1
|
Qiu R, Yang M, Jin X, Liu J, Wang W, Zhang X, Han J, Lei B. AAV2-PDE6B restores retinal structure and function in the retinal degeneration 10 mouse model of retinitis pigmentosa by promoting phototransduction and inhibiting apoptosis. Neural Regen Res 2025; 20:2408-2419. [PMID: 39359097 PMCID: PMC11759017 DOI: 10.4103/nrr.nrr-d-23-01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00030/figure1/v/2024-09-30T120553Z/r/image-tiff Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death. However, there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation. Adeno-associated virus (AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa. The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function. To do this, we injected retinal degeneration 10 (rd10) mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark- and light-adapted electroretinogram, optical coherence tomography, and immunofluorescence. Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment, and the results from this analysis were verified by real-time polymerase chain reaction and western blotting. AAV2-PDE6B injection significantly upregulated PDE6β expression, preserved electroretinogram responses, and preserved outer nuclear layer thickness in rd10 mice. Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception, and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice. Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways. Furthermore, the phototransduction-related proteins Pde6α, Rom1, Rho, Aldh1a1, and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment. Finally, Bax/Bcl-2, p-ERK/ERK, and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment. Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
Collapse
Affiliation(s)
- Ruiqi Qiu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Mingzhu Yang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Xiuxiu Jin
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
- Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, China
| | - Jingyang Liu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Weiping Wang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Xiaoli Zhang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinfeng Han
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bo Lei
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
- Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Chen JN, Wang L, He YX, Sun XW, Cheng LJ, Li YN, Yoshida S, Shen ZY. SEL1L-mediated endoplasmic reticulum associated degradation inhibition suppresses proliferation and migration in Huh7 hepatocellular carcinoma cells. World J Gastroenterol 2025; 31:103133. [PMID: 40093667 PMCID: PMC11886529 DOI: 10.3748/wjg.v31.i10.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Proteins play a central role in regulating biological functions, and various pathways regulate their synthesis and secretion. Endoplasmic reticulum-associated protein degradation (ERAD) is crucial for monitoring protein synthesis and processing unfolded or misfolded proteins in actively growing tumor cells. However, the role of the multiple ERAD complexes in liver cancer remains unclear. AIM To elucidate the effects of SEL1L-mediated ERAD on Huh7 and explore the underlying mechanisms in vivo and in vitro. METHODS Huh7 cells were treated with ERAD inhibitor to identify ERAD's role. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine and colony formation experiments were performed. Apoptosis level and migration ability were assessed using fluorescence activated cell sorting and Transwell assay, respectively. Huh7 SEL1L knockout cell line was established via clustered regularly interspaced short palindromic repeats, proliferation, apoptosis, and migration were assessed through previous experiments. The role of SEL1L in vivo and the downstream target of SEL1L were identified using Xenograft and mass spectrometry, respectively. RESULTS The ERAD inhibitor suppressed cell proliferation and migration and promoted apoptosis. SEL1L-HRD1 significantly influenced Huh7 cell growth. SEL1L knockout suppressed tumor cell proliferation and migration and enhanced apoptosis. Mass spectrometry revealed EXT2 is a primary substrate of ERAD. SEL1L knockout significantly increased the protein expression of EXT2. Furthermore, EXT2 knockdown partially restored the effect of SEL1L knockout. CONCLUSION ERAD inhibition suppressed the proliferation and migration of Huh7 and promoted its apoptosis. EXT2 plays an important role and ERAD might be a potential treatment for Huh7 hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia-Nan Chen
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Yu-Xin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Xiao-Wei Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Long-Jiao Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Ya-Nan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
- Nankai International Advanced Research Institute, Shenzhen 518045, Guangdong Province, China
| | - Zhong-Yang Shen
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| |
Collapse
|
3
|
von Rauchhaupt E, Klaus M, Ribeiro A, Honarpisheh M, Li C, Liu M, Köhler P, Adamowicz K, Schmaderer C, Lindenmeyer M, Steiger S, Anders HJ, Lech M. GDF-15 Suppresses Puromycin Aminonucleoside-Induced Podocyte Injury by Reducing Endoplasmic Reticulum Stress and Glomerular Inflammation. Cells 2024; 13:637. [PMID: 38607075 PMCID: PMC11011265 DOI: 10.3390/cells13070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.
Collapse
Affiliation(s)
- Ekaterina von Rauchhaupt
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Martin Klaus
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Andrea Ribeiro
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Mohsen Honarpisheh
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Chenyu Li
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Min Liu
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Paulina Köhler
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30-387 Krakow, Poland;
| | - Christoph Schmaderer
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stefanie Steiger
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Hans-Joachim Anders
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Maciej Lech
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| |
Collapse
|
4
|
Song S, Hu T, Shi X, Jin Y, Liu S, Li X, Zou W, Wang C. ER Stress-Perturbed Intracellular Protein O-GlcNAcylation Aggravates Podocyte Injury in Diabetes Nephropathy. Int J Mol Sci 2023; 24:17603. [PMID: 38139429 PMCID: PMC10743520 DOI: 10.3390/ijms242417603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) worldwide, and podocyte injury is the central contributor to the progression of DN. Despite the emerging evidence that has established the importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of DN, abnormal protein O-GlcNAcylation is also augmented. Currently, the mechanism associating these two hyperglycemia-induced disorders remains poorly understood. This study intended to elucidate whether ER stress drives hyper-protein O-GlcNAcylation to cause podocyte injury in DN. We used both type 1 and type 2 DN models to confirm the occurrence of ER stress and excessive protein O-GlcNAcylation, and then podocyte purification was also conducted for further investigation. Nephroseq V5 data were mined and in vitro studies were applied to reveal the involvement of ER stress and hyper-O-GlcNAcylation in podocyte injury. Our results indicated that ER stress was induced in both type 1 and type 2 DN, and the human RNA-seq data from Nephroseq V5 showed that O-GlcNAcylation-related genes were significantly upregulated in the DN patients. We further demonstrated that ER stress occurred prior to hyper-O-GlcNAc modification and that pharmacologically inhibited protein O-GlcNAcylation can help decrease the podocyte apoptosis induced by hyperglycemia. Together, these discoveries will aid in uncovering the activation of the ER stress-O-GlcNAcylation axis in podocyte injury under DN, which will help open up new therapeutic approaches for preventing DN progression.
Collapse
Affiliation(s)
- Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Tiantian Hu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Xu Shi
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Yongjie Jin
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Xuehong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| |
Collapse
|
5
|
Kawashima N, Naito S, Nagane M, Yamashita T, Nakayama KI. Progression of albuminuria and podocyte injury in focal segmental glomerulosclerosis inhibited by enhanced glycosphingolipid GM3 via valproic acid. Sci Rep 2023; 13:22487. [PMID: 38110538 PMCID: PMC10728181 DOI: 10.1038/s41598-023-49684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
Focal segmental glomerulosclerosis, characterized by decreased numbers of podocytes in glomeruli, is a common cause of refractory nephrotic syndrome. Recently, we showed that enhanced glycosphingolipid GM3 expression after administration of valproic acid, an upregulator of ST3GAL5/St3gal5, was effective in preventing albuminuria and podocyte injury. We also revealed the molecular mechanism for this preventive effect, which involves GM3 directly binding nephrin that then act together in glycolipid-enriched membrane (GEM) fractions under normal conditions and in non-GEM fractions under nephrin injury conditions. Kidney disease is frequently referred to as a "silent killer" because it is often difficult to detect subjective symptoms. Thus, primary treatment for these diseases is initiated after the onset of disease progression. Consequently, the efficacy of enhanced levels of GM3 induced by valproic acid needs to be evaluated after the onset of the disease with severe albuminuria such as focal segmental glomerulosclerosis. Here, we report the therapeutic effect of enhanced GM3 expression induced via administration of valproic acid on albuminuria and podocyte injury after the onset focal segmental glomerulosclerosis in anti-nephrin antibody treated mice. Our findings suggest elevated levels of GM3 following treatment with valproic acid has therapeutic utility for kidney disease associated with severe albuminuria and podocyte injury.
