgA1, with less than a full complement of galactose residues on the O-glycans in the hinge region of the heavy chains. Research from the past decade led to the definition of IgAN as an autoimmune disease with a multi-hit pathogenetic process with contributing genetic and environmental components. In this process, circulating galactose-deficient IgA1 (autoantigen) is bound by antiglycan IgG or IgA (autoantibodies) to form immune complexes. Some of these circulating complexes deposit in glomeruli, and thereby activate mesangial cells and induce renal injury through cellular proliferation and overproduction of extracellular matrix components and cytokines/chemokines. Glycosylation pathways associated with production of the autoantigen and the unique characteristics of the corresponding autoantibodies in patients with IgAN have been uncovered. Complement likely plays a significant role in the formation and the nephritogenic activities of these complexes. Complement activation is mediated through the alternative and lectin pathways and probably occurs systemically on IgA1-containing circulating immune complexes as well as locally in glomeruli. Incidence of IgAN varies greatly by geographical location; the disease is rare in central Africa but accounts for up to 40% of native-kidney biopsies in eastern Asia. Some of this variation may be explained by genetically determined influences on the pathogenesis of the disease. Genome-wide association studies to date have identified several loci associated with IgAN. Some of these loci are associated with the increased prevalence of IgAN, whereas others, such as deletion of complement factor H-related genes 1 and 3, are protective against the disease. Understanding the molecular mechanisms and genetic and biochemical factors involved in formation and activities of pathogenic IgA1-containing immune complexes will enable the development of future disease-specific therapies as well as identification of non-invasive disease-specific biomarkers.
Collapse
Affiliation(s)
- Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicolas Maillard
- Université Jean Monnet, Saint Etienne, France
- PRES Université de Lyon, Lyon, France
| | - Dana V. Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A. Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|