1
|
Li Z, Mao C, Zhao Y, Zhao Y, Yi H, Liu J, Liang J. The STING antagonist SN-011 ameliorates cisplatin induced acute kidney injury via suppression of STING/NF-κB-mediated inflammation. Int Immunopharmacol 2025; 146:113876. [PMID: 39709905 DOI: 10.1016/j.intimp.2024.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Acute kidney injury (AKI) is a critical clinical syndrome associated with both innate and adaptive immune responses and thus increases mortality. Nevertheless, specific therapeutics for AKI are scarce so far. Recent studies have revealed that knockout of STING alleviate AKI, suggesting that STING could be an attractive target for AKI therapy. SN-011, a promising STING inhibitor, has not been reported in studies of its anti-AKI activity. In this study, we sought to examine the effects of SN-011 on AKI and explore its underlying mechanism. Our findings indicate that SN-011 could modulate the NF-κB and MAPK pathways, suppress the expression of inflammatory factors, and decrease ROS release in the cisplatin-induced cell model. In addition, SN-011 blocked the nuclear translocation of NF-κB p65, further mitigating the inflammatory response. In vivo, SN-011 enhanced survival rates and alleviated renal dysfunction. According to gene set enrichment analysis of sequencing data from mouse kidneys, we further confirm that SN-011 modulates the NF-κB and MAPK pathways. Our study suggests that SN-011 could be an attractive anti-inflammatory agent for further anti-AKI research.
Collapse
Affiliation(s)
- Ziyang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Can Mao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yixin Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yanbin Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hanyu Yi
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Jinqiang Liang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Cao Y, Liu X, Guo C, Yang W, Wang X, Wang X, Xu H, Wang W, Liu D, Zhang J, Cui W, Chen Y, Guo X, Chen D. Biomimetic reactive oxygen/nitrogen nanoscavengers inhibit "ferroptosis storm" and modulate immune targeting for acute kidney injury. J Control Release 2025; 379:59-76. [PMID: 39756688 DOI: 10.1016/j.jconrel.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Cisplatin (Cis), a potent chemotherapeutic agent, often causes acute kidney injury (AKI), limiting its clinical efficacy. RONS flares at the AKI site are a key factor in its progression. In this study, leveraging the advantages of cell membrane-coated biomimetic nanocarriers, we developed a multifunctional biomimetic nanodelivery system nano-RONS-sacrificial agent for AKI treatment. Ferrostatin-1 (Fer-1) was conjugated with curcumin (Cur) via 4-carboxyphenylboronic acid (4-PBA) and fucoidan (Fuc) to construct a ROS-responsive nanodelivery system (FPPF@Cur), which was further coated with M2 macrophage membranes (M2M) to form the multifunctional biomimetic nano-RONS-sacrificial agent (M2FPPF@Cur) designed for targeted delivery of Cur to injured kidneys. M2FPPF@Cur demonstrated rapid accumulation in the injured kidneys with selective uptake and prolonged retention in injured kidneys, the ROS-responsive mechanism facilitated controlled drug release at the AKI site, reducing off-target effects and enhancing therapeutic efficacy, effectively scavenging RONS, reducing lipid peroxidation, and targeting GPX4 protein to inhibit "ferroptosis storm". It suppressed the expression of inflammation-related NF-κB/NLRP3 signaling pathway proteins and regulated the repolarization of macrophages from M1 to M2 phenotype to regulate inflammation. The results showed that injected M2FPPF@Cur specifically accumulated in the injured kidney and exerted good renoprotective effects ultimately preventing the progression of AKI.
Collapse
Affiliation(s)
- Yuxin Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuemei Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xinxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Wenming Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Dandan Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jingwen Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Wenhao Cui
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuxiu Chen
- Shandong University of Traditional Chinese Medicine Qingdao Academy of Chinese Medical Sciences, Qingdao, China
| | - Xuan Guo
- Shandong University of Traditional Chinese Medicine Qingdao Academy of Chinese Medical Sciences, Qingdao, China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
3
|
Qin S, Zhu C, Chen C, Sheng Z, Cao Y. An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review). Int J Mol Med 2025; 55:16. [PMID: 39540363 PMCID: PMC11573318 DOI: 10.3892/ijmm.2024.5457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Sirun Qin
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Can Zhu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenyang Chen
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhe Sheng
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
4
|
Tan R, Ge C, Yan Y, Guo H, Han X, Zhu Q, Du Q. Deciphering ferroptosis in critical care: mechanisms, consequences, and therapeutic opportunities. Front Immunol 2024; 15:1511015. [PMID: 39737174 PMCID: PMC11682965 DOI: 10.3389/fimmu.2024.1511015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Ischemia-reperfusion injuries (IRI) across various organs and tissues, along with sepsis, significantly contribute to the progression of critical illnesses. These conditions disrupt the balance of inflammatory mediators and signaling pathways, resulting in impaired physiological functions in human tissues and organs. Ferroptosis, a distinct form of programmed cell death, plays a pivotal role in regulating tissue damage and modulating inflammatory responses, thereby influencing the onset and progression of severe illnesses. Recent studies highlight that pharmacological agents targeting ferroptosis-related proteins can effectively mitigate oxidative stress caused by IRI in multiple organs, alleviating associated symptoms. This manuscript delves into the mechanisms and signaling pathways underlying ferroptosis, its role in critical illnesses, and its therapeutic potential in mitigating disease progression. We aim to offer a novel perspective for advancing clinical treatments for critical illnesses.
