1
|
Grenier C, Lin IH, Peters D, Pozzi A, Lennon R, Naylor RW. Integrin alpha1 beta1 promotes interstitial fibrosis in a mouse model of polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619080. [PMID: 39484448 PMCID: PMC11526950 DOI: 10.1101/2024.10.18.619080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Fibrosis is the cause of end-stage kidney failure in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). The molecular and cellular mechanisms involved in fibrosis are complex and anti-fibrotic therapies have so far failed to make an impact on patient welfare. Using unbiased proteomics analysis on the Pkd1 nl/nl mouse, we found that expression of the integrin α1 subunit is increased in this model of ADPKD. In human ADPKD tissue and two single cell RNA kidney disease datasets, ITGA1 was also upregulated. To investigate the functional role of this integrin subunit in ADPKD, we generated a Pkd1 nl/nl Itga1 -/- mouse. We observed a significant reduction in kidney volume and kidney dysfunction in mice lacking the integrin α1 subunit. Kidneys from Pkd1 nl/nl Itga1 -/- mice had smaller cysts and reduced interstitial expansion and tubular atrophy. Picrosirius red staining identified a restriction in collagen staining in the interstitium and the myofibroblast marker α smooth muscle actin was also downregulated. Myofibroblast cell proliferation was reduced in Pkd1 nl/nl Itga1 -/- mice and primary fibroblast cultures demonstrated an abrogated fibrogenic phenotype in integrin α1-depleted fibroblasts. These results highlight a previously unrecognised role for the integrin α1 subunit in kidney fibrosis.
Collapse
|
2
|
Jansson KP, Kuluva J, Zhang S, Swanson T, Zhang Y, Zimmerman KA, Fields TA, Wallace DP, Rowe PS, Stubbs JR. Osteopontin deletion attenuates cyst growth but exacerbates fibrosis in mice with cystic kidney disease. Physiol Rep 2024; 12:e70038. [PMID: 39238069 PMCID: PMC11377176 DOI: 10.14814/phy2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Osteopontin (OPN) is a multi-functional glycoprotein that coordinates the innate immune response, prevents nanocrystal formation in renal tubule fluid, and is a biomarker for kidney injury. OPN expression is markedly increased in cystic epithelial cells of polycystic kidney disease (PKD) kidneys; however, its role in PKD progression remains unclear. We investigated the in vitro effects of recombinant OPN on the proliferation of tubular epithelial cells from PKD and normal human kidneys and in vivo effects of OPN deletion on kidney cyst formation, fibrosis, and mineral metabolism in pcy/pcy mice, a non-orthologous model of autosomal-dominant PKD. In vitro studies revealed that OPN enhanced the proliferation of PKD cells but had no effect on normal kidney cells. Deletion of OPN in pcy/pcy mice significantly reduced kidney cyst burden; however, this was accompanied by increased fibrosis and no change in kidney function. The loss of OPN had no effect on kidney macrophage numbers, cyst epithelial cell proliferation, or apoptosis. Furthermore, there was no difference in kidney mineral deposition or mineral metabolism parameters between pcy/pcy mice with and without OPN expression. Global deletion of OPN reduced kidney cyst burden, while paradoxically exacerbating kidney fibrosis in mice with cystic kidney disease.
Collapse
Affiliation(s)
- Kyle P Jansson
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jordan Kuluva
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shiqin Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Taylor Swanson
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yan Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kurt A Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Timothy A Fields
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Peter S Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jason R Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Seo S, Kim H, Hwang JT, Kim JE, Kim J, Jeon S, Song YJ, Choi KH, Sim G, Cho M, Yoon JW, Kim H. HL156A, an AMP-Activated Protein Kinase Activator, Inhibits Cyst Growth in Autosomal Dominant Polycystic Kidney Disease. Biomolecules 2024; 14:806. [PMID: 39062520 PMCID: PMC11274646 DOI: 10.3390/biom14070806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic kidney disorder. While metformin has demonstrated the ability to inhibit cyst growth in animal models of ADPKD via activation of adenosine monophosphate-activated protein kinase (AMPK), its effectiveness in humans is limited due to its low potency. This study explored the impact of HL156A, a new and more potent AMPK activator, in a mouse model of ADPKD. METHODS To investigate whether HL156A inhibits the proliferation of renal cyst cells in ADPKD in vitro, exogenous human telomerase reverse transcriptase (hTERT)-immortalized renal cyst cells from ADPKD patients were treated with HL156A, and an MTT (dimethylthiazol-diphenyltetrazolium bromide) assay was performed. To assess the cyst-inhibitory effect of HL156A in vivo, we generated Pkd1 conditional knockout (KO) mice with aquaporin 2 (AQP2)-Cre, which selectively expresses Cre recombinase in the collecting duct. The effectiveness of HL156A in inhibiting cyst growth and improving renal function was confirmed by measuring the number of cysts and blood urea nitrogen (BUN) levels in the collecting duct-specific Pkd1 KO mice. RESULTS When cyst cells were treated with up to 20 µM of metformin or HL156A, HL156A reduced cell viability by 25% starting at a concentration of 5 µM, whereas metformin showed no effect. When AQP2-Cre male mice were crossed with Pkd1flox/flox female mice, and when AQP2-Cre female mice were crossed with Pkd1flox/flox male mice, the number of litters produced by both groups was comparable. In collecting duct-specific Pkd1 KO mice, HL156A was found to inhibit cyst growth, reducing both the number and size of cysts. Furthermore, it was confirmed that kidney function improved as HL156A treatment led to a reduction in elevated BUN levels. Lastly, it was observed that the increase in AMPK phosphorylation induced by HL156A decreased ERK phosphorylation and α-SMA expression. CONCLUSION HL156A has potential as a drug that can restore kidney function in ADPKD patients by inhibiting cyst growth.
Collapse
Affiliation(s)
- Sujung Seo
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Hyunho Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Jung-Taek Hwang
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jin Eop Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jisu Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Sohyun Jeon
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Young-jin Song
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Kwang-ho Choi
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Gwangeon Sim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Myunkyu Cho
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jong-woo Yoon
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Hyunsuk Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| |
Collapse
|
4
|
Lichner Z, Ding M, Khare T, Dan Q, Benitez R, Praszner M, Song X, Saleeb R, Hinz B, Pei Y, Szászi K, Kapus A. Myocardin-Related Transcription Factor Mediates Epithelial Fibrogenesis in Polycystic Kidney Disease. Cells 2024; 13:984. [PMID: 38891116 PMCID: PMC11172104 DOI: 10.3390/cells13110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and we identified the RhoA/cytoskeleton/myocardin-related transcription factor (MRTF) pathway as an emerging mediator of epithelium-induced fibrogenesis. Therefore, we hypothesized that MRTF is activated by PC1/2 loss and plays a critical role in the fibrogenic reprogramming of the epithelium. The loss of PC1 or PC2, induced by siRNA in vitro, activated RhoA and caused cytoskeletal remodeling and robust nuclear MRTF translocation and overexpression. These phenomena were also manifested in PKD1 (RC/RC) and PKD2 (WS25/-) mice, with MRTF translocation and overexpression occurring predominantly in dilated tubules and the cyst-lining epithelium, respectively. In epithelial cells, a large cohort of PC1/PC2 downregulation-induced genes was MRTF-dependent, including cytoskeletal, integrin-related, and matricellular/fibrogenic proteins. Epithelial MRTF was necessary for the paracrine priming of the fibroblast-myofibroblast transition. Thus, MRTF acts as a prime inducer of epithelial fibrogenesis in PKD. We propose that RhoA is a common upstream inducer of both histological hallmarks of PKD: cystogenesis and fibrosis.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Mei Ding
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Tarang Khare
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Enrich Bioscience, Toronto, ON M5B 1T8, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Raquel Benitez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Mercédesz Praszner
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Xuewen Song
- Division of Nephrology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Rola Saleeb
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Laboratory Medicine and Pathobiology, Temerty School of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Boris Hinz
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Laboratory Medicine and Pathobiology, Temerty School of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Luo J, Zhang Y, Jayaprakash S, Zhuang L, He J. Cross-Species Insights into Autosomal Dominant Polycystic Kidney Disease: Provide an Alternative View on Research Advancement. Int J Mol Sci 2024; 25:5646. [PMID: 38891834 PMCID: PMC11171680 DOI: 10.3390/ijms25115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent hereditary disorder that affects the kidneys, characterized by the development of an excessive number of fluid-filled cysts of varying sizes in both kidneys. Along with the progression of ADPKD, these enlarged cysts displace normal kidney tissue, often accompanied by interstitial fibrosis and inflammation, and significantly impair renal function, leading to end-stage renal disease. Currently, the precise mechanisms underlying ADPKD remain elusive, and a definitive cure has yet to be discovered. This review delineates the epidemiology, pathological features, and clinical diagnostics of ADPKD or ADPKD-like disease across human populations, as well as companion animals and other domesticated species. A light has been shed on pivotal genes and biological pathways essential for preventing and managing ADPKD, which underscores the importance of cross-species research in addressing this complex condition. Treatment options are currently limited to Tolvaptan, dialysis, or surgical excision of large cysts. However, comparative studies of ADPKD across different species hold promise for unveiling novel insights and therapeutic strategies to combat this disease.