Collapse
Affiliation(s)
- Nagako Kawashima
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Shokichi Naito
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa, 252-5201, Japan
| | - Ken-Ichi Nakayama
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8561, Japan
| |
Collapse
|
6
|
Qiu L, Zheng X, Jaishankar D, Green R, Fang D, Nadig S, Zhang ZJ. Beyond UPR: cell-specific roles of ER stress sensor IRE1α in kidney ischemic injury and transplant rejection. Kidney Int 2023; 104:463-469. [PMID: 37391039 PMCID: PMC10519186 DOI: 10.1016/j.kint.2023.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Kidney damage due to ischemia or rejection results in the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER) lumen, a condition known as "ER stress." Inositol-requiring enzyme 1α (IRE1α), the first ER stress sensor found, is a type I transmembrane protein with kinase and endoribonuclease activity. On activation, IRE1α nonconventionally splices an intron from unspliced X-box-binding protein 1 (XBP1) mRNA to produce XBP1s mRNA that encodes the transcription factor, XBP1s, for the expression of genes encoding proteins that mediate the unfolded protein response. The unfolded protein response promotes the functional fidelity of ER and is required for secretory cells to sustain protein folding and secretory capability. Prolonged ER stress can lead to apoptosis, which may result in detrimental repercussions to organ health and has been implicated in the pathogenesis and progression of kidney diseases. The IRE1α-XBP1 signaling acts as a major arm of unfolded protein response and is involved in regulating autophagy, cell differentiation, and cell death. IRE1α also interacts with activator protein-1 and nuclear factor-κB pathways to regulate inflammatory responses. Studies using transgenic mouse models highlight that the roles of IRE1α differ depending on cell type and disease setting. This review covers these cell-specific roles of IRE1α signaling and the potential for therapeutic targeting of this pathway in the context of ischemia and rejection affecting the kidneys.
Collapse
Affiliation(s)
- Longhui Qiu
- Microsurgery and Preclinical Research Core, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xin Zheng
- Microsurgery and Preclinical Research Core, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Urology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Dinesh Jaishankar
- Microsurgery and Preclinical Research Core, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard Green
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Satish Nadig
- Microsurgery and Preclinical Research Core, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zheng Jenny Zhang
- Microsurgery and Preclinical Research Core, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
7
|
Li HY, Huang LF, Huang XR, Wu D, Chen XC, Tang JX, An N, Liu HF, Yang C. Endoplasmic Reticulum Stress in Systemic Lupus Erythematosus and Lupus Nephritis: Potential Therapeutic Target. J Immunol Res 2023; 2023:7625817. [PMID: 37692838 PMCID: PMC10484658 DOI: 10.1155/2023/7625817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis, lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macrophages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition, ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy, and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.
Collapse
Affiliation(s)
- Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
8
|
Wu D, Huang LF, Chen XC, Huang XR, Li HY, An N, Tang JX, Liu HF, Yang C. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis 2023; 14:473. [PMID: 37500613 PMCID: PMC10374544 DOI: 10.1038/s41419-023-05905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The endoplasmic reticulum (ER) plays important roles in biosynthetic and metabolic processes, including protein and lipid synthesis, Ca2+ homeostasis regulation, and subcellular organelle crosstalk. Dysregulation of ER homeostasis can cause toxic protein accumulation, lipid accumulation, and Ca2+ homeostasis disturbance, leading to cell injury and even death. Accumulating evidence indicates that the dysregulation of ER homeostasis promotes the onset and progression of kidney diseases. However, maintaining ER homeostasis through unfolded protein response, ER-associated protein degradation, autophagy or ER-phagy, and crosstalk with other organelles may be potential therapeutic strategies for kidney disorders. In this review, we summarize the recent research progress on the relationship and molecular mechanisms of ER dysfunction in kidney pathologies. In addition, the endogenous protective strategies for ER homeostasis and their potential application for kidney diseases have been discussed.
Collapse
Affiliation(s)
- Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
9
|
Medina Rangel PX, Cross E, Liu C, Pedigo CE, Tian X, Gutiérrez-Calabrés E, Nagata S, Priyadarshini A, Lerner G, Bunda P, Perincheri S, Gu J, Zhao H, Wang Y, Inoue K, Ishibe S. Cell Cycle and Senescence Regulation by Podocyte Histone Deacetylase 1 and 2. J Am Soc Nephrol 2023; 34:433-450. [PMID: 36414418 PMCID: PMC10103311 DOI: 10.1681/asn.2022050598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
SIGNIFICANCE STATEMENT The loss of integrity of the glomerular filtration barrier results in proteinuria that is often attributed to podocyte loss. Yet how damaged podocytes are lost remains unknown. Germline loss of murine podocyte-associated Hdac1 and Hdac2 ( Hdac1/2 ) results in proteinuria and collapsing glomerulopathy due to sustained double-stranded DNA damage. Hdac1/2 deletion induces loss of podocyte quiescence, cell cycle entry, arrest in G1, and podocyte senescence, observed both in vivo and in vitro . Through the senescence secretory associated phenotype, podocytes secrete proteins that contribute to their detachment. These results solidify the role of HDACs in cell cycle regulation and senescence, providing important clues in our understanding of how podocytes are lost following injury. BACKGROUND Intact expression of podocyte histone deacetylases (HDAC) during development is essential for maintaining a normal glomerular filtration barrier because of its role in modulating DNA damage and preventing premature senescence. METHODS Germline podocyte-specific Hdac1 and 2 ( Hdac1 / 2 ) double-knockout mice were generated to examine the importance of these enzymes during development. RESULTS Podocyte-specific loss of Hdac1 / 2 in mice resulted in severe proteinuria, kidney failure, and collapsing glomerulopathy. Hdac1 / 2 -deprived podocytes exhibited classic characteristics of senescence, such as senescence-associated β-galactosidase activity and lipofuscin aggregates. In addition, DNA damage, likely caused by epigenetic alterations such as open chromatin conformation, not only resulted in podocyte cell-cycle entry as shown in vivo by Ki67 expression and by FUCCI-2aR mice, but also in p21-mediated cell-cycle arrest. Through the senescence secretory associated phenotype, the damaged podocytes secreted proinflammatory cytokines, growth factors, and matrix metalloproteinases, resulting in subsequent podocyte detachment and loss, evidenced by senescent podocytes in urine. CONCLUSIONS Hdac1 / 2 plays an essential role during development. Loss of these genes in double knockout mice leads to sustained DNA damage and podocyte senescence and loss.
Collapse
Affiliation(s)
| | - Elizabeth Cross
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chang Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Soichiro Nagata
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Anupama Priyadarshini
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gabriel Lerner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Patricia Bunda
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sudhir Perincheri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Soluble Klotho protects against glomerular injury through regulation of ER stress response. Commun Biol 2023; 6:208. [PMID: 36813870 PMCID: PMC9947099 DOI: 10.1038/s42003-023-04563-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
αKlotho (Klotho) has well established renoprotective effects; however, the molecular pathways mediating its glomerular protection remain incompletely understood. Recent studies have reported that Klotho is expressed in podocytes and protects glomeruli through auto- and paracrine effects. Here, we examined renal expression of Klotho in detail and explored its protective effects in podocyte-specific Klotho knockout mice, and by overexpressing human Klotho in podocytes and hepatocytes. We demonstrate that Klotho is not significantly expressed in podocytes, and transgenic mice with either a targeted deletion or overexpression of Klotho in podocytes lack a glomerular phenotype and have no altered susceptibility to glomerular injury. In contrast, mice with hepatocyte-specific overexpression of Klotho have high circulating levels of soluble Klotho, and when challenged with nephrotoxic serum have less albuminuria and less severe kidney injury compared to wildtype mice. RNA-seq analysis suggests an adaptive response to increased endoplasmic reticulum stress as a putative mechanism of action. To evaluate the clinical relevance of our findings, the results were validated in patients with diabetic nephropathy, and in precision cut kidney slices from human nephrectomies. Together, our data reveal that the glomeruloprotective effects of Klotho is mediated via endocrine actions, which increases its therapeutic potential for patients with glomerular diseases.