Collapse
Affiliation(s)
- Ruimin Tan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Chen Ge
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yating Yan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Guo
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xumin Han
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong Zhu
- Department of Orthopaedics, The People’s Hospital Of Shizhu, Chongqing, China
| | - Quansheng Du
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Bai L, Li F. To explore the protective mechanism of promethazine against hippocampal neuron injury based on network pharmacology and experimental verification. Medicine (Baltimore) 2024; 103:e40550. [PMID: 39654167 PMCID: PMC11631019 DOI: 10.1097/md.0000000000040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
This study aims to investigate the effect of promethazine (PMZ) on hippocampal neuronal injury through network pharmacology and in vivo experiments. Network pharmacology: The intersection genes of PMZ and Alzheimer Disease (AD) were obtained, and the core genes of PMZ in AD were screened. The intersection genes were enriched by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. In the in vitro experiment, mouse hippocampal neurons (HT22) were divided into control, glutamate (GLU) model, and GLU + PMZ treatment groups. The control group was given a complete culture medium, the model group was given GLU for 24 hours, the treatment group was given PMZ pretreatment for 3 hours, and then GLU was administered for 24 hours. Cell viability was determined, cell morphology was observed by microscopy, reactive oxygen species levels and glutathione content were detected, and protein expression of P53, PTGS2, SLC7A11, and GPX4 was detected by western blotting. Network pharmacology: A total of 317 PMZ targets, 1934 AD genes, 125 intersection genes, and 18 core genes, including P53 and PTGS2. Gene Ontology enrichment analysis showed that the effect of PMZ on AD was mainly related to cell proliferation, inflammation, hypoxia, synaptic structure, plasma membrane, and oxidoreductase activity. Kyoto Encyclopedia of Genes and Genomes results showed neuroactive ligand-receptor interaction, cell senescence, cancer pathway, PI3K-AKT signal pathway, neurodegeneration, and HIF-1 signal pathway. In vitro experiments: PMZ improved the GLU-induced decrease in cell viability and morphological changes in hippocampal neurons. PMZ inhibited reactive oxygen species levels and increased glutathione content in injured hippocampal neurons. Up-regulated of P53, SLC7A11 and GPX4 expression, and inhibited expression of PTGS2. PMZ regulates the SLC7A11-GPX4 antioxidant system to protect hippocampal neurons from oxidative stress injury.
Collapse
Affiliation(s)
- Li Bai
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Bazhong Central Hospital, Bazhong, China
| | - Fang Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
6
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
7
|
Lin WY, Cheng YH, Liu PY, Hsu SP, Lin SC, Chien CT. Carvedilol through ß1-Adrenoceptor blockade ameliorates glomerulonephritis via inhibition of oxidative stress, apoptosis, autophagy, ferroptosis, endoplasmic reticulum stress and inflammation. Biochem Pharmacol 2024; 230:116570. [PMID: 39401703 DOI: 10.1016/j.bcp.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Glomerulonephritis (GN) is one of the main causes of end stage renal disease and requires an effective treatment for inhibiting GN. Renal nerves through efferent (RENA) and afferent (RANA) innervation to glomeruli regulate the glomerular function. We delineated the role of RENA and RANA on anti-Thy1.1-induced GN. Female Wistar rats were divided into Control, Thy1.1 plus anti-Thy1.1, bilaterally renal nerve denervation (DNX) plus anti-Thy1.1, and topical capsaicin to bilateral renal nerves for selective ablation of RANA (DNAX) plus anti-Thy1.1. We examined RANA and RENA response to anti-Thy1.1 and compared the effect of DNX or DNAX on urinary oxidative stress, renal gp91, tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), apoptosis, autophagy, ferroptosis, antioxidant enzymes, endoplasmic reticulum (ER) stress and inflammation by western blot. Anti-Thy1.1 significantly enhanced RENA, but did not affect RANA. DNX significantly decreased TH and CGRP expression, whereas DNAX only reduced CGRP expression. Anti-Thy1.1 significantly increased glomerulosclerosis injury, urinary protein, electron paramagnetic resonance signals of alpha-(4-pyridyl-N-oxide)-N-tert-butylnitrone adducts, 8-isoprostane and nitrotyrosine levels, NADPH oxidase gp91phox (gp91), macrophage/monocyte (ED-1), GRP-78, Beclin-1/LC3-II, Bax/caspase-3/poly(ADP-ribose) polymerase expression, inflammatory cytokines levels and decreased renal Copper/Zinc superoxide dismutase, Cystine/glutamate transporter (xCT) and Glutathione peroxidase 4 (GPX4) expression vs. Control. The enhanced oxidative parameters or reduced antioxidant defense by anti-Thy1.1 were significantly attenuated by DNX but not DNAX. Additionally, oral ß1-adrenoceptor antagonist-Carvedilol at an early stage reduced anti-Thy1.1 increased proteinuria level and oxidative parameters. Our data suggest that DNX and ß1-adrenoceptor antagonist-Carvedilol efficiently attenuate oxidative stress, inflammation, ER stress, autophagy, ferroptosis and apoptosis in GN.