Collapse
Affiliation(s)
- Jianing Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Yuan Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Tamil Nadu 603103, India;
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| |
Collapse
|
6
|
Campillo S, Gutiérrez-Calabrés E, García-Miranda S, Griera M, Fernández Rodríguez L, de Frutos S, Rodríguez-Puyol D, Calleros L. Integrin-linked kinase mRNA expression in circulating mononuclear cells as a biomarker of kidney and vascular damage in experimental chronic kidney disease. Cell Commun Signal 2024; 22:264. [PMID: 38734696 PMCID: PMC11088758 DOI: 10.1186/s12964-024-01646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Traditional biomarkers of chronic kidney disease (CKD) detect the disease in its late stages and hardly predict associated vascular damage. Integrin-linked kinase (ILK) is a scaffolding protein and a serine/threonine protein kinase that plays multiple roles in several pathophysiological processes during renal damage. However, the involvement of ILK as a biomarker of CKD and its associated vascular problems remains to be fully elucidated. METHODS CKD was induced by an adenine-rich diet for 6 weeks in mice. We used an inducible ILK knockdown mice (cKD-ILK) model to decrease ILK expression. ILK content in mice's peripheral blood mononuclear cells (PBMCs) was determined and correlated with renal function parameters and with the expression of ILK and fibrosis and inflammation markers in renal and aortic tissues. Also, the expression of five miRNAs that target ILK was analyzed in whole blood of mice. RESULTS The adenine diet increased ILK expression in PBMCs, renal cortex, and aortas, and creatinine and urea nitrogen concentrations in the plasma of WT mice, while these increases were not observed in cKD-ILK mice. Furthermore, ILK content in PBMCs directly correlated with renal function parameters and with the expression of renal and vascular ILK and fibrosis and inflammation markers. Finally, the expression of the five miRNAs increased in the whole blood of adenine-fed mice, although only four correlated with plasma urea nitrogen, and of those, three were downregulated in cKD-ILK mice. CONCLUSIONS ILK, in circulating mononuclear cells, could be a potential biomarker of CKD and CKD-associated renal and vascular damage.
Collapse
Affiliation(s)
- Sofía Campillo
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Gutiérrez-Calabrés
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| | - Susana García-Miranda
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Griera
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| | - Loreto Fernández Rodríguez
- Biomedical Research Foundation and Nephrology Unit, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Sergio de Frutos
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Rodríguez-Puyol
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Foundation and Nephrology Unit, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Laura Calleros
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Lee D, Lee H, Jo HN, Yun E, Kwon BS, Kim J, Lee A. Endothelial periostin regulates vascular remodeling by promoting endothelial dysfunction in pulmonary arterial hypertension. Anim Cells Syst (Seoul) 2024; 28:1-14. [PMID: 38186856 PMCID: PMC10769143 DOI: 10.1080/19768354.2023.2300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with extracellular matrix (ECM) deposition, vascular cell hyperproliferation, and neointima formation in the small pulmonary artery. Endothelial dysfunction is considered a key feature in the initiation of vascular remodeling. Although vasodilators have been used for the treatment of PAH, it remains a life-threatening disease. Therefore, it is necessary to identify novel therapeutic targets for PAH treatment. Periostin (POSTN) is a secretory ECM protein involved in physiological and pathological processes, such as tissue remodeling, cell adhesion, migration, and proliferation. Although POSTN has been proposed as a potential target for PAH treatment, its role in endothelial cells has not been fully elucidated. Here, we demonstrated that POSTN upregulation correlates with PAH by analyzing a public microarray conducted on the lung tissues of patients with PAH and biological experimental results from in vivo and in vitro models. Moreover, POSTN overexpression leads to ECM deposition and endothelial abnormalities such as migration. We found that PAH-associated endothelial dysfunction is mediated at least in part by the interaction between POSTN and integrin-linked protein kinase (ILK), followed by activation of nuclear factor-κB signaling. Silencing POSTN or ILK decreases PAH-related stimuli-induced ECM accumulation and attenuates endothelial abnormalities. In conclusion, our study suggests that POSTN serves as a critical regulator of PAH by regulating vascular remodeling, and targeting its role as a potential therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Dawn Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Heeyoung Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Ha-neul Jo
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Eunsik Yun
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Djaziri N, Burel C, Abbad L, Bakey Z, Piedagnel R, Lelongt B. Cleavage of periostin by MMP9 protects mice from kidney cystic disease. PLoS One 2023; 18:e0294922. [PMID: 38039285 PMCID: PMC10691688 DOI: 10.1371/journal.pone.0294922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The matrix metalloproteinase MMP9 influences cellular morphology and function, and plays important roles in organogenesis and disease. It exerts both protective and deleterious effects in renal pathology, depending upon its specific substrates. To explore new functions for MMP9 in kidney cysts formation and disease progression, we generated a mouse model by breeding juvenile cystic kidney (jck) mice with MMP9 deficient mice. Specifically, we provide evidence that MMP9 is overexpressed in cystic tissue where its enzymatic activity is increased 7-fold. MMP9 deficiency in cystic kidney worsen cystic kidney diseases by decreasing renal function, favoring cyst expansion and fibrosis. In addition, we find that periostin is a new critical substrate for MMP9 and in its absence periostin accumulates in cystic lining cells. As periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney diseases, we propose that the control of periostin by MMP9 and its associated intracellular signaling pathways including integrins, integrin-linked kinase and focal adhesion kinase confers to MMP9 a protective effect on the severity of the disease.
Collapse
Affiliation(s)
- Nabila Djaziri
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Cindy Burel
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Lilia Abbad
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Zeineb Bakey
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Rémi Piedagnel
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Brigitte Lelongt
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| |
Collapse
|
9
|
Luo L, Roy S, Li L, Ma M. Polycystic kidney disease: novel insights into polycystin function. Trends Mol Med 2023; 29:268-281. [PMID: 36805211 DOI: 10.1016/j.molmed.2023.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/17/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a life-threatening monogenic disease caused by mutations in PKD1 and PKD2 that encode polycystin 1 (PC1) and polycystin 2 (PC2). PC1/2 localize to cilia of renal epithelial cells, and their function is believed to embody an inhibitory activity that suppresses the cilia-dependent cyst activation (CDCA) signal. Consequently, PC deficiency results in activation of CDCA and stimulates cyst growth. Recently, re-expression of PCs in established cysts has been shown to reverse PKD. Thus, the mode of action of PCs resembles a 'counterbalance in cruise control' to maintain lumen diameter within a designated range. Herein we review recent studies that point to novel arenas for future PC research with therapeutic potential for ADPKD.