Collapse
|
11
|
Luo J, Jin W, Jin M, Pan W, Gao S, Zhao X, Lai X, Sun L, Piao C. Jiedutongluotiaogan formula restores pancreatic function by suppressing excessive autophagy and endoplasmic reticulum stress. PHARMACEUTICAL BIOLOGY 2022; 60:1542-1555. [PMID: 35944284 PMCID: PMC9367665 DOI: 10.1080/13880209.2022.2107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Jiedutongluotiaogan formula (JTTF), a traditional Chinese medicine (TCM), could promote islet function. However, the potential effect of JTTF on endoplasmic reticulum stress (ERS) and autophagy have not been reported. OBJECTIVE This study explores the potential effect of JTTF on ERS and autophagy in the pancreas. MATERIALS AND METHODS The Zucker diabetic fatty (ZDF) rats were randomised into five groups, control, model, JTTF (1, 3, 5 g/kg/day for 12 weeks). LPS induced pancreatic β-cells were treated with JTTF (50, 100, 200 μg/mL). LPS was used to induce pancreatic β-cell injury, with cell viability and insulin secretion evaluated using MTT, glucose-stimulated insulin secretion (GSIS) assays, and PCR. Intracellular Ca2+ concentration was measured using flow cytometry, while ERS and autophagy levels were monitored via Western blotting and/or immunostaining. RESULTS Compared with the model group, body weight, FGB, HbA1c, IPGTT, FINs, and HOMA-IR in JTTF treatment groups were significantly reduced. In islets cells treated with JTTF, the pancreatic islet cells in the JTTF group were increased, lipid droplets were reduced, and there was a decrease in Ca2+ (16.67%). After JTTF intervention, PERK, p-PERK, IRE1α, p- IRE1α, ATF6, eIF2α, GRP78, p-ULK1, LC3 and p62 expression decreased, whereas Beclin1and p-mTOR expression increased. In addition, the expression of proteins related to apoptosis in the JTTF groups were lower than those in the control group. DISCUSSION AND CONCLUSIONS JTTF may alleviate pancreatic β-cell injury by inhibiting ER stress and excessive autophagy in diabetic rats. This provides a new direction for treating diabetes and restoring pancreatic dysfunction by TCM.
Collapse
Affiliation(s)
- Jinli Luo
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Meiying Jin
- The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Weiwei Pan
- School of Clinical Medicine, Changchun Medical College, Changchun, China
| | - Shengnan Gao
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Xiaohua Zhao
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Xingrong Lai
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chunli Piao
- Institution of Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| |
Collapse
|
12
|
Navarro-Betancourt JR, Cybulsky AV. The IRE1α pathway in glomerular diseases: The unfolded protein response and beyond. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:971247. [PMID: 39086958 PMCID: PMC11285563 DOI: 10.3389/fmmed.2022.971247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 08/02/2024]
Abstract
Endoplasmic reticulum (ER) function is vital for protein homeostasis ("proteostasis"). Protein misfolding in the ER of podocytes (glomerular visceral epithelial cells) is an important contributor to the pathogenesis of human glomerular diseases. ER protein misfolding causes ER stress and activates a compensatory signaling network called the unfolded protein response (UPR). Disruption of the UPR, in particular deletion of the UPR transducer, inositol-requiring enzyme 1α (IRE1α) in mouse podocytes leads to podocyte injury and albuminuria in aging, and exacerbates injury in glomerulonephritis. The UPR may interact in a coordinated manner with autophagy to relieve protein misfolding and its consequences. Recent studies have identified novel downstream targets of IRE1α, which provide new mechanistic insights into proteostatic pathways. Novel pathways of IRE1α signaling involve reticulophagy, mitochondria, metabolism, vesicular trafficking, microRNAs, and others. Mechanism-based therapies for glomerulopathies are limited, and development of non-invasive ER stress biomarkers, as well as targeting ER stress with pharmacological compounds may represent a therapeutic opportunity for preventing or attenuating progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Glycosphingolipid GM3 prevents albuminuria and podocytopathy induced by anti-nephrin antibody. Sci Rep 2022; 12:16058. [PMID: 36163359 PMCID: PMC9513075 DOI: 10.1038/s41598-022-20265-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Podocytopathy, which is characterized by injury to podocytes, frequently causes proteinuria or nephrotic syndrome. There is currently a paucity of effective therapeutic drugs to treat proteinuric kidney disease. Recent research suggests the possibility that glycosphingolipid GM3 maintains podocyte function by acting on various molecules including nephrin, but its mechanism of action remains unknown. Here, various analyses were performed to examine the potential relationship between GM3 and nephrin, and the function of GM3 in podocytes using podocytopathy mice, GM3 synthase gene knockout mice, and nephrin injury cells. Reduced amounts of GM3 and nephrin were observed in podocytopathy mice. Intriguingly, this reduction of GM3 and nephrin, as well as albuminuria, were inhibited by administration of valproic acid. However, when the same experiment was performed using GM3 synthase gene knockout mice, valproic acid administration did not inhibit albuminuria. Equivalent results were obtained in model cells. These findings indicate that GM3 acts with nephrin in a collaborative manner in the cell membrane. Taken together, elevated levels of GM3 stabilize nephrin, which is a key molecule of the slit diaphragm, by enhancing the environment of the cell membrane and preventing albuminuria. This study provides novel insight into new drug discovery, which may offer a new therapy for kidney disease with albuminuria.
Collapse
|
14
|
Gerstner L, Chen M, Kampf LL, Milosavljevic J, Lang K, Schneider R, Hildebrandt F, Helmstädter M, Walz G, Hermle T. Inhibition of endoplasmic reticulum stress signaling rescues cytotoxicity of human apolipoprotein-L1 risk variants in Drosophila. Kidney Int 2022; 101:1216-1231. [PMID: 35120995 PMCID: PMC10061223 DOI: 10.1016/j.kint.2021.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies.
Collapse
Affiliation(s)
- Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Lina L Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Regulation of the Homeostatic Unfolded Protein Response in Diabetic Nephropathy. Pharmaceuticals (Basel) 2022; 15:ph15040401. [PMID: 35455399 PMCID: PMC9030951 DOI: 10.3390/ph15040401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of scientific evidence indicates that protein homeostasis, also designated as proteostasis, is causatively linked to chronic diabetic nephropathy (DN). Experimental studies have demonstrated that the insulin signaling in podocytes maintain the homeostatic unfolded protein response (UPR). Insulin signaling via the insulin receptor non-canonically activates the spliced X-box binding protein-1 (sXBP1), a highly conserved endoplasmic reticulum (ER) transcription factor, which regulates the expression of genes that control proteostasis. Defective insulin signaling in mouse models of diabetes or the genetic disruption of the insulin signaling pathway in podocytes propagates hyperglycemia induced maladaptive UPR and DN. Insulin resistance in podocytes specifically promotes activating transcription factor 6 (ATF6) dependent pathogenic UPR. Akin to insulin, recent studies have identified that the cytoprotective effect of anticoagulant serine protease-activated protein C (aPC) in DN is mediated by sXBP1. In mouse models of DN, treatment with chemical chaperones that improve protein folding provides an additional benefit on top of currently used ACE inhibitors. Understanding the molecular mechanisms that transmute renal cell specific adaptive responses and that deteriorate renal function in diabetes will enable researchers to develop new therapeutic regimens for DN. Within this review, we focus on the current understanding of homeostatic mechanisms by which UPR is regulated in DN.
Collapse
|
16
|
Ma H, Du K, Niu Y. FAdV-4 induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Vet Microbiol 2022; 269:109388. [DOI: 10.1016/j.vetmic.2022.109388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022]
|
17
|
Cao Y, Chen Z, Hu J, Feng J, Zhu Z, Fan Y, Lin Q, Ding G. Mfn2 Regulates High Glucose-Induced MAMs Dysfunction and Apoptosis in Podocytes via PERK Pathway. Front Cell Dev Biol 2022; 9:769213. [PMID: 34988075 PMCID: PMC8721005 DOI: 10.3389/fcell.2021.769213] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
The endoplasmic reticulum (ER) stress and mitochondrial dysfunction in high glucose (HG)-induced podocyte injury have been demonstrated to the progression of diabetic kidney disease (DKD). However, the pathological mechanisms remain equivocal. Mitofusin2 (Mfn2) was initially identified as a dynamin-like protein involved in fusing the outer mitochondrial membrane (OMM). More recently, Mfn2 has been reported to be located at the ER membranes that contact OMM. Mitochondria-associated ER membranes (MAMs) is the intercellular membrane subdomain, which connects the mitochondria and ER through a proteinaceous tether. Here, we observed the suppression of Mfn2 expression in the glomeruli and glomerular podocytes of patients with DKD. Streptozotocin (STZ)-induced diabetic rats exhibited abnormal mitochondrial morphology and MAMs reduction in podocytes, accompanied by decreased expression of Mfn2 and activation of all three unfolded protein response (UPR) pathways (IRE1, ATF6, and PERK). The HG-induced mitochondrial dysfunction, MAMs reduction, and increased apoptosis in vitro were accompanied by the downregulation of Mfn2 and activation of the PERK pathway. Mfn2 physically interacts with PERK, and HG promotes a decrease in Mfn2-PERK interaction. In addition, Mfn2-silenced podocytes showed mitochondrial dysfunction, MAMs reduction, activation of PERK pathway, and increased apoptosis. Conversely, all these effects of HG stimulation were alleviated significantly by Mfn2 overexpression. Furthermore, the inhibition of PERK phosphorylation protected mitochondrial functions but did not affect the expression of Mfn2 in HG-treated podocytes. Therefore, this study confirmed that Mfn2 regulates the morphology and functions of MAMs and mitochondria, and exerts anti-apoptotic effects on podocytes by inhibiting the PERK pathway. Hence, the Mfn2-PERK signaling pathway may be a new therapeutic target for preventing podocyte injury in DKD.
Collapse
Affiliation(s)
- Yun Cao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Yanqin Fan
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Qiaoxuan Lin
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Chen JH, Wu CH, Chiang CK. Therapeutic Approaches Targeting Proteostasis in Kidney Disease and Fibrosis. Int J Mol Sci 2021; 22:ijms22168674. [PMID: 34445377 PMCID: PMC8395452 DOI: 10.3390/ijms22168674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pathological insults usually disturb the folding capacity of cellular proteins and lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which leads to so-called “ER stress”. Increasing evidence indicates that ER stress acts as a trigger factor for the development and progression of many kidney diseases. The unfolded protein responses (UPRs), a set of molecular signals that resume proteostasis under ER stress, are thought to restore the adaptive process in chronic kidney disease (CKD) and renal fibrosis. Furthermore, the idea of targeting UPRs for CKD treatment has been well discussed in the past decade. This review summarizes the up-to-date literature regarding studies on the relationship between the UPRs, systemic fibrosis, and renal diseases. We also address the potential therapeutic possibilities of renal diseases based on the modulation of UPRs and ER proteostasis. Finally, we list some of the current UPR modulators and their therapeutic potentials.
Collapse
Affiliation(s)
- Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
| | - Chia-Hsien Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 88347)
| |
Collapse
|
19
|
Yoshida S, Wei X, Zhang G, O'Connor CL, Torres M, Zhou Z, Lin L, Menon R, Xu X, Zheng W, Xiong Y, Otto E, Tang CHA, Hua R, Verma R, Mori H, Zhang Y, Hu CCA, Liu M, Garg P, Hodgin JB, Sun S, Bitzer M, Qi L. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J Clin Invest 2021; 131:143988. [PMID: 33591954 DOI: 10.1172/jci143988] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Podocytes are key to the glomerular filtration barrier by forming a slit diaphragm between interdigitating foot processes; however, the molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here, we show that the SEL1L-HRD1 protein complex of ER-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome with an impaired slit diaphragm shortly after weaning and die prematurely, with a median lifespan of approximately 3 months. We show mechanistically that nephrin, a type 1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuated the maturation of nascent nephrin, leading to its retention in the ER. We also show that various autosomal-recessive nephrin disease mutants were highly unstable and broken down by SEL1L-HRD1 ERAD, which attenuated the pathogenicity of the mutants toward the WT allele. This study uncovers a critical role of SEL1L-HRD1 ERAD in glomerular filtration barrier function and provides insights into the pathogenesis associated with autosomal-recessive disease mutants.
Collapse
Affiliation(s)
- Sei Yoshida
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Xiaoqiong Wei
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gensheng Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher L O'Connor
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhangsen Zhou
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Liangguang Lin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenyue Zheng
- State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yi Xiong
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Edgar Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chih-Hang Anthony Tang
- Houston Methodist Cancer Center, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Rui Hua
- State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Rakesh Verma
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics and Department of Biological Chemistry and
| | - Chih-Chi Andrew Hu
- Houston Methodist Cancer Center, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Puneet Garg
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Markus Bitzer
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Li C, Chen YM. Endoplasmic Reticulum-Associated Biomarkers for Molecular Phenotyping of Rare Kidney Disease. Int J Mol Sci 2021; 22:2161. [PMID: 33671535 PMCID: PMC7926397 DOI: 10.3390/ijms22042161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is the central site for folding, post-translational modifications, and transport of secretory and membrane proteins. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and an unfolded protein response. Emerging evidence has shown that ER stress or the derangement of ER proteostasis contributes to the development and progression of a variety of glomerular and tubular diseases. This review gives a comprehensive summary of studies that have elucidated the role of the three ER stress signaling pathways, including inositol-requiring enzyme 1 (IRE1), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling in the pathogenesis of kidney disease. In addition, we highlight the recent discovery of ER-associated biomarkers, including MANF, ERdj3, ERdj4, CRELD2, PDIA3, and angiogenin. The implementation of these novel biomarkers may accelerate early diagnosis and therapeutic intervention in rare kidney disease.
Collapse
Affiliation(s)
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
21
|
Wang T, Li LY, Chen YF, Fu SW, Wu ZW, Du BB, Yang XF, Zhang WS, Hao XY, Guo TK. Ribosome assembly factor URB1 contributes to colorectal cancer proliferation through transcriptional activation of ATF4. Cancer Sci 2020; 112:101-116. [PMID: 32888357 PMCID: PMC7780016 DOI: 10.1111/cas.14643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X‐box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1‐silenced CRC cells. Dual‐luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X‐box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1‐mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Si-Wu Fu
- The School of Medical College, Northwest Minzu University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
22
|
Wang Y, Pedigo CE, Inoue K, Tian X, Cross E, Ebenezer K, Li W, Wang Z, Shin JW, Schwartze E, Groener M, Ishibe S. Murine Epsins Play an Integral Role in Podocyte Function. J Am Soc Nephrol 2020; 31:2870-2886. [PMID: 33051360 PMCID: PMC7790213 DOI: 10.1681/asn.2020050691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/30/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Epsins, a family of evolutionarily conserved membrane proteins, play an essential role in endocytosis and signaling in podocytes. METHODS Podocyte-specific Epn1, Epn2, Epn3 triple-knockout mice were generated to examine downstream regulation of serum response factor (SRF) by cell division control protein 42 homolog (Cdc42). RESULTS Podocyte-specific loss of epsins resulted in increased albuminuria and foot process effacement. Primary podocytes isolated from these knockout mice exhibited abnormalities in cell adhesion and spreading, which may be attributed to reduced activation of cell division control protein Cdc42 and SRF, resulting in diminished β1 integrin expression. In addition, podocyte-specific loss of Srf resulted in severe albuminuria and foot process effacement, and defects in cell adhesion and spreading, along with decreased β1 integrin expression. CONCLUSIONS Epsins play an indispensable role in maintaining properly functioning podocytes through the regulation of Cdc42 and SRF-dependent β1 integrin expression.