Collapse
Affiliation(s)
- Wei-Yu Lin
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan; Department of Urology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 24213, Taiwan
| | - Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Pei-Yu Liu
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shih-Ping Hsu
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; Department of Industrial Management, Oriental Institute of Technology, New Taipei City 220, Taiwan; General Education Center, Lunghwa University of Science and Technology, Taoyuan, Taiwan.
| | - San-Chi Lin
- Division of Renal Section, Department of Internal Medicine, Keelung Hospital, Ministry of Health and Welfare, Keelung City 201, Taiwan.
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
8
|
Kadry MO, Abdel-Megeed RM. Necroptosis and autophagy in cisplatinum-triggered nephrotoxicity: Novel insights regarding their prognostic and diagnostic potential. Toxicol Rep 2024; 13:101807. [PMID: 39606774 PMCID: PMC11600652 DOI: 10.1016/j.toxrep.2024.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Necroptosis is an innovative class of programmed autophagy (Atg) and necrosis; considered as a type of homeostatic housekeeping machinery that have observed an escalating concern due to its power in alleviating Cisplatinum-induced nephrotoxicity. This article elucidated in details the prospective role of both autophagy and necroptosis on Cisplatinum-triggered nephrotoxicity and investigating more potent therapy via lactoferrin and Ti-NPS conjugation. Cisplatinum is a commonly used chemotherapeutic drug; one of the limiting adverse actions of cisplatinum is renal toxicity. Upon cisplatinum administration, autophagy is highly stimulated in the kidney to shield against nephrotoxicity. Atg is a lysosomal degradation process which discards detorirated proteins to retain cell homeostasis. This article summarizes necroptosis progress in reconizing cisplatinum nephrotoxicity and debates how this progress can help in discovering more potent therapy via lactoferrin and Ti-NPS conjugation via monitoring autophagy and apoptotic biomarkers X-box-binding protein 1 (XBP), C/EBP homologous protein (CHOP), hypoxanthine phosphoribosyltransferase-1 (HPRT), FKBP prolyl isomerase 1B (FKBP), Cellular myelocytomatosis oncogene (C-myc), tumor suppressor gene (P53) and tumor necrosis factor (TNF-α). Cisplatinum nephrotoxicity was conducted in rat model via an oral dose of (2 mg/kg BW) for one month furthermore a comparative study was conducted among TiNPs-loaded Cisplatinum and Lactoferrin loaded Cisplatinum. Loaded drug delivery system counteracted Cisplatinum triggered nephrotoxicity via controlling autophagy and apoptotic XBP, CHOP, HPRT, FKBP, C-myc, P53 and TNF-α signaling pathway.