Collapse
Affiliation(s)
- Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China; Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ming Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
10
|
Onuchic L, Padovano V, Schena G, Rajendran V, Dong K, Shi X, Pandya R, Rai V, Gresko NP, Ahmed O, Lam TT, Wang W, Shen H, Somlo S, Caplan MJ. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. Nat Commun 2023; 14:1790. [PMID: 36997516 PMCID: PMC10063565 DOI: 10.1038/s41467-023-37449-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent potentially lethal monogenic disorder. Mutations in the PKD1 gene, which encodes polycystin-1 (PC1), account for approximately 78% of cases. PC1 is a large 462-kDa protein that undergoes cleavage in its N and C-terminal domains. C-terminal cleavage produces fragments that translocate to mitochondria. We show that transgenic expression of a protein corresponding to the final 200 amino acid (aa) residues of PC1 in two Pkd1-KO orthologous murine models of ADPKD suppresses cystic phenotype and preserves renal function. This suppression depends upon an interaction between the C-terminal tail of PC1 and the mitochondrial enzyme Nicotinamide Nucleotide Transhydrogenase (NNT). This interaction modulates tubular/cyst cell proliferation, the metabolic profile, mitochondrial function, and the redox state. Together, these results suggest that a short fragment of PC1 is sufficient to suppress cystic phenotype and open the door to the exploration of gene therapy strategies for ADPKD.
Collapse
Affiliation(s)
- Laura Onuchic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Valeria Padovano
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Giorgia Schena
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Vanathy Rajendran
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ke Dong
- Department of Internal Medicine and Division of Nephrology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xiaojian Shi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Raj Pandya
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Victoria Rai
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Nikolay P Gresko
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Omair Ahmed
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06510, USA
- Keck Mass Spectrometry & Proteomics Resource, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Weiwei Wang
- Keck Mass Spectrometry & Proteomics Resource, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Hongying Shen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Stefan Somlo
- Department of Internal Medicine and Division of Nephrology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
11
|
Zhou X, Torres VE. Emerging therapies for autosomal dominant polycystic kidney disease with a focus on cAMP signaling. Front Mol Biosci 2022; 9:981963. [PMID: 36120538 PMCID: PMC9478168 DOI: 10.3389/fmolb.2022.981963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), with an estimated genetic prevalence between 1:400 and 1:1,000 individuals, is the third most common cause of end stage kidney disease after diabetes mellitus and hypertension. Over the last 3 decades there has been great progress in understanding its pathogenesis. This allows the stratification of therapeutic targets into four levels, gene mutation and polycystin disruption, proximal mechanisms directly caused by disruption of polycystin function, downstream regulatory and signaling pathways, and non-specific pathophysiologic processes shared by many other diseases. Dysfunction of the polycystins, encoded by the PKD genes, is closely associated with disruption of calcium and upregulation of cyclic AMP and protein kinase A (PKA) signaling, affecting most downstream regulatory, signaling, and pathophysiologic pathways altered in this disease. Interventions acting on G protein coupled receptors to inhibit of 3',5'-cyclic adenosine monophosphate (cAMP) production have been effective in preclinical trials and have led to the first approved treatment for ADPKD. However, completely blocking cAMP mediated PKA activation is not feasible and PKA activation independently from cAMP can also occur in ADPKD. Therefore, targeting the cAMP/PKA/CREB pathway beyond cAMP production makes sense. Redundancy of mechanisms, numerous positive and negative feedback loops, and possibly counteracting effects may limit the effectiveness of targeting downstream pathways. Nevertheless, interventions targeting important regulatory, signaling and pathophysiologic pathways downstream from cAMP/PKA activation may provide additive or synergistic value and build on a strategy that has already had success. The purpose of this manuscript is to review the role of cAMP and PKA signaling and their multiple downstream pathways as potential targets for emergent therapies for ADPKD.
Collapse
Affiliation(s)
- Xia Zhou
- Mayo Clinic, Department of Nephrology, Rochester, MN, United States
| | | |
Collapse
|
12
|
Zhang Y, Daniel EA, Metcalf J, Dai Y, Reif GA, Wallace DP. CaMK4 overexpression in polycystic kidney disease promotes mTOR-mediated cell proliferation. J Mol Cell Biol 2022; 14:6674767. [PMID: 36002021 PMCID: PMC9802383 DOI: 10.1093/jmcb/mjac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive enlargement of fluid-filled cysts, causing nephron loss and a decline in renal function. Mammalian target of rapamycin (mTOR) is overactive in cyst-lining cells and contributes to abnormal cell proliferation and cyst enlargement; however, the mechanism for mTOR stimulation remains unclear. We discovered that calcium/calmodulin (CaM) dependent kinase IV (CaMK4), a multifunctional kinase, is overexpressed in the kidneys of ADPKD patients and PKD mouse models. In human ADPKD cells, CaMK4 knockdown reduced mTOR abundance and the phosphorylation of ribosomal protein S6 kinase (S6K), a downstream target of mTOR. Pharmacologic inhibition of CaMK4 with KN-93 reduced phosphorylated S6K and S6 levels and inhibited cell proliferation and in vitro cyst formation of ADPKD cells. Moreover, inhibition of calcium/CaM-dependent protein kinase kinase-β and CaM, two key upstream regulators of CaMK4, also decreased mTOR signaling. The effects of KN-93 were independent of the liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathway, and the combination of KN-93 and metformin, an AMPK activator, had additive inhibitory effects on mTOR signaling and in vitro cyst growth. Our data suggest that increased CaMK4 expression and activity contribute to mTOR signaling and the proliferation of cystic cells of ADPKD kidneys.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Emily A Daniel
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - July Metcalf
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Yuqiao Dai
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Gail A Reif
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | | |
Collapse
|
13
|
Khaleel A, Zakariya AB, Niazi M, Qinna NA, Dayyih WA, Tarkhan AH. Pathway Analysis of Patients with Severe Acute Respiratory Syndrome. Drug Res (Stuttg) 2022; 72:466-472. [PMID: 35952682 DOI: 10.1055/a-1886-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND Coronaviruses are emerging threats for human health, as demonstrated by the ongoing coronavirus disease 2019 (COVID-19) pandemic that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is closely related to SARS-CoV-1, which was the cause of the 2002-2004 SARS outbreak, but SARS-CoV-1 has been the subject of a relatively limited number of studies. Understanding the potential pathways and molecular targets of SARS-CoV-1 will contribute to current drug repurposing strategies by helping to predict potential drug-disease associations. METHODS A microarray dataset, GSE1739, of 10 SARS patients and 4 healthy controls was downloaded from NCBI's GEO repository, and differential expression was identified using NCBI's GEO2R software. Pathway and enrichment analysis of the differentially expressed genes was carried out using Ingenuity Pathway Analysis and Gene Set Enrichment Analysis, respectively. RESULTS Our findings show that the drugs dexamethasone, filgrastim, interferon alfacon-1, and levodopa were among the most significant upstream regulators of differential gene expression in SARS patients, while neutrophil degranulation was the most significantly enriched pathway. CONCLUSION An enhanced understanding of the pathways and molecular targets of SARS-CoV-1 in humans will contribute to current and future drug repurposing strategies, which are an essential tool to combat rapidly emerging health threats.
Collapse
Affiliation(s)
- Anas Khaleel
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | - Mohammad Niazi
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | | |
Collapse
|
14
|
Agborbesong E, Li LX, Li L, Li X. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Front Mol Biosci 2022; 9:922428. [PMID: 35847973 PMCID: PMC9277309 DOI: 10.3389/fmolb.2022.922428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, which is caused by mutations in the PKD1 and PKD2 genes, characterizing by progressive growth of multiple cysts in the kidneys, eventually leading to end-stage kidney disease (ESKD) and requiring renal replacement therapy. In addition, studies indicate that disease progression is as a result of a combination of factors. Understanding the molecular mechanisms, therefore, should facilitate the development of precise therapeutic strategies for ADPKD treatment. The roles of epigenetic modulation, interstitial inflammation, and regulated cell death have recently become the focuses in ADPKD. Different epigenetic regulators, and the presence of inflammatory markers detectable even before cyst growth, have been linked to cyst progression. Moreover, the infiltration of inflammatory cells, such as macrophages and T cells, have been associated with cyst growth and deteriorating renal function in humans and PKD animal models. There is evidence supporting a direct role of the PKD gene mutations to the regulation of epigenetic mechanisms and inflammatory response in ADPKD. In addition, the role of regulated cell death, including apoptosis, autophagy and ferroptosis, have been investigated in ADPKD. However, there is no consensus whether cell death promotes or delays cyst growth in ADPKD. It is therefore necessary to develop an interactive picture between PKD gene mutations, the epigenome, inflammation, and cell death to understand why inherited PKD gene mutations in patients may result in the dysregulation of these processes that increase the progression of renal cyst formation.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
16
|
Dong K, Zhang C, Tian X, Coman D, Hyder F, Ma M, Somlo S. Renal plasticity revealed through reversal of polycystic kidney disease in mice. Nat Genet 2021; 53:1649-1663. [PMID: 34635846 PMCID: PMC9278957 DOI: 10.1038/s41588-021-00946-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
Initiation of cyst formation in autosomal dominant polycystic kidney disease (ADPKD) occurs when kidney tubule cells are rendered null for either PKD1 or PKD2 by somatic 'second hit' mutations. Subsequent cyst progression remodels the organ through changes in tubule cell shape, proliferation and secretion. The kidney develops inflammation and fibrosis. We constructed a mouse model in which adult inactivation of either Pkd gene can be followed by reactivation of the gene at a later time. Using this model, we show that re-expression of Pkd genes in cystic kidneys results in rapid reversal of ADPKD. Cyst cell proliferation is reduced, autophagy is activated and cystic tubules with expanded lumina lined by squamoid cells revert to normal lumina lined by cuboidal cells. Increases in inflammation, extracellular matrix deposition and myofibroblast activation are reversed, and the kidneys become smaller. We conclude that phenotypic features of ADPKD are reversible and that the kidney has an unexpected capacity for plasticity controlled at least in part by ADPKD gene function.
Collapse
Affiliation(s)
- Ke Dong
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chao Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xin Tian
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA,Department of Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ming Ma
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.,
| |
Collapse
|
17
|
He J, Zhang S, Qiu Z, Li X, Huang H, Jin W, Xu Y, Shao G, Wang L, Meng J, Wang S, Geng X, Jia Y, Li M, Yang B, Jenny Lu HA, Zhou H. Inhibiting Focal Adhesion Kinase Ameliorates Cyst Development in Polycystin-1-Deficient Polycystic Kidney Disease in Animal Model. J Am Soc Nephrol 2021; 32:2159-2174. [PMID: 34465607 PMCID: PMC8729842 DOI: 10.1681/asn.2020111560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by numerous cysts originating from renal tubules and is associated with significant tubular epithelial cell proliferation. Focal adhesion kinase (FAK) promotes tumor growth by regulating multiple proliferative pathways. METHODS We established the forskolin (FSK)-induced three-dimensional (3D) Madin-Darby Canine Kidney cystogenesis model and 8-bromoadenosine-3`,5`-cyclic monophosphate-stimulated cyst formation in ex vivo embryonic kidney culture. Cultured human renal cyst-lining cells (OX-161) and normal tubular epithelial cells were treated with FAK inhibitors or transfected with green fluorescent protein-tagged FAK mutant plasmids for proliferation study. Furthermore, we examined the role of FAK in two transgenic ADPKD animal models, the kidney-specific Pkd1 knockout and the collecting duct-specific Pkd1 knockout mouse models. RESULTS FAK activity was significantly elevated in OX-161 cells and in two ADPKD mouse models. Inhibiting FAK activity reduced cell proliferation in OX-161 cells and prevented cyst growth in ex vivo and 3D cyst models. In tissue-specific Pkd1 knockout mouse models, FAK inhibitors retarded cyst development and mitigated renal function decline. Mechanically, FSK stimulated FAK activation in tubular epithelial cells, which was blocked by a protein kinase A (PKA) inhibitor. Inhibition of FAK activation by inhibitors or transfected cells with mutant FAK constructs interrupted FSK-mediated Src activation and upregulation of ERK and mTOR pathways. CONCLUSIONS Our study demonstrates the critical involvement of FAK in renal cyst development, suggests that FAK is a potential therapeutic target in treating patients with ADPKD, and highlights the role of FAK in cAMP-PKA-regulated proliferation.
Collapse
Affiliation(s)
- Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China,Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huihui Huang
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts,Harvard Medical School, Boston, Massachusetts
| | - William Jin
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guangying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hua A. Jenny Lu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts,Harvard Medical School, Boston, Massachusetts
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
18
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
19
|
Sousa MV, Amaral AG, Freitas JA, Murata GM, Watanabe EH, Balbo BE, Tavares MD, Hortegal RA, Rocon C, Souza LE, Irigoyen MC, Salemi VM, Onuchic LF. Smoking accelerates renal cystic disease and worsens cardiac phenotype in Pkd1-deficient mice. Sci Rep 2021; 11:14443. [PMID: 34262092 PMCID: PMC8280209 DOI: 10.1038/s41598-021-93633-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022] Open
Abstract
Smoking has been associated with renal disease progression in ADPKD but the underlying deleterious mechanisms and whether it specifically worsens the cardiac phenotype remain unknown. To investigate these matters, Pkd1-deficient cystic mice and noncystic littermates were exposed to smoking from conception to 18 weeks of age and, along with nonexposed controls, were analyzed at 13-18 weeks. Renal cystic index and cyst-lining cell proliferation were higher in cystic mice exposed to smoking than nonexposed cystic animals. Smoking increased serum urea nitrogen in cystic and noncystic mice and independently enhanced tubular cell proliferation and apoptosis. Smoking also increased renal fibrosis, however this effect was much higher in cystic than in noncystic animals. Pkd1 deficiency and smoking showed independent and additive effects on reducing renal levels of glutathione. Systolic function and several cardiac structural parameters were also negatively affected by smoking and the Pkd1-deficient status, following independent and additive patterns. Smoking did not increase, however, cardiac apoptosis or fibrosis in cystic and noncystic mice. Notably, smoking promoted a much higher reduction in body weight in Pkd1-deficient than in noncystic animals. Our findings show that smoking aggravated the renal and cardiac phenotypes of Pkd1-deficient cystic mice, suggesting that similar effects may occur in human ADPKD.
Collapse
Affiliation(s)
- Marciana V Sousa
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Andressa G Amaral
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Jessica A Freitas
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Gilson M Murata
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Elieser H Watanabe
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Bruno E Balbo
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Marcelo D Tavares
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Renato A Hortegal
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Camila Rocon
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leandro E Souza
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Maria C Irigoyen
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Vera M Salemi
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz F Onuchic
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
20
|
Almasabi S, Ahmed AU, Boyd R, Williams BRG. A Potential Role for Integrin-Linked Kinase in Colorectal Cancer Growth and Progression via Regulating Senescence and Immunity. Front Genet 2021; 12:638558. [PMID: 34163519 PMCID: PMC8216764 DOI: 10.3389/fgene.2021.638558] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 01/10/2023] Open
Abstract
Integrin-linked kinase (ILK) has been implicated as a molecular driver and mediator in both inflammation and tumorigenesis of the colon. ILK functions as an adaptor and mediator protein linking the extracellular matrix with downstream signaling pathways. ILK is broadly expressed in many human tissues and cells. It is also overexpressed in many cancers, including colorectal cancer (CRC). Inflammation, as evidenced by inflammatory bowel disease (IBD), is one of the highest risk factors for initiating CRC. This has led to the hypothesis that targeting ILK therapeutically could have potential in CRC, as it regulates different cellular processes associated with CRC development and progression as well as inflammation in the colon. A number of studies have indicated an ILK function in senescence, a cellular process that arrests the cell cycle while maintaining active metabolism and transcription. Senescent cells produce different secretions collectively known as the senescence-associated secretory phenotype (SASP). The SASP secretions influence infiltration of different immune cells, either positively for clearing senescent cells or negatively for promoting tumor growth, reflecting the dual role of senescence in cancer. However, a role for ILK in senescence and immunity in CRC remains to be determined. In this review, we discuss the possible role for ILK in senescence and immunity, paying particular attention to the relevance of ILK in CRC. We also examine how activating Toll-like receptors (TLRs) and their agonists in CRC could trigger immune responses against cancer, as a combination therapy with ILK inhibition.
Collapse
Affiliation(s)
- Saleh Almasabi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Cartherics, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Clinical Laboratory Sciences, Applied Medical Sciences, Najran University, Najran, Saudi Arabia.,Department of Molecular and Translational Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Richard Boyd
- Cartherics, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Bryan R G Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
21
|
Li Y, Gao J, Yang X, Li T, Yang B, Aili A. Combination of curcumin and ginkgolide B inhibits cystogenesis by regulating multiple signaling pathways. Mol Med Rep 2021; 23:195. [PMID: 33495815 PMCID: PMC7821343 DOI: 10.3892/mmr.2021.11834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), a common disease with a high incidence ratio of between 1/400 and 1/1,000 individuals, often results in kidney failure and even mortality. However, there are relatively few effective treatments available, and treatment is limited to lifelong hemodialysis or kidney transplant. Our previous studies have reported that curcumin (Cur) and ginkgolide B (GB) inhibited cystogenesis by regulating the Ras/ERK MAPK signaling pathway. In the present study, it was hypothesized that Cur and GB may have a synergistic effect on the inhibition of cystogenesis, and their synergistic effect may be the result of regulation of multiple signaling pathways. To assess this hypothesis, an in vitro Madin‑Darby canine kidney (MDCK) cyst model and an in vivo kidney‑specific polycystin 1 transient receptor potential channel interacting (Pkd1) knockout mouse model were established to observe the effects of the combination of Cur and GB. The cysts exposed to Cur, GB and Cur combined with GB became small thick‑walled cysts, small thin‑walled cysts and round shaped cell colonies, respectively. The combination of Cur and GB was more effective compared with either treatment alone in inhibiting cystogenesis. Additionally, to the best of our knowledge, the present study was the first to demonstrate the synergistic effect of Cur and GB on the inhibition of cystogenesis in Pkd1 knockout mice. Cur may have mediated its anti‑cyst effects by blocking EGFR/ERK1/2, JNK and PI3K/mTOR signaling pathways, while GB may have inhibited cystogenesis via the downregulation of the EGFR/ERK1/2, JNK and p38 signaling pathways. These results provide a proof‑of‑concept for application of the combination of Cur and GB in inhibiting cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Yousong Li
- Department of Traditional Chinese Medicine, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Jinsheng Gao
- Ping An Healthcare and Technology Company Limited (‘Ping an’), Shanghai 200120, P.R. China
| | - Xi Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Tao Li
- Ping An Healthcare and Technology Company Limited (‘Ping an’), Shanghai 200120, P.R. China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Aixingzi Aili
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| |
Collapse
|
22
|
Zhang Y, Dai Y, Raman A, Daniel E, Metcalf J, Reif G, Pierucci-Alves F, Wallace DP. Overexpression of TGF-β1 induces renal fibrosis and accelerates the decline in kidney function in polycystic kidney disease. Am J Physiol Renal Physiol 2020; 319:F1135-F1148. [PMID: 33166182 DOI: 10.1152/ajprenal.00366.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the presence of numerous fluid-filled cysts, extensive fibrosis, and the progressive decline in kidney function. Transforming growth factor-β1 (TGF-β1), an important mediator for renal fibrosis and chronic kidney disease, is overexpressed by cystic cells compared with normal kidney cells; however, its role in PKD pathogenesis remains undefined. To investigate the effect of TGF-β1 on cyst growth, fibrosis, and disease progression, we overexpressed active TGF-β1 specifically in collecting ducts (CDs) of phenotypic normal (Pkd1RC/+) and Pkd1RC/RC mice. In normal mice, CD-specific TGF-β1 overexpression caused tubule dilations by 5 wk of age that were accompanied by increased levels of phosphorylated SMAD3, α-smooth muscle actin, vimentin, and periostin; however, it did not induce overt cyst formation by 20 wk. In Pkd1RC/RC mice, CD overexpression of TGF-β1 increased cyst epithelial cell proliferation. However, extensive fibrosis limited cyst enlargement and caused contraction of the kidneys, leading to a loss of renal function and a shortened lifespan of the mice. These data demonstrate that TGF-β1-induced fibrosis constrains cyst growth and kidney enlargement and accelerates the decline of renal function, supporting the hypothesis that a combined therapy that inhibits renal cyst growth and fibrosis will be required to effectively treat ADPKD.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuqiao Dai
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Archana Raman
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Emily Daniel
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - July Metcalf
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail Reif
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Darren P Wallace
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Bowden TJ, Kraev I, Lange S. Post-translational protein deimination signatures and extracellular vesicles (EVs) in the Atlantic horseshoe crab (Limulus polyphemus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103714. [PMID: 32335073 DOI: 10.1016/j.dci.2020.103714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The horseshoe crab is a living fossil and a species of marine arthropod with unusual immune system properties which are also exploited commercially. Given its ancient status dating to the Ordovician period (450 million years ago), its standing in phylogeny and unusual immunological characteristics, the horseshoe crab may hold valuable information for comparative immunology studies. Peptidylarginine deiminases (PADs) are calcium dependent enzymes that are phylogenetically conserved and cause protein deimination via conversion of arginine to citrulline. This post-translational modification can lead to structural and functional protein changes contributing to protein moonlighting in health and disease. PAD-mediated regulation of extracellular vesicle (EV) release, a critical component of cellular communication, has furthermore been identified to be a phylogenetically conserved mechanism. PADs, protein deimination and EVs have hitherto not been studied in the horseshoe crab and were assessed in the current study. Horseshoe crab haemolymph serum-EVs were found to be a poly-dispersed population in the 20-400 nm size range, with the majority of EVs falling within 40-123 nm. Key immune proteins were identified to be post-translationally deiminated in horseshoe crab haemolymph serum, providing insights into protein moonlighting function of Limulus and phylogenetically conserved immune proteins. KEGG (Kyoto encyclopaedia of genes and genomes) and GO (gene ontology) enrichment analysis of deiminated proteins identified in Limulus revealed KEGG pathways relating to complement and coagulation pathways, Staphylococcus aureus infection, glycolysis/gluconeogenesis and carbon metabolism, while GO pathways of biological and molecular pathways related to a range of immune and metabolic functions, as well as developmental processes. The characterisation of EVs, and post-translational deimination signatures, revealed here in horseshoe crab, contributes to current understanding of protein moonlighting functions and EV-mediated communication in this ancient arthropod and throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science Technology, Engineering and Mathematics Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
24
|
Chen Q, Ni Y, Han M, Zhou WJ, Zhu XB, Zhang AJ. Integrin-linked kinase improves uterine receptivity formation by activating Wnt/β-catenin signaling and up-regulating MMP-3/9 expression. Am J Transl Res 2020; 12:3011-3022. [PMID: 32655826 PMCID: PMC7344108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
A receptive endometrium is a prerequisite for successful embryo implantation, and about one-third of repeated embryo implantation failure attribute to defective endometrial receptivity. Integrin-linked kinase (ILK), a 59kDa serine/threonine-protein kinase, plays a vital role in multiple cellular processes, including cell proliferation, apoptosis, and invasion. However, its role in endometrial receptivity is still unclear. In the current study, we demonstrated that ILK level was significantly downregulated in the serum of patients with unexplained infertility compared with healthy non-pregnancy. Functionally, ILK knockdown inhibited endometrial epithelial cells (EECs) proliferation and invasion, whereas ILK overexpression promoted endometrial EECs proliferation and invasion. ILK inhibition also repressed the adhesion rate of embryonic cells to EECs. In vivo studies further demonstrated that ILK inhibition suppressed endometrium receptivity formation and embryo implantation potential. Mechanistically, the downregulation of ILK inactivated Wnt/β-catenin signaling and thus resulted in the downregulation of MMP-3 and MMP-9 expression. Importantly, activation of Wnt/β-catenin signaling, partially recovered ILK inhibition-caused endometrium receptivity defects, and embryo implantation failure. Considered all the current data, it verified that the low expression of ILK exacerbates endometrial receptivity formation by inactivating Wnt/β-catenin signaling and decreasing the MMP-3/9 expression and indicated that ILK may be applied as an indicator of endometrial receptivity, and as a diagnostic and therapeutic target for infertility.
Collapse
Affiliation(s)
- Qian Chen
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine197 Ruijin Er Road, Huangpu, Shanghai 200025, China
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiaotong University, School of Medicine280 South Chongqing Road, Huangpu, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine280 South Chongqing Road, Huangpu, Shanghai 200025, China
| | - Ying Ni
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine197 Ruijin Er Road, Huangpu, Shanghai 200025, China
| | - Mi Han
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine197 Ruijin Er Road, Huangpu, Shanghai 200025, China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine197 Ruijin Er Road, Huangpu, Shanghai 200025, China
| | - Xiao-Bin Zhu
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine197 Ruijin Er Road, Huangpu, Shanghai 200025, China
| | - Ai-Jun Zhang
- Center of Reproductive Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine197 Ruijin Er Road, Huangpu, Shanghai 200025, China
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiaotong University, School of Medicine280 South Chongqing Road, Huangpu, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine280 South Chongqing Road, Huangpu, Shanghai 200025, China
| |
Collapse
|
25
|
Extracellular matrix, integrins, and focal adhesion signaling in polycystic kidney disease. Cell Signal 2020; 72:109646. [PMID: 32311505 DOI: 10.1016/j.cellsig.2020.109646] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), the inexorable growth of numerous fluid-filled cysts leads to massively enlarged kidneys, renal interstitial damage, inflammation, and fibrosis, and progressive decline in kidney function. It has long been recognized that interstitial fibrosis is the most important manifestation associated with end-stage renal disease; however, the role of abnormal extracellular matrix (ECM) production on ADPKD pathogenesis is not fully understood. Early evidence showed that cysts in end-stage human ADPKD kidneys had thickened and extensively laminated cellular basement membranes, and abnormal regulation of gene expression of several basement membrane components, including collagens, laminins, and proteoglycans by cyst epithelial cells. These basement membrane changes were also observed in dilated tubules and small cysts of early ADPKD kidneys, indicating that ECM alterations were early features of cyst development. Renal cystic cells were also found to overexpress several integrins and their ligands, including ECM structural components and soluble matricellular proteins. ECM ligands binding to integrins stimulate focal adhesion formation and can promote cell attachment and migration. Abnormal expression of laminin-332 (laminin-5) and its receptor α6β4 stimulated cyst epithelial cell proliferation; and mice that lacked laminin α5, a component of laminin-511 normally expressed by renal tubules, had an overexpression of laminin-332 that was associated with renal cyst formation. Periostin, a matricellular protein that binds αVβ3- and αVβ5-integrins, was found to be highly overexpressed in the kidneys of ADPKD and autosomal recessive PKD patients, and several rodent models of PKD. αVβ3-integrin is also overexpressed by cystic epithelial cells, and the binding of periostin to αVβ3-integrin activates the integrin-linked kinase and downstream signal transduction pathways involved in tissue repair promoting cyst growth, ECM synthesis, and tissue fibrosis. This chapter reviews the roles of the ECM, integrins, and focal adhesion signaling in cyst growth and fibrosis in PKD.
Collapse
|
26
|
He J, Zhou H, Meng J, Zhang S, Li X, Wang S, Shao G, Jin W, Geng X, Zhu S, Yang B. Cardamonin retards progression of autosomal dominant polycystic kidney disease via inhibiting renal cyst growth and interstitial fibrosis. Pharmacol Res 2020; 155:104751. [PMID: 32151678 DOI: 10.1016/j.phrs.2020.104751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenetic inherited kidney disease characterized by renal progressive fluid-filled cysts and interstitial fibrosis. Inhibiting renal cyst development and interstitial fibrosis has been proven effective in delaying the progression of ADPKD. The purpose of this study was to discover effective drugs from natural products for preventing and treating ADPKD. Candidate compounds were screened from a natural product library by virtual screening. The Madin-Darby canine kidney (MDCK) cyst model, embryonic kidney cyst model, and orthologous mouse model of ADPKD were utilized to determine the pharmacological activities of the candidate compounds. Western blot and morphological analysis were used to investigate underlying mechanisms. The experimental results showed that 0.625, 2.5, and 10 μM cardamonin dose-dependently reduced formation and enlargement in MDCK cyst model. Cardamonin also significantly attenuated renal cyst enlargement in ex vivo mouse embryonic kidneys and PKD mouse kidneys. We found that cardamonin inhibited renal cyst development and interstitial fibrosis by downregulating the MAPK, Wnt, mTOR, and transforming growth factor-β/Smad2/3 signaling pathways. Cardamonin significantly inhibits renal cyst development and interstitial fibrosis, suggesting that cardamonin shows promise as a potential therapeutic drug for preventing and treating ADPKD.
Collapse
Affiliation(s)
- Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guangying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - William Jin
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
27
|
Huang M, Zhu S, Huang H, He J, Tsuji K, Jin WW, Xie D, Ham O, Capen DE, Lu W, Păunescu TG, Yang B, Lu HAJ. Integrin-Linked Kinase Deficiency in Collecting Duct Principal Cell Promotes Necroptosis of Principal Cell and Contributes to Kidney Inflammation and Fibrosis. J Am Soc Nephrol 2019; 30:2073-2090. [PMID: 31653783 PMCID: PMC6830785 DOI: 10.1681/asn.2018111162] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/15/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Necroptosis is a newly discovered cell death pathway that plays a critical role in AKI. The involvement of integrin-linked kinase (ILK) in necroptosis has not been studied. METHODS We performed experiments in mice with an Ilk deletion in collecting duct (CD) principal cells (PCs), and cultured tubular epithelial cells treated with an ILK inhibitor or ILK siRNA knockdown. RESULTS Ilk deletion in CD PCs resulted in acute tubular injury and early mortality in mice. Progressive interstitial fibrosis and inflammation associated with the activation of the canonical TGF-β signaling cascade were detected in the kidneys of the mice lacking ILK in the CD PCs. In contrast to the minimal apoptosis detected in the animals' injured CDs, widespread necroptosis was present in ILK-deficient PCs, characterized by cell swelling, deformed mitochondria, and rupture of plasma membrane. In addition, ILK deficiency resulted in increased expression and activation of necroptotic proteins MLKL and RIPK3, and membrane translocation of MLKL in CD PCs. ILK inhibition and siRNA knockdown reduced cell survival in cultured tubular cells, concomitant with increased membrane accumulation of MLKL and/or phospho-MLKL. Administration of a necroptosis inhibitor, necrostatin-1, blocked cell death in vitro and significantly attenuated inflammation, interstitial fibrosis, and renal failure in ILK-deficient mice. CONCLUSIONS The study demonstrates the critical involvement of ILK in necroptosis through modulation of the RIPK3 and MLKL pathway and highlights the contribution of CD PC injury to the development of inflammation and interstitial fibrosis of the kidney.
Collapse
Affiliation(s)
- Ming Huang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuai Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Huihui Huang
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jinzhao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenji Tsuji
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - William W Jin
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dongping Xie
- Department of Physiology, Tongji University School of Medicine, Shanghai, China; and
| | - Onju Ham
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Weining Lu
- Renal Section, Departments of Medicine, and Pathology & Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Teodor G Păunescu
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China;
| | - Hua A Jenny Lu
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
28
|
Xue C, Mei CL. Polycystic Kidney Disease and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:81-100. [PMID: 31399962 DOI: 10.1007/978-981-13-8871-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder characterized by formations of numerous cysts in kidneys and most caused by PKD1 or PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). The interstitial inflammation and fibrosis is one of the major pathological changes in polycystic kidney tissues with an accumulation of inflammatory cells, chemokines, and cytokines. The immune response is observed across different stages and occurs prior to or coincident with cyst formation in ADPKD. Evidence for inflammation as an important contributor to cyst growth and fibrosis includes increased interstitial macrophages, upregulated expressions of pro-inflammatory cytokines, activated complement system, and activated pathways including NF-κB and JAK-STAT signaling in polycystic kidney tissues. Inflammatory cells are responsible for overproduction of several pro-fibrotic growth factors which promote renal fibrosis in ADPKD. These growth factors trigger epithelial mesenchymal transition and myofibroblast/fibrocyte activation, which stimulate the expansion of extracellular matrix (ECM) including collagen I, III, IV, V, and fibronectin, leading to renal fibrosis and reduced renal function. Besides, there are imbalanced ECM turnover regulators which lead to the increased ECM production and inadequate degradation in polycystic kidney tissues. Several fibrosis associated signaling pathways, such as TGFβ-SMAD, Wnt, and periostin-integrin-linked kinase are also activated in polycystic kidney tissues. Although the effective anti-fibrotic treatments are limited at the present time, slowing the cyst expansion and fibrosis development is very important for prolonging life span and improving the palliative care of ADPKD patients. The inhibition of pro-fibrotic cytokines involved in fibrosis might be a new therapeutic strategy for ADPKD in the future.
Collapse
Affiliation(s)
- Cheng Xue
- Division of Nephrology, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chang-Lin Mei
- Division of Nephrology, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
29
|
白 志, 陆 静, 杨 亦. [Role of TGF-β1/ILK/FSP1 signaling pathway in cyclosporin A-induced epithelialmesenchymal transition in cultured renal tubular epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:804-809. [PMID: 31340913 PMCID: PMC6765554 DOI: 10.12122/j.issn.1673-4254.2019.07.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of transforming growth factor-β1/integrin-linked kinase/fibroblast-specific protein 1 (TGF- β1/ILK/FSP1) signaling pathway in cyclosporine A (CsA)-induced renal tubular epithelial cell transdifferentiation. METHODS Rat renal tubular epithelial NRK-52E cells were induced with 1 mg/L CsA, treated with TGF-β1 inhibitor (SB431542, 10 μmol/L), or transfected with the ILK-RNAi lentiviral expression vector (ILKshRNA) or a negative control vector before CsA induction. The expressions of TGF-β1, ILK and FSP-1 mRNAs and proteins in the cells were detected using real-time PCR and Western blotting. The positive cells for α-SMA expression were detected by immunohistochemistry. RESULTS Compared with the blank control cells, the cells treated with CsA showed significantly increased levels of TGF-β1, ILK and FSP-1 mRNAs and proteins (P < 0.05). The expressions of TGF-β1, ILK and FSP-1 were significantly lower in TGF-β1 inhibitor group than in CsA group (P < 0.05). The levels of ILK and FSP-1 were significantly decreased after shRNA-mediated ILK silencing (P < 0.05). The number of positive cells for α-SMA was significantly lower in cells treated with SB431542 and in cells with ILK silencing than in the cells treated with CsA alone (P < 0.05). CONCLUSIONS The activation of TGF-β1/ILK/FSP-1 signaling pathway is an important mechanism for CsA-induced transdifferentiation in rat renal tubular epithelial cells. ILK participates in CsA-induced epithelialmesenchymal transition of renal tubular epithelial cells.
Collapse
Affiliation(s)
- 志勋 白
- 遵义医科大学第二附属医院肾病风湿科,贵州 遵义 563000Department of Nephrology and Rheumatology, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - 静 陆
- 遵义医药高等专科学校,贵州 遵义 563006Zunyi Medical and Pharmaceutical College, Zunyi 563006, China
| | - 亦彬 杨
- 遵义医科大学附属医院肾病风湿科,贵州 遵义 563006Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
30
|
Abstract
Autosomal dominant polycystic kidney (ADPKD) is a common genetic disorder characterized by the presence of numerous fluid-filled cysts that lead to a progressive decline in renal function. Cystic tissues and primary cyst epithelial cells obtained from discarded human ADPKD kidneys provide unique biomaterials for the investigation of cellular mechanisms involved in cyst growth and changes in the microenvironment adjacent to the cysts. ADPKD cells have been used to develop straightforward in vitro cell model assays to study events down-stream of the mutant proteins in carefully controlled experimental conditions, test specific hypotheses, and evaluate the cellular response to potential therapeutic drugs. Normal cadaver kidneys deemed unsuitable for transplantation and "non-involved" portions of nephrectomy specimens removed for the treatment of kidney cancer provide important control tissues and the source of primary normal human kidney (NHK) cells for comparison to ADPKD specimens. This chapter describes the methods used in the collection of cystic and non-cystic tissues from ADPKD and normal kidneys and the generation of primary cell cultures. We also highlight strengths and weaknesses of using immortalized isogenic normal and PKD mutant cell lines.
Collapse
Affiliation(s)
- Darren P Wallace
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States.
| | - Gail A Reif
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
31
|
Dong Y, Zhang Q, Wen J, Chen T, He L, Wang Y, Yin J, Wu R, Xue R, Li S, Fan Y, Wang N. Ischemic Duration and Frequency Determines AKI-to-CKD Progression Monitored by Dynamic Changes of Tubular Biomarkers in IRI Mice. Front Physiol 2019; 10:153. [PMID: 30873045 PMCID: PMC6401609 DOI: 10.3389/fphys.2019.00153] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/08/2019] [Indexed: 01/06/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the most common causes of acute kidney injury (AKI). However, the pathogenesis and biomarkers predicting the progression of IRI-induced AKI to chronic kidney disease (CKD) remain unclear. A side-by-side comparison between different IRI animal models with variable ischemic duration and episodes was performed. The dynamic changes of KIM-1 and NGAL continuously from AKI to CKD phases were studied as well. Short-term duration of ischemia induced mild renal tubule-interstitial injury which was completely reversed at acute phase of kidney injury, while long-term duration of ischemia caused severe tubular damage, cell apoptosis and inflammatory infiltration at early disease stage, leading to permanent chronic kidney fibrosis at the late stage. Repeated attacks of moderate IRI accelerated the progression of AKI to CKD. Different from serum and urine levels of KIM-1 that increased at acute phase of IRI then declined gradually in chronic phase, NGAL increased continuously during AKI-to-CKD transition. Severity and frequency of ischemia injury determines the progression and outcome of ischemia-induced AKI. Inflammation, apoptosis and fibrogenesis likely participate in the progression of AKI to CKD. Both KIM-1 and NGAL enable noninvasive and early detection of AKI, but NGAL is associated better with the process of AKI-to-CKD progression.
Collapse
Affiliation(s)
- Yang Dong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qunzi Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Teng Chen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiyun Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shiqi Li
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Aquaporins in Renal Diseases. Int J Mol Sci 2019; 20:ijms20020366. [PMID: 30654539 PMCID: PMC6359174 DOI: 10.3390/ijms20020366] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aquaporins (AQPs) are a family of highly selective transmembrane channels that mainly transport water across the cell and some facilitate low-molecular-weight solutes. Eight AQPs, including AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, and AQP11, are expressed in different segments and various cells in the kidney to maintain normal urine concentration function. AQP2 is critical in regulating urine concentrating ability. The expression and function of AQP2 are regulated by a series of transcriptional factors and post-transcriptional phosphorylation, ubiquitination, and glycosylation. Mutation or functional deficiency of AQP2 leads to severe nephrogenic diabetes insipidus. Studies with animal models show AQPs are related to acute kidney injury and various chronic kidney diseases, such as diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Experimental data suggest ideal prospects for AQPs as biomarkers and therapeutic targets in clinic. This review article mainly focuses on recent advances in studying AQPs in renal diseases.
Collapse
|
33
|
Abstract
Periostin is a matricellular protein that is expressed in several tissues during embryonic development; however, its expression in adults is mostly restricted to collagen-rich connective tissues. Periostin is expressed only briefly during kidney development, but it is not normally detected in the adult kidney. Recent evidence has revealed that periostin is aberrantly expressed in several forms of chronic kidney disease (CKD), and that its expression correlates with the degree of interstitial fibrosis and the decline in renal function. Polycystic kidney disease (PKD), a genetic disorder, is characterized by the formation of numerous fluid-filled cysts in the kidneys. Periostin is secreted by the cyst epithelial cells and accumulates within the extracellular matrix adjacent to the cysts. In PKD mice, periostin overexpression accelerates cyst growth and contributes to structural changes in the kidneys, including interstitial fibrosis. Recent evidence suggests that periostin is a tissue repair molecule; however, its role in repair following acute kidney injury has not been investigated. It is thought that persistent expression of this protein in CKD contributes importantly to tubulointerstitial fibrosis and the progressive decline in renal function. Future studies to define the diverse actions of periostin during kidney injury may lead to effective therapies to slow PKD progression and possibly prevent the development of CKD. This chapter reviews the current literature on the expression of periostin in PKD and other forms of CKD, mechanisms for periostin stimulated cyst growth, its potential role in extracellular matrix production and renal fibrosis, and the evidence for periostin as a novel biomarker for kidney disease.
Collapse
Affiliation(s)
- Darren P Wallace
- Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
34
|
Watanabe EH, Amaral AG, Onuchic LF. Periostin and polycystic kidney disease: more pieces in the puzzle. Am J Physiol Renal Physiol 2018; 316:F159-F161. [PMID: 30484349 DOI: 10.1152/ajprenal.00518.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Elieser H Watanabe
- Department of Medicine, Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine , São Paulo , Brazil
| | - Andressa G Amaral
- Department of Medicine, Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine , São Paulo , Brazil
| | - Luiz F Onuchic
- Department of Medicine, Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine , São Paulo , Brazil
| |
Collapse
|
35
|
Raman A, Parnell SC, Zhang Y, Reif GA, Dai Y, Khanna A, Daniel E, White C, Vivian JL, Wallace DP. Periostin overexpression in collecting ducts accelerates renal cyst growth and fibrosis in polycystic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1695-F1707. [PMID: 30332313 DOI: 10.1152/ajprenal.00246.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In polycystic kidney disease (PKD), persistent activation of cell proliferation and matrix production contributes to cyst growth and fibrosis, leading to progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is overexpressed by cystic epithelial cells of PKD kidneys. Periostin binds αVβ3-integrins and activates integrin-linked kinase (ILK), leading to Akt/mammalian target of rapamycin (mTOR)-mediated proliferation of human PKD cells. By contrast, periostin does not stimulate the proliferation of normal human kidney cells. This difference in the response to periostin is due to elevated expression of αVβ3-integrins by cystic cells. To determine whether periostin accelerates cyst growth and fibrosis, we generated mice with conditional overexpression of periostin in the collecting ducts (CDs). Ectopic CD expression of periostin was not sufficient to induce cyst formation or fibrosis in wild-type mice. However, periostin overexpression in pcy/pcy ( pcy) kidneys significantly increased mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis; and accelerated the decline in renal function. Moreover, CD-specific overexpression of periostin caused a decrease in the survival of pcy mice. These pathological changes were accompanied by increased renal expression of vimentin, α-smooth muscle actin, and type I collagen. We also found that periostin increased gene expression of pathways involved in repair, including integrin and growth factor signaling and ECM production, and it stimulated focal adhesion kinase, Rho GTPase, cytoskeletal reorganization, and migration of PKD cells. These results suggest that periostin stimulates signaling pathways involved in an abnormal tissue repair process that contributes to cyst growth and fibrosis in PKD.
Collapse
Affiliation(s)
- Archana Raman
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas
| | - Yan Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Gail A Reif
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Yuqiao Dai
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Aditi Khanna
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Emily Daniel
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Corey White
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Jay L Vivian
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
36
|
Patil A, Jr WES, Pan CG, Avner ED. Unique interstitial miRNA signature drives fibrosis in a murine model of autosomal dominant polycystic kidney disease. World J Nephrol 2018; 7:108-116. [PMID: 30211029 PMCID: PMC6134266 DOI: 10.5527/wjn.v7.i5.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To delineate changes in miRNA expression localized to the peri-cystic local microenvironment (PLM) in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD) (mcwPkd1(nl/nl)).
METHODS We profiled miRNA expression in the whole kidney and laser captured microdissection (LCM) samples from PLM in mcwPkd1(nl/nl) kidneys with Qiagen miScript 384 HC miRNA PCR arrays. The three times points used are: (1) post-natal (PN) day 21, before the development of trichrome-positive areas; (2) PN28, the earliest sign of trichrome staining; and (3) PN42 following the development of progressive fibrosis. PN21 served as appropriate controls and as the reference time point for comparison of miRNA expression profiles.
RESULTS LCM samples revealed three temporally upregulated miRNAs [2 to 2.75-fold at PN28 and 2.5 to 4-fold (P ≤ 0.05) at PN42] and four temporally downregulated miRNAs [2 to 2.75 fold at PN28 and 2.75 to 5-fold (P ≤ 0.05) at PN42]. Expression of twenty-six miRNAs showed no change until PN42 [six decreased (2.25 to 3.5-fold) (P ≤ 0.05) and 20 increased (2 to 4-fold) (P ≤ 0.05)]. Many critical miRNA changes seen in the LCM samples from PLM were not seen in the contralateral whole kidney.
CONCLUSION Precise sampling with LCM identifies miRNA changes that occur with the initiation and progression of renal interstitial fibrosis (RIF). Identification of the target proteins regulated by these miRNAs will provide new insight into the process of fibrosis and identify unique therapeutic targets to prevent or slow the development and progression of RIF in ADPKD.
Collapse
Affiliation(s)
- Ameya Patil
- Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William E Sweeney Jr
- Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Cynthia G Pan
- Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Ellis D Avner
- Children’s Research Institute; Children’s’ Hospital Health System of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|