Collapse
Affiliation(s)
- Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Christopher E Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Cross
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Zhen Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jee Won Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Eike Schwartze
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Tian X, Inoue K, Zhang Y, Wang Y, Sperati CJ, Pedigo CE, Zhao T, Yan M, Groener M, Moledina DG, Ebenezer K, Li W, Zhang Z, Liebermann DA, Greene L, Greer P, Parikh CR, Ishibe S. Inhibiting calpain 1 and 2 in cyclin G associated kinase-knockout mice mitigates podocyte injury. JCI Insight 2020; 5:142740. [PMID: 33208557 PMCID: PMC7710277 DOI: 10.1172/jci.insight.142740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Evidence for reduced expression of cyclin G associated kinase (GAK) in glomeruli of patients with chronic kidney disease was observed in the Nephroseq human database, and GAK was found to be associated with the decline in kidney function. To examine the role of GAK, a protein that functions to uncoat clathrin during endocytosis, we generated podocyte-specific Gak-knockout mice (Gak-KO), which developed progressive proteinuria and kidney failure with global glomerulosclerosis. We isolated glomeruli from the mice carrying the mutation to perform messenger RNA profiling and unearthed evidence for dysregulated podocyte calpain protease activity as an important contributor to progressive podocyte damage. Treatment with calpain inhibitor III specifically inhibited calpain-1/-2 activities, mitigated the degree of proteinuria and glomerulosclerosis, and led to a striking increase in survival in the Gak-KO mice. Podocyte-specific deletion of Capns1, essential for calpain-1 and calpain-2 activities, also improved proteinuria and glomerulosclerosis in Gak-KO mice. Increased podocyte calpain activity-mediated proteolysis of IκBα resulted in increased NF-κB p65-induced expression of growth arrest and DNA-damage-inducible 45 beta in the Gak-KO mice. Our results suggest that loss of podocyte-associated Gak induces glomerular injury secondary to calcium dysregulation and aberrant calpain activation, which when inhibited, can provide a protective role.
Collapse
MESH Headings
- Animals
- Calpain/antagonists & inhibitors
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/therapy
- Female
- Glomerulosclerosis, Focal Segmental/etiology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/therapy
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Podocytes/metabolism
- Podocytes/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/therapy
Collapse
Affiliation(s)
- Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - C. John Sperati
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tingting Zhao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meihua Yan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan A. Liebermann
- Fels Institute of Cancer Research and Molecular Biology and Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania USA
| | - Lois Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peter Greer
- Queen’s Cancer Research Institute, Kingston, Ontario, Canada
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Hasegawa S, Inagi R. Organelle Stress and Crosstalk in Kidney Disease. KIDNEY360 2020; 1:1157-1164. [PMID: 35368784 PMCID: PMC8815491 DOI: 10.34067/kid.0002442020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Organelles play important roles in maintaining cellular homeostasis. Organelle stress responses, especially in mitochondria, endoplasmic reticula (ER), and primary cilia, are deeply involved in kidney disease pathophysiology. Mitochondria are the center of energy production in most eukaryotic cells. Renal proximal tubular cells are highly energy demanding and abundant in mitochondria. Mitochondrial dysfunctions in association with energy metabolism alterations produce reactive oxygen species and promote inflammation in proximal tubular cells, resulting in progression of kidney disease. The ER play critical roles in controlling protein quality. Unfolded protein response (UPR) pathways are the adaptive response to ER stress for maintaining protein homeostasis. UPR pathway dysregulation under pathogenic ER stress often occurs in glomerular and tubulointerstitial cells and promotes progression of kidney disease. The primary cilia sense extracellular signals and maintain calcium homeostasis in cells. Dysfunction of the primary cilia in autosomal dominant polycystic kidney disease reduces the calcium concentration in proximal tubular cells, leading to increased cell proliferation and retention of cyst fluid. In recent years, the direct interaction at membrane contact sites has received increased attention in association with the development of imaging technologies. The part of the ER that is directly connected to mitochondria is termed the mitochondria-associated ER membrane (MAM), which regulates calcium homeostasis and phospholipid metabolism in cells. Disruption of MAM integrity collapses cellular homeostasis and leads to diseases such as diabetes and Alzheimer disease. This review summarizes recent research on organelle stress and crosstalk, and their involvement in kidney disease pathophysiology. In addition, potential treatment options that target organelle stress responses are discussed.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Fujimoto D, Kuwabara T, Hata Y, Umemoto S, Kanki T, Nishiguchi Y, Mizumoto T, Hayata M, Kakizoe Y, Izumi Y, Takahashi S, Mukoyama M. Suppressed ER-associated degradation by intraglomerular cross talk between mesangial cells and podocytes causes podocyte injury in diabetic kidney disease. FASEB J 2020; 34:15577-15590. [PMID: 32996639 DOI: 10.1096/fj.202000078rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Mesangial lesions and podocyte injury are essential manifestations of the progression of diabetic kidney disease (DKD). Although cross-communication between mesangial cells (MCs) and podocytes has recently been suggested by the results of single-nucleus RNA sequencing analyses, the molecular mechanisms and role in disease progression remain elusive. Our cDNA microarray data of diabetic mouse glomeruli suggested the involvement of endoplasmic reticulum (ER) stress in DKD pathophysiology. In vitro experiments revealed the suppression of the ER-associated degradation (ERAD) pathway and induction of apoptosis in podocytes that were stimulated with the supernatant of MCs cultured in high glucose conditions. In diabetic mice, ERAD inhibition resulted in exacerbated albuminuria, increased apoptosis in podocytes, and reduced nephrin expression associated with the downregulation of ERAD-related biomolecules. Flow cytometry analysis of podocytes isolated from MafB (a transcription factor known to be expressed in macrophages and podocytes)-GFP knock-in mice revealed that ERAD inhibition resulted in decreased nephrin phosphorylation. These findings suggest that an intraglomerular cross talk between MCs and podocytes can inhibit physiological ERAD processes and suppress the phosphorylation of nephrin in podocytes, which thereby lead to podocyte injury under diabetic conditions. Therapeutic intervention of the ERAD pathway through the cross talk between these cells is potentially a novel strategy for DKD.
Collapse
Affiliation(s)
- Daisuke Fujimoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yusuke Hata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shuro Umemoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomoko Kanki
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yoshihiko Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Manabu Hayata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
26
|
Inoue K, Tian X, Velazquez H, Soda K, Wang Z, Pedigo CE, Wang Y, Cross E, Groener M, Shin JW, Li W, Hassan H, Yamamoto K, Mundel P, Ishibe S. Inhibition of Endocytosis of Clathrin-Mediated Angiotensin II Receptor Type 1 in Podocytes Augments Glomerular Injury. J Am Soc Nephrol 2019; 30:2307-2320. [PMID: 31511362 PMCID: PMC6900791 DOI: 10.1681/asn.2019010053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inhibition of the renin-angiotensin system remains a cornerstone in reducing proteinuria and progression of kidney failure, effects believed to be the result of reduction in BP and glomerular hyperfiltration. However, studies have yielded conflicting results on whether podocyte-specific angiotensin II (AngII) signaling directly induces podocyte injury. Previous research has found that after AngII stimulation, β-arrestin-bound angiotensin II receptor type 1 (AT1R) is internalized in a clathrin- and dynamin-dependent manner, and that Dynamin1 and Dynamin2 double-knockout mice exhibit impaired clathrin-mediated endocytosis. METHODS We used podocyte-specific Dyn double-knockout mice to examine AngII-stimulated AT1R internalization and signaling in primary podocytes and controls. We also examined the in vivo effect of AngII in these double-knockout mice through renin-angiotensin system blockers and through deletion of Agtr1a (which encodes the predominant AT1R isoform expressed in kidney, AT1aR). We tested calcium influx, Rac1 activation, and lamellipodial extension in control and primary podocytes of Dnm double-knockout mice treated with AngII. RESULTS We confirmed augmented AngII-stimulated AT1R signaling in primary Dnm double-knockout podocytes resulting from arrest of clathrin-coated pit turnover. Genetic ablation of podocyte Agtr1a in Dnm double-knockout mice demonstrated improved albuminuria and kidney function compared with the double-knockout mice. Isolation of podocytes from Dnm double-knockout mice revealed abnormal membrane dynamics, with increased Rac1 activation and lamellipodial extension, which was attenuated in Dnm double-knockout podocytes lacking AT1aR. CONCLUSIONS Our results indicate that inhibiting aberrant podocyte-associated AT1aR signaling pathways has a protective effect in maintaining the integrity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Kazunori Inoue
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Heino Velazquez
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Keita Soda
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Zhen Wang
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Christopher E Pedigo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Ying Wang
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth Cross
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Marwin Groener
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jee-Won Shin
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Wei Li
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Hossam Hassan
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Peter Mundel
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut;
| |
Collapse
|
27
|
Ferrè S, Deng Y, Huen SC, Lu CY, Scherer PE, Igarashi P, Moe OW. Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney Int 2019; 96:1359-1373. [PMID: 31601454 DOI: 10.1016/j.kint.2019.06.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/04/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Sepsis is a systemic inflammatory state in response to infection, and concomitant acute kidney injury (AKI) increases mortality significantly. Endoplasmic reticulum stress is activated in many cell types upon microbial infection and modulates inflammation. The role of endoplasmic reticulum signaling in the kidney during septic AKI is unknown. Here we tested the role of the spliced X-box binding protein 1 (Xbp1s), a key component of the endoplasmic reticulum stress-activated pathways, in the renal response to sepsis in the lipopolysaccharide (LPS) model. Xbp1s was increased in the kidneys of mice treated with LPS but not in other models of AKI, or several chronic kidney disease models. The functional significance of Xbp1s induction was examined by genetic manipulation in renal tubules. Renal tubule-specific overexpression of Xbp1s caused severe tubule dilation and vacuolation with expression of the injury markers Kim1 and Ngal, the pro-inflammatory molecules interleukin-6 (Il6) and Toll-like receptor 4 (Tlr4), decreased kidney function and 50% mortality in five days. Renal tubule-specific genetic ablation of Xbp1 had no phenotype at baseline. However, after LPS, Xbp1 knockdown mice displayed lower renal NGAL, pro-apoptotic factor CHOP, serum creatinine levels, and a tendency towards lower Tlr4 compared to LPS-treated mice with intact Xbp1s. LPS treatment in Xbp1s-overexpressing mice caused a mild increase in NGAL and CHOP compared to LPS-treated mice without genetic Xbp1s overexpression. Thus, increased Xbp1s signaling in renal tubules is unique to sepsis-induced AKI and contributes to renal inflammation and injury. Inhibition of this pathway may be a potential portal to alleviate injury.
Collapse
Affiliation(s)
- Silvia Ferrè
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Yingfeng Deng
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah C Huen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher Y Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philipp E Scherer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
28
|
Ishikawa Y, Fedeles S, Marlier A, Zhang C, Gallagher AR, Lee AH, Somlo S. Spliced XBP1 Rescues Renal Interstitial Inflammation Due to Loss of Sec63 in Collecting Ducts. J Am Soc Nephrol 2019; 30:443-459. [PMID: 30745418 PMCID: PMC6405156 DOI: 10.1681/asn.2018060614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND SEC63 encodes a resident protein in the endoplasmic reticulum membrane that, when mutated, causes human autosomal dominant polycystic liver disease. Selective inactivation of Sec63 in all distal nephron segments in embryonic mouse kidney results in polycystin-1-mediated polycystic kidney disease (PKD). It also activates the Ire1α-Xbp1 branch of the unfolded protein response, producing Xbp1s, the active transcription factor promoting expression of specific genes to alleviate endoplasmic reticulum stress. Simultaneous inactivation of Xbp1 and Sec63 worsens PKD in this model. METHODS We explored the renal effects of postnatal inactivation of Sec63 alone or with concomitant inactivation of Xbp1 or Ire1α, specifically in the collecting ducts of neonatal mice. RESULTS The later onset of inactivation of Sec63 restricted to the collecting duct does not result in overt activation of the Ire1α-Xbp1 pathway or cause polycystin-1-dependent PKD. Inactivating Sec63 along with either Xbp1 or Ire1α in this model causes interstitial inflammation and associated fibrosis with decline in kidney function over several months. Re-expression of XBP1s in vivo completely rescues the chronic kidney injury observed after inactivation of Sec63 with either Xbp1 or Ire1α. CONCLUSIONS In the absence of Sec63, basal levels of Xbp1s activity in collecting ducts is both necessary and sufficient to maintain proteostasis (protein homeostasis) and protect against inflammation, myofibroblast activation, and kidney functional decline. The Sec63-Xbp1 double knockout mouse offers a novel genetic model of chronic tubulointerstitial kidney injury, using collecting duct proteostasis defects as a platform for discovery of signals that may underlie CKD of disparate etiologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Stefan Somlo
- Departments of Internal Medicine and
- Genetics, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
29
|
Inoue K, Gan G, Ciarleglio M, Zhang Y, Tian X, Pedigo CE, Cavanaugh C, Tate J, Wang Y, Cross E, Groener M, Chai N, Wang Z, Justice A, Zhang Z, Parikh CR, Wilson FP, Ishibe S. Podocyte histone deacetylase activity regulates murine and human glomerular diseases. J Clin Invest 2019; 129:1295-1313. [PMID: 30776024 DOI: 10.1172/jci124030] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
We identified 2 genes, histone deacetylase 1 (HDAC1) and HDAC2, contributing to the pathogenesis of proteinuric kidney diseases, the leading cause of end-stage kidney disease. mRNA expression profiling from proteinuric mouse glomeruli was linked to Connectivity Map databases, identifying HDAC1 and HDAC2 with the differentially expressed gene set reversible by HDAC inhibitors. In numerous progressive glomerular disease models, treatment with valproic acid (a class I HDAC inhibitor) or SAHA (a pan-HDAC inhibitor) mitigated the degree of proteinuria and glomerulosclerosis, leading to a striking increase in survival. Podocyte HDAC1 and HDAC2 activities were increased in mice podocytopathy models, and podocyte-associated Hdac1 and Hdac2 genetic ablation improved proteinuria and glomerulosclerosis. Podocyte early growth response 1 (EGR1) was increased in proteinuric patients and mice in an HDAC1- and HDAC2-dependent manner. Loss of EGR1 in mice reduced proteinuria and glomerulosclerosis. Longitudinal analysis of the multicenter Veterans Aging Cohort Study demonstrated a 30% reduction in mean annual loss of estimated glomerular filtration rate, and this effect was more pronounced in proteinuric patients receiving valproic acid. These results strongly suggest that inhibition of HDAC1 and HDAC2 activities may suppress the progression of human proteinuric kidney diseases through the regulation of EGR1.
Collapse
Affiliation(s)
| | - Geliang Gan
- Yale School of Public Health, Department of Biostatistics, Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Ciarleglio
- Yale School of Public Health, Department of Biostatistics, Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital.,Department of Cardiology, Nanfang Hospital, and.,Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | - Corey Cavanaugh
- Department of Internal Medicine, and.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janet Tate
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ying Wang
- Department of Internal Medicine, and
| | | | | | | | - Zhen Wang
- Department of Internal Medicine, and
| | - Amy Justice
- Department of Internal Medicine, and.,VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital.,Department of Cardiology, Nanfang Hospital, and.,Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chirag R Parikh
- Department of Internal Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Francis P Wilson
- Department of Internal Medicine, and.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
30
|
Artelt N, Siegerist F, Ritter AM, Grisk O, Schlüter R, Endlich K, Endlich N. Comparative Analysis of Podocyte Foot Process Morphology in Three Species by 3D Super-Resolution Microscopy. Front Med (Lausanne) 2018; 5:292. [PMID: 30425988 PMCID: PMC6218959 DOI: 10.3389/fmed.2018.00292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Since the size selectivity of the filtration barrier and kidney function are highly dependent on podocyte foot process morphology, visualization of foot processes is important. However, the size of foot processes is below the optical resolution of light microscopy. Therefore, electron microcopy has been indispensable to detect changes in foot process morphology so far, but it is a sophisticated and time-consuming technique. Recently, our group has shown that 3D structured illumination microscopy (3D-SIM), a super-resolution microscopy (SRM) technique, can visualize individual foot processes in human biopsies. Moreover, we have developed a software-based approach to directly quantify the structure of podocyte foot processes named Podocyte Exact Morphology Measurement Procedure (PEMP). As shown in patients suffering from minimal change disease (MCD), PEMP allows the quantification of changes of the foot process morphology by measuring the filtration slit density (FSD). Since rodents are frequently used in basic research, we have applied PEMP to quantify foot processes of mice and rats. Comparative analysis of nephrin-stained kidneys from humans, rats, and mice showed significant differences of the FSD. The highest FSD was measured in mice (3.83 ± 0.37 μm−1; mean ± SD) followed by rats (3.36 ± 0.42 μm−1) and humans (3.11 ± 0.26 μm−1). To demonstrate that PEMP can be used to determine foot process morphology also in affected animals, we measured the FSD in palladin-knockout mice on a 129S1 genetic background compared to wild-type littermates. Taken together, we established a method for the quick and exact quantification of podocyte foot process morphology which can be applied to diagnosis and basic research.
Collapse
Affiliation(s)
- Nadine Artelt
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Alina M Ritter
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Olaf Grisk
- Institute for Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
31
|
Yin H, Zhao L, Wang Y, Li S, Huo H, Chen H. Duck enteritis virus activates CaMKKβ-AMPK to trigger autophagy in duck embryo fibroblast cells via increased cytosolic calcium. Virol J 2018; 15:120. [PMID: 30081955 PMCID: PMC6090797 DOI: 10.1186/s12985-018-1029-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023] Open
Abstract
Background The results of our previous study showed that impaired cellular energy metabolism contributes to duck enteritis virus-induced autophagy via the 5`-adenosine monophosphate-activated protein kinase (AMPK)/tuberous sclerosis complex 2/mammalian target of rapamycin pathway in duck embryo fibroblast (DEF) cells. However, it remains unknown whether any other underlying mechanisms of AMPK activation are involved in autophagy induction. Methods The activity of CaMKKβ and AMPK in DEF cells infected with DEV were evaluated.The Effect of inhibitory activity of CaMKKβ on DEV-induced autophagy was investigated. In addtion to, the cytosolic calcium level in DEF cells infected with DEV were evaluated.The Effect of inhibitory cytosolic calcium level on DEV-induced autophagy was investigated. Results In this study, duck enteritis virus (DEV) infection activated CaMKKβ and its substrate molecule AMPK at 36, 48, and 60 h post-infection (hpi). STO-609, a CaMKKβ inhibitor, or CaMKKβ siRNA significantly inhibited the activation of DEV to AMPK, LC3I to LC3II transformation, and GFP-LC3 puncta distribution. In addition, inhibition of CaMKKβ activity also significantly reduced progeny DEV titer and gB protein expression. Besides, cytosolic calcium (Ca2+) was higher in DEV-infected cells than mock controls at 36, 48, and 60 hpi, respectively. Treatment of DEV-infected cells with 1,2-Bis (2-aminophenoxy) ethane-N, N, N′, N-tetraacetic acid (BAPTA-AM) significantly reduced intracellular Ca2+ ion concentrations, as well as CaMKKβ and AMPK activities, and subsequent autophagy, in addition to viral protein synthesis and viral titer. Conclusions These results showed that elevated [Ca2+]cyto-mediated activation of CaMKKβ managed the activation of AMPK, which then positively regulated autophagy, thereby providing further insight into DEV–host interactions.
Collapse
Affiliation(s)
- Haichang Yin
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.,College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, China.,Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang, 161006, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yiping Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Siqi Li
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Hong Huo
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.
| |
Collapse
|
32
|
Kropski JA, Blackwell TS. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest 2018; 128:64-73. [PMID: 29293089 DOI: 10.1172/jci93560] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells contain an elegant protein quality control system that is crucial in maintaining cellular homeostasis; however, dysfunction of this system results in endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Severe or prolonged ER stress is associated with the development of degenerative and fibrotic disorders in multiple organs, as evidenced by the identification of disease-causing mutations in epithelial-restricted genes that lead to protein misfolding or mistrafficking in familial fibrotic diseases. Emerging evidence implicates ER stress and UPR signaling in a variety of profibrotic mechanisms in individual cell types. In epithelial cells, ER stress can induce apoptosis, inflammatory signaling, and epithelial-mesenchymal transition. In other cell types, ER stress is linked to myofibroblast activation, macrophage polarization, and T cell differentiation. ER stress-targeted therapies have begun to emerge using approaches that range from global enhancement of chaperone function to selective targeting of activated ER stress sensors and other downstream mediators. As the complex regulatory mechanisms of this system are further clarified, there are opportunities to develop new disease-modifying therapeutic strategies in a wide range of chronic fibrotic diseases.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Yin H, Zhao L, Jiang X, Li S, Huo H, Chen H. DEV induce autophagy via the endoplasmic reticulum stress related unfolded protein response. PLoS One 2017; 12:e0189704. [PMID: 29272280 PMCID: PMC5741216 DOI: 10.1371/journal.pone.0189704] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/30/2017] [Indexed: 01/25/2023] Open
Abstract
Duck enteritis virus (DEV) can infect ducks, geese, and many other poultry species and leads to acute, septic and highly fatal infectious disease. Autophagy is an evolutionarily ancient pathway that plays an important role in many viral infections. We previously reported that DEV infection induces autophagy for its own benefit, but how this occurs remains unclear. In this study, endoplasmic reticulum (ER) stress was triggered by DEV infection, as demonstrated by the increased expression of the ER stress marker glucose-regulated protein 78 (GRP78) and the dilated morphology of the ER. Pathways associated with the unfolded protein response (UPR), including the PKR-like ER protein kinase (PERK) and inositol-requiring enzyme 1 (IRE1) pathways, but not the activating transcription factor 6 (ATF6) pathway, were activated in DEV-infected duck embryo fibroblast (DEF) cells. In addition, the knockdown of both PERK and IRE1 by small interfering RNAs (siRNAs) reduced the level of LC3-II and viral yields, which suggested that the PERK-eukaryotic initiation factor 2α (eIF2α) and IRE1-x-box protein1 (XBP1) pathways may contribute to DEV-induced autophagy. Collectively, these data offer new insight into the mechanisms of DEV -induced autophagy through activation of the ER stress-related UPR pathway.
Collapse
Affiliation(s)
- Haichang Yin
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Science, Harbin, P. R. China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Science, Harbin, P. R. China
| | - Xinjie Jiang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Science, Harbin, P. R. China
| | - Siqi Li
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Science, Harbin, P. R. China
| | - Hong Huo
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Science, Harbin, P. R. China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Science, Harbin, P. R. China
- * E-mail: hy
| |
Collapse
|
34
|
Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 2017; 13:681-696. [DOI: 10.1038/nrneph.2017.129] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Kaufman DR, Papillon J, Larose L, Iwawaki T, Cybulsky AV. Deletion of inositol-requiring enzyme-1α in podocytes disrupts glomerular capillary integrity and autophagy. Mol Biol Cell 2017; 28:1636-1651. [PMID: 28428258 PMCID: PMC5469607 DOI: 10.1091/mbc.e16-12-0828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
Inositol-requiring enzyme-1α (IRE1α) is an endoplasmic reticulum (ER)-transmembrane endoribonuclease kinase that plays an essential function in extraembryonic tissues during normal development and is activated during ER stress. To address the functional role of IRE1α in glomerular podocytes, we produced podocyte-specific IRE1α-deletion mice. In male mice, deletion of IRE1α in podocytes resulted in albuminuria beginning at 5 mo of age and worsening with time. Electron microscopy revealed focal podocyte foot-process effacement in 9-mo-old male IRE1α-deletion mice, as well as microvillous transformation of podocyte plasma membranes. Compared with control, glomerular cross-sectional and capillary lumenal areas were greater in deletion mice, and there was relative podocyte depletion. Levels of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II expression and c-Jun N-terminal kinase-1 phosphorylation were decreased in IRE1α-deletion glomeruli, in keeping with reduced autophagy. Deletion of IRE1α exacerbated glomerular injury in anti-glomerular basement membrane nephritis. In cell culture, IRE1α dominant-negative mutants reduced the physiological (basal) accumulation of LC3B-II and the size of autophagic vacuoles but did not affect ER-associated degradation. Thus IRE1α is essential for maintaining podocyte and glomerular integrity as mice age and in glomerulonephritis. The mechanism is related, at least in part, to the maintenance of autophagy in podocytes.
Collapse
Affiliation(s)
- Daniel Robert Kaufman
- Department of Physiology, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Joan Papillon
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Louise Larose
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Andrey V Cybulsky
- Department of Physiology, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, and McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
36
|
Schaeffer C, Merella S, Pasqualetto E, Lazarevic D, Rampoldi L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS One 2017; 12:e0175970. [PMID: 28437467 PMCID: PMC5402980 DOI: 10.1371/journal.pone.0175970] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
Uromodulin is the most abundant urinary protein in physiological conditions. It is exclusively produced by renal epithelial cells lining the thick ascending limb of Henle's loop (TAL) and it plays key roles in kidney function and disease. Mutations in UMOD, the gene encoding uromodulin, cause autosomal dominant tubulointerstitial kidney disease uromodulin-related (ADTKD-UMOD), characterised by hyperuricemia, gout and progressive loss of renal function. While the primary effect of UMOD mutations, retention in the endoplasmic reticulum (ER), is well established, its downstream effects are still largely unknown. To gain insight into ADTKD-UMOD pathogenesis, we performed transcriptional profiling and biochemical characterisation of cellular models (immortalised mouse TAL cells) of robust expression of wild type or mutant GFP-tagged uromodulin. In this model mutant uromodulin accumulation in the ER does not impact on cell viability and proliferation. Transcriptional profiling identified 109 genes that are differentially expressed in mutant cells relative to wild type ones. Up-regulated genes include several ER resident chaperones and protein disulphide isomerases. Consistently, pathway enrichment analysis indicates that mutant uromodulin expression affects ER function and protein homeostasis. Interestingly, mutant uromodulin expression induces the Unfolded Protein Response (UPR), and specifically the IRE1 branch, as shown by an increased splicing of XBP1. Consistent with UPR induction, we show increased interaction of mutant uromodulin with ER chaperones Bip, calnexin and PDI. Using metabolic labelling, we also demonstrate that while autophagy plays no role, mutant protein is partially degraded by the proteasome through ER-associated degradation. Our work demonstrates that ER stress could play a central role in ADTKD-UMOD pathogenesis. This sets the bases for future work to develop novel therapeutic strategies through modulation of ER homeostasis and associated protein degradation pathways.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Merella
- Center of Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Pasqualetto
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center of Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
37
|
Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci Rep 2016; 6:32087. [PMID: 27580845 PMCID: PMC5007516 DOI: 10.1038/srep32087] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
Podocyte injury and the appearance of proteinuria are features of minimal-change disease (MCD). Cyclosporin A (CsA) and tacrolimus (FK506) has been reported to reduce proteinuria in patients with nephrotic syndrome, but mechanisms remain unknown. We, therefore, investigated the protective mechanisms of CsA and FK506 on proteinuria in a rat model of MCD induced by puromycin aminonucleoside (PAN) and in vitro cultured mouse podocytes. Our results showed that CsA and FK506 treatment decreased proteinuria via a mechanism associated to a reduction in the foot-process fusion and desmin, and a recovery of synaptopodin and podocin. In PAN-treated mouse podocytes, pre-incubation with CsA and FK506 restored the distribution of the actin cytoskeleton, increased the expression of synaptopodin and podocin, improved podocyte viability, and reduced the migrating activities of podocytes. Treatment with CsA and FK506 also inhibited PAN-induced podocytes apoptosis, which was associated with the induction of Bcl-xL and inhibition of Bax, cleaved caspase 3, and cleaved PARP expression. Further studies revealed that CsA and FK506 inhibited PAN-induced p38 and JNK signaling, thereby protecting podocytes from PAN-induced injury. In conclusion, CsA and FK506 inhibit proteinuria by protecting against PAN-induced podocyte injury, which may be associated with inhibition of the MAPK signaling pathway.
Collapse
|
38
|
Cheng JH, Sun YJ, Zhang FQ, Zhang XR, Qiu XS, Yu LP, Wu YT, Ding C. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Sci Rep 2016; 6:24721. [PMID: 27097866 PMCID: PMC4838823 DOI: 10.1038/srep24721] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/09/2016] [Indexed: 01/10/2023] Open
Abstract
Newcastle disease virus (NDV) can replicate and trigger autophagy in human tumor cells. Our previous study confirmed the critical role of autophagy in NDV infection. Here we studied the role of NDV structural proteins in the induction of autophagy through endoplasmic reticulum (ER) stress-related unfolded protein response (UPR) pathways. Ectopic expression of the NDV nucleocapsid protein (NP) or phosphoprotein (P) was sufficient to induce autophagy. NP or P expression also altered ER homeostasis. The PERK and ATF6 pathways, but not the XBP1 pathway, all of which are components of the UPR, were activated in both NDV-infected and NP or P-transfected cells. Knockdown of PERK or ATF6 inhibited NDV-induced autophagy and reduced the extent of NDV replication. Collectively, these data suggest not only roles for the NDV NP and P proteins in autophagy, but also offer new insights into the mechanisms of NDV-induced autophagy through activation of the ER stress-related UPR pathway.
Collapse
Affiliation(s)
- Jing-Hua Cheng
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R. China.,Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, P.R. China
| | - Ying-Jie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R. China
| | - Fan-Qing Zhang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R. China.,College of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, P.R. China
| | - Xiao-Rong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, P.R. China
| | - Xv-Sheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R. China
| | - Li-Ping Yu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, P.R. China
| | - Yan-Tao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, P.R. China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R. China
| |
Collapse
|