Collapse
Affiliation(s)
- Mai O. Kadry
- National Research Center, Therapeutic chemistry deparment, Al Buhouth Street, Cairo, Egypt
| | - Rehab M. Abdel-Megeed
- National Research Center, Therapeutic chemistry deparment, Al Buhouth Street, Cairo, Egypt
| |
Collapse
|
9
|
Nüsken E, Voggel J, Saschin L, Weber LT, Dötsch J, Alcazar MAA, Nüsken KD. Kidney lipid metabolism: impact on pediatric kidney diseases and modulation by early-life nutrition. Pediatr Nephrol 2024:10.1007/s00467-024-06595-z. [PMID: 39601825 DOI: 10.1007/s00467-024-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Our review summarizes and evaluates the current state of knowledge on lipid metabolism in relation to the pathomechanisms of kidney disease with a focus on common pediatric kidney diseases. In addition, we discuss how nutrition in early childhood can alter kidney development and permanently shape kidney lipid and protein metabolism, which in turn affects kidney health and disease throughout life. Comprehensive integrated lipidomics and proteomics network analyses are becoming increasingly available and offer exciting new insights into metabolic signatures. Lipid accumulation, lipid peroxidation, oxidative stress, and dysregulated pro-inflammatory lipid mediator signaling have been identified as important mechanisms influencing the progression of minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease, and acute kidney injury. We outline key features of metabolic homeostasis and lipid metabolic physiology in renal cells and discuss pathophysiological aspects in the pediatric context. On the one hand, special vulnerabilities such as reduced antioxidant capacity in neonates must be considered. On the other hand, there is a unique window of opportunity during kidney development, as nutrition in early life influences the composition of cellular phospholipid membranes in the growing kidney and thus affects local signaling pathways far beyond the growth phase.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz T Weber
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
10
|
Tschuck J, Tonnus W, Gavali S, Kolak A, Mallais M, Maremonti F, Sato M, Rothenaigner I, Friedmann Angeli JP, Pratt DA, Linkermann A, Hadian K. Seratrodast inhibits ferroptosis by suppressing lipid peroxidation. Cell Death Dis 2024; 15:853. [PMID: 39578434 PMCID: PMC11584883 DOI: 10.1038/s41419-024-07251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Ferroptosis is a regulated and non-apoptotic form of cell death mediated by iron-dependent peroxidation of polyunsaturated fatty acyl tails in phospholipids. Research of the past years has shed light on the occurrence of ferroptosis in organ injury and degenerative diseases of the brain, kidney, heart, and other tissues. Hence, ferroptosis inhibition may prove therapeutically beneficial to treat distinct diseases. In this study, we explored the ferroptosis-modulating activity of seratrodast, an inhibitor of thromboxane A2 (TXA2) receptor, which is approved in some countries for the treatment of asthma. Interestingly, seratrodast suppressed ferroptosis, but not apoptosis and necroptosis; thus, demonstrating selective anti-ferroptotic activity. While seratrodast itself does not inhibit lipid peroxidation, it exhibits potent radical-trapping antioxidant activity upon reduction to its corresponding hydroquinone form-analogously to ubiquinone and vitamin K. Importantly, seratrodast ameliorated the severity of renal ischemia-reperfusion injury in mice. Together, this study provides a drug repurposing case, where seratrodast-a marketed drug-can undergo fast-forward preclinical/clinical development for the inhibition of ferroptosis in distinct degenerative diseases.
Collapse
Affiliation(s)
- Juliane Tschuck
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andrea Kolak
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Melodie Mallais
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mami Sato
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - Ina Rothenaigner
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
11
|
Liu C, Gan YH, Yong WJ, Xu HD, Li YC, Hu HM, Zhao ZZ, Qi YY. OTUB1 regulation of ferroptosis and the protective role of ferrostatin-1 in lupus nephritis. Cell Death Dis 2024; 15:791. [PMID: 39500879 PMCID: PMC11538433 DOI: 10.1038/s41419-024-07185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Lupus nephritis (LN) is a prevalent and severe manifestation of systemic lupus erythematosus (SLE), leading to significant morbidity and mortality. OTUB1, a deubiquitinating enzyme, has emerged as a potential therapeutic target due to its role in cellular protection and regulation of ferroptosis, a form of cell death linked to LN. Our study revealed significantly reduced OTUB1 expression in the glomeruli of LN patients and podocytes, correlated with disease severity. CRISPR/Cas9-mediated OTUB1 knockout in podocytes resulted in pronounced injury, indicated by decreased levels of nephrin and podocin. Ferrostatin-1 treatment effectively mitigated this injury, restoring SLC7A11 expression and significantly reducing MDA levels, Fe2+ levels, BODIPY C11 expression, and normalized cysteine and glutathione expression. In the MRL/lpr mouse model, Ferrostatin-1 significantly improved renal function decreased proteinuria, and ameliorated renal histopathological changes, including reduced glomerular endothelial swelling, mesangial cell proliferation, and leukocyte infiltration. These results underscore the protective role of Ferrostatin-1 in modulating the pathogenesis of LN. OTUB1 plays a crucial protective role against podocyte injury in LN by regulating ferroptosis. Ferrostatin-1 effectively mitigates podocyte damage induced by OTUB1 deficiency, suggesting that targeting ferroptosis could be a promising therapeutic strategy for LN.
Collapse
Affiliation(s)
- Chen Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yu-Hui Gan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan, 450001, China
| | - Wei-Jing Yong
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan, 450001, China
| | - Hong-de Xu
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Ministry of Education of China, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yong-Chun Li
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Ministry of Education of China, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hui-Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Zhan-Zheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
| | - Yuan-Yuan Qi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
- Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.
| |
Collapse
|
12
|
Chang YK, Hao SJ, Wu FG. Recent Biomedical Applications of Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401762. [PMID: 39279395 DOI: 10.1002/smll.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/06/2024] [Indexed: 09/18/2024]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is a 3D, cage-like nanoparticle with an inorganic Si-O-Si core and eight tunable corner functional groups. Its well-defined structure grants it distinctive physical, chemical, and biological properties and has been widely used for preparing high-performance materials. Recently, click chemistry has enabled the synthesis of various functional POSS-based materials for diverse biomedical applications. This article reviews the recent applications of POSS-based materials in the biomedical field, including cancer treatment, tissue engineering, antibacterial use, and biomedical imaging. Representative examples are discussed in detail. Among the various POSS-based applications, cancer treatment and tissue engineering are the most important. Finally, this review presents the current limitations of POSS-based materials and provides guidance for future research.
Collapse
Affiliation(s)
- Yun-Kai Chang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Shi-Jie Hao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
13
|
Seibt T, Wahida A, Hoeft K, Kemmner S, Linkermann A, Mishima E, Conrad M. The biology of ferroptosis in kidney disease. Nephrol Dial Transplant 2024; 39:1754-1761. [PMID: 38684468 DOI: 10.1093/ndt/gfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/02/2024] Open
Abstract
Ferroptosis is a regulated cell death modality triggered by iron-dependent lipid peroxidation. Ferroptosis plays a causal role in the pathophysiology of various diseases, making it a promising therapeutic target. Unlike all other cell death modalities dependent on distinct signaling cues, ferroptosis occurs when cellular antioxidative defense mechanisms fail to suppress the oxidative destruction of cellular membranes, eventually leading to cell membrane rupture. Physiologically, only two such surveillance systems are known to efficiently prevent the lipid peroxidation chain reaction by reducing (phospho)lipid hydroperoxides to their corresponding alcohols or by reducing radicals in phospholipid bilayers, thus maintaining the integrity of lipid membranes. Mechanistically, these two systems are linked to the reducing capacity of glutathione peroxidase 4 (GPX4) by consuming glutathione (GSH) on one hand and ferroptosis suppressor protein 1 (FSP1, formerly AIFM2) on the other. Notably, the importance of ferroptosis suppression in physiological contexts has been linked to a particular vulnerability of renal tissue. In fact, early work has shown that mice genetically lacking Gpx4 rapidly succumb to acute renal failure with pathohistological features of acute tubular necrosis. Promising research attempting to implicate ferroptosis in various renal disease entities, particularly those with proximal tubular involvement, has generated a wealth of knowledge with widespread potential for clinical translation. Here, we provide a brief overview of the involvement of ferroptosis in nephrology. Our goal is to introduce this expanding field for clinically versed nephrologists in the hope of spurring future efforts to prevent ferroptosis in the pathophysiological processes of the kidney.
Collapse
Affiliation(s)
- Tobias Seibt
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Konrad Hoeft
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Stephan Kemmner
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Clinic of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
14
|
Zou ZB, Li JY, Wang Y, Xie CL, Dong HY, Zhang M, Li Y, Li LS, Yang XW. Nigenolides A-H, 13 new microperfuranones with ferroptosis inhibitory activity from the deep-sea-derived Aspergillus niger. Bioorg Chem 2024; 153:107919. [PMID: 39509787 DOI: 10.1016/j.bioorg.2024.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Thirteen new microperfuranones, including five pairs of enantiomers, (±)-nigenolides A-E (1a/1b-5a/5b), and three racemate nigenolides F-H (6-8), together with four known analogues (9-12) were isolated from a deep-sea-derived Aspergillus niger 3A00562. The absolute configurations of the five pairs of enantiomers were determined by the comparison of the calculated and experimental ECD spectra. Compounds 3a, 4a, 4b, and 12 were able to inhibit RSL3-induced ferroptosis. Compound 12 inhibited ferroptosis of A375 cells and 786-O cells with EC50 values of 0.76 μM and 0.67 μM, respectively. Compound 12 was a potential iron chelator and radical trapping antioxidant. Furthermore, compound 12 inhibited ferroptosis through down-regulating the expression of TXNIP gene.
Collapse
Affiliation(s)
- Zheng-Biao Zou
- Hainan Academy of Medical Sciences, Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan 571199, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Sources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Jing-Yi Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Sources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Chun-Lan Xie
- Hainan Academy of Medical Sciences, Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan 571199, China
| | - Hao-Yu Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Sources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Meng Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Sources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - You Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Sources, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Li-Sheng Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China.
| | - Xian-Wen Yang
- Hainan Academy of Medical Sciences, Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, No. 3 Xueyuan Road, Haikou, Hainan 571199, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Sources, 184 Daxue Road, Xiamen, Fujian 361005, China.
| |
Collapse
|
15
|
Li Y, Huang L, Li J, Li S, Lv J, Zhong G, Gao M, Yang S, Han S, Hao W. Targeting TLR4 and regulating the Keap1/Nrf2 pathway with andrographolide to suppress inflammation and ferroptosis in LPS-induced acute lung injury. Chin J Nat Med 2024; 22:914-928. [PMID: 39428183 DOI: 10.1016/s1875-5364(24)60727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 10/22/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory condition with a high mortality rate, often precipitated by sepsis. The pathophysiology of ALI involves complex mechanisms, including inflammation, oxidative stress, and ferroptosis, a novel form of regulated cell death. This study explores the therapeutic potential of andrographolide (AG), a bioactive compound derived from Andrographis, in mitigating Lipopolysaccharide (LPS)-induced inflammation and ferroptosis. Our research employed in vitro experiments with RAW264.7 macrophage cells and in vivo studies using a murine model of LPS-induced ALI. The results indicate that AG significantly suppresses the production of pro-inflammatory cytokines and inhibits ferroptosis in LPS-stimulated RAW264.7 cells. In vivo, AG treatment markedly reduces lung edema, decreases inflammatory cell infiltration, and mitigates ferroptosis in lung tissues of LPS-induced ALI mice. These protective effects are mediated via the modulation of the Toll-like receptor 4 (TLR4)/Kelch-like ECH-associated protein 1(Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Molecular docking simulations identified the binding sites of AG on the TLR4 protein (Kd value: -33.5 kcal·mol-1), and these interactions were further corroborated by Cellular Thermal Shift Assay (CETSA) and SPR assays. Collectively, our findings demonstrate that AG exerts potent anti-inflammatory and anti-ferroptosis effects in LPS-induced ALI by targeting TLR4 and modulating the Keap1/Nrf2 pathway. This study underscores AG's potential as a therapeutic agent for ALI and provides new insights into its underlying mechanisms of action.
Collapse
Affiliation(s)
- Yichen Li
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Liting Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jianzhen Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guoyue Zhong
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
16
|
Chen W, Han L, Yang R, Wang H, Yao S, Deng H, Liu S, Zhou Y, Shen XL. Central role of Sigma-1 receptor in ochratoxin A-induced ferroptosis. Arch Toxicol 2024; 98:3323-3336. [PMID: 38896176 DOI: 10.1007/s00204-024-03805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Ochratoxin A (OTA), a secondary fungal metabolite known for its nephrotoxic effects, is prevalent in various feeds and food items. Our recent study suggests that OTA-induced nephrotoxicity is linked to the Sigma-1 receptor (Sig-1R)-mediated mitochondrial pathway apoptosis in human proximal tubule epithelial-originated kidney-2 (HK-2) cells. However, the contribution of Sig-1R to OTA-induced nephrotoxicity involving other forms of regulated cell death, such as ferroptosis, remains unexplored. In this investigation, cell viability, malondialdehyde (MDA) levels, glutathione (GSH) levels, and protein expressions in HK-2 cells treated with OTA and/or Ferrostatin-1/blarcamesine hydrochloride/BD1063 dihydrochloride were assessed. The results indicate that a 24 h-treatment with 1 μM OTA significantly induces ferroptosis by inhibiting Sig-1R, subsequently promoting nuclear receptor coactivator 4 (NCOA4), long-chain fatty acid-CoA ligase 4 (ACSL4), arachidonate 5-lipoxygenase (ALOX5), autophagy protein 5 (ATG5), and ATG7, inhibiting ferritin heavy chain (FTH1), solute carrier family 7 member 11 (SLC7A11/xCT), glutathione peroxidase 4 (GPX4), peroxiredoxin 6 (PRDX6), and ferroptosis suppressor protein 1 (FSP1), reducing GSH levels, and increasing MDA levels (P < 0.05). In conclusion, OTA induces ferroptosis by inhibiting Sig-1R, subsequently promoting ferritinophagy, inhibiting GPX4/FSP1 antioxidant systems, reducing GSH levels, and ultimately increasing lipid peroxidation levels in vitro.
Collapse
Affiliation(s)
- Wenying Chen
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, 563000, Guizhou, People's Republic of China
| | - Lingyun Han
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China
| | - Ruiran Yang
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China
| | - Hongwei Wang
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China
| | - Song Yao
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China
| | - Huiqiong Deng
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China
- Fuling District Center for Disease Control and Prevention, Fuling, 408000, Chongqing, People's Republic of China
| | - Shuangchao Liu
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China
| | - Yao Zhou
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China
| | - Xiao Li Shen
- School of Public Health, Zunyi Medical University, No.1 Campus Road, Xinpu District, Zunyi, 563000, Guizhou, People's Republic of China.
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, 563000, Guizhou, People's Republic of China.
| |
Collapse
|
17
|
Deng Z, Dong Z, Wang Y, Dai Y, Liu J, Deng F. Identification of TACSTD2 as novel therapeutic targets for cisplatin-induced acute kidney injury by multi-omics data integration. Hum Genet 2024; 143:1061-1080. [PMID: 38369676 DOI: 10.1007/s00439-024-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Cisplatin-induced acute kidney injury (CP-AKI) is a common complication in cancer patients. Although ferroptosis is believed to contribute to the progression of CP-AKI, its mechanisms remain incompletely understood. In this study, after initially processed individual omics datasets, we integrated multi-omics data to construct a ferroptosis network in the kidney, resulting in the identification of the key driver TACSTD2. In vitro and in vivo results showed that TACSTD2 was notably upregulated in cisplatin-treated kidneys and BUMPT cells. Overexpression of TACSTD2 accelerated ferroptosis, while its gene disruption decelerated ferroptosis, likely mediated by its potential downstream targets HMGB1, IRF6, and LCN2. Drug prediction and molecular docking were further used to propose that drugs targeting TACSTD2 may have therapeutic potential in CP-AKI, such as parthenolide, progesterone, premarin, estradiol and rosiglitazone. Our findings suggest a significant association between ferroptosis and the development of CP-AKI, with TACSTD2 playing a crucial role in modulating ferroptosis, which provides novel perspectives on the pathogenesis and treatment of CP-AKI.
Collapse
Affiliation(s)
- Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jiachen Liu
- Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Center of Systems Biology and Data Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Negm S, Youssef ME. Mechanistic insights into carvedilol's potential protection against doxorubicin-induced cardiotoxicity. Eur J Pharm Sci 2024; 200:106849. [PMID: 38992452 DOI: 10.1016/j.ejps.2024.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy drug widely employed in the treatment of various cancers, known for its potent antineoplastic properties but often associated with dose-dependent cardiotoxicity, limiting its clinical use. This review explores the complex molecular details that determine the heart-protective effectiveness of carvedilol in relation to cardiotoxicity caused by DOX. The harmful effects of DOX on heart cells could include oxidative stress, DNA damage, iron imbalance, disruption of autophagy, calcium imbalance, apoptosis, dysregulation of topoisomerase 2-beta, arrhythmogenicity, and inflammatory responses. This review carefully reveals how carvedilol serves as a strong protective mechanism, strategically reducing each aspect of cardiac damage caused by DOX. Carvedilol's antioxidant capabilities involve neutralizing free radicals and adjusting crucial antioxidant enzymes. It skillfully manages iron balance, controls autophagy, and restores the calcium balance essential for cellular stability. Moreover, the anti-apoptotic effects of carvedilol are outlined through the adjustment of Bcl-2 family proteins and activation of the Akt signaling pathway. The medication also controls topoisomerase 2-beta and reduces the renin-angiotensin-aldosterone system, together offering a thorough defense against cardiotoxicity induced by DOX. These findings not only provide detailed understanding into the molecular mechanisms that coordinate heart protection by carvedilol but also offer considerable potential for the creation of targeted treatment strategies intended to relieve cardiotoxicity caused by chemotherapy.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
19
|
Maremonti F, Tonnus W, Gavali S, Bornstein S, Shah A, Giacca M, Linkermann A. Ferroptosis-based advanced therapies as treatment approaches for metabolic and cardiovascular diseases. Cell Death Differ 2024; 31:1104-1112. [PMID: 39068204 PMCID: PMC11369293 DOI: 10.1038/s41418-024-01350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Ferroptosis has attracted attention throughout the last decade because of its tremendous clinical importance. Here, we review the rapidly growing body of literature on how inhibition of ferroptosis may be harnessed for the treatment of common diseases, and we focus on metabolic and cardiovascular unmet medical needs. We introduce four classes of preclinically established ferroptosis inhibitors (ferrostatins) such as iron chelators, radical trapping agents that function in the cytoplasmic compartment, lipophilic radical trapping antioxidants and ninjurin-1 (NINJ1) specific monoclonal antibodies. In contrast to ferroptosis inducers that cause serious untoward effects such as acute kidney tubular necrosis, the side effect profile of ferrostatins appears to be limited. We also consider ferroptosis as a potential side effect itself when several advanced therapies harnessing small-interfering RNA (siRNA)-based treatment approaches are tested. Importantly, clinical trial design is impeded by the lack of an appropriate biomarker for ferroptosis detection in serum samples or tissue biopsies. However, we discuss favorable clinical scenarios suited for the design of anti-ferroptosis clinical trials to test such first-in-class compounds. We conclude that targeting ferroptosis exhibits outstanding treatment options for metabolic and cardiovascular diseases, but we have only begun to translate this knowledge into clinically relevant applications.
Collapse
Affiliation(s)
- Francesca Maremonti
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
| | - Ajay Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany.
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
20
|
Tang Z, Zhu Y. Cordycepin ameliorates kidney injury by inhibiting gasdermin D-mediated pyroptosis of renal macrophages through nuclear factor kappa-B. J Biochem Mol Toxicol 2024; 38:e23824. [PMID: 39206630 DOI: 10.1002/jbt.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
To explain the effect and mechanism of cordycepin (COR) in resisting acute kidney injury (AKI). Network pharmacology was employed to analyze the correlations between COR, AKI, and pyroptosis, as well as the action target of COR. A mouse model of AKI was established by ischemia reperfusion injury (IRI), and after treatment with COR, the renal function, tissue inflammatory cytokine levels, and pyroptosis-related signals were detected in mice. In in-vitro experiments, damage of renal macrophages was caused by the oxygen-glucose deprivation model, and pyroptosis indicators and inflammatory cytokine levels were assayed after COR treatment. Network pharmacological analysis revealed that nuclear factor kappa-B (NF-κB) was the primary action target of COR and that COR could inhibit kidney injury and tissue inflammation during IRI by inhibiting NF-κB-mediated gasdermin D cleavage. When NF-κB was inhibited, the effect of COR was weakened. COR in renal macrophages could inhibit pyroptosis and lower the levels of inflammatory cytokines, whose effect was associated with NF-κB. Our study finds that COR can play an anti-inflammatory role and inhibit the progression of AKI through the NF-κB-mediated pyroptosis, which represents its nephroprotective mechanism.
Collapse
Affiliation(s)
- Zhiling Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Zhu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
21
|
Mishima E. Targeting ferroptosis for treating kidney disease. Clin Exp Nephrol 2024; 28:866-873. [PMID: 38644406 PMCID: PMC11341772 DOI: 10.1007/s10157-024-02491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Ferroptosis is a type of regulated cell death hallmarked by iron-mediated excessive lipid oxidation. Over the past decade since the coining of the term ferroptosis, advances in research have led to the identification of intracellular processes that regulate ferroptosis such as GSH-GPX4 pathway and FSP1-coenzyme Q10/vitamin K pathway. From a disease perspective, the involvement of ferroptosis in pathological conditions including kidney disease has attracted attention. In terms of renal pathophysiology, ferroptosis has been widely investigated for its involvement in ischemia-reperfusion injury, nephrotoxin-induced kidney damage and other renal diseases. Therefore, therapeutic interventions targeting ferroptosis are expected to become a new therapeutic approach for these diseases. However, when considering cell death as a therapeutic target, careful consideration must be given to (i) in which type of cells, (ii) which type of cell death mode, and (iii) in which stage or temporal window of the disease. In the next decade, elucidation of the true involvement of ferroptosis in kidney disease setting in human, and development of clinically applicable and effective therapeutic drugs that target ferroptosis are warranted.
Collapse
Affiliation(s)
- Eikan Mishima
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
22
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
23
|
Wang F, Huang X, Wang S, Wu D, Zhang M, Wei W. The main molecular mechanisms of ferroptosis and its role in chronic kidney disease. Cell Signal 2024; 121:111256. [PMID: 38878804 DOI: 10.1016/j.cellsig.2024.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The term ferroptosis, coined in 2012, has been widely applied in various disease research fields. Ferroptosis is a newly regulated form of cell death distinct from apoptosis, necrosis, and autophagy, the mechanisms of which have been extensively studied. Chronic kidney disease, characterized by renal dysfunction, is a common disease severely affecting human health, with its occurrence and development influenced by multiple factors and leading to dysfunction in multiple systems. It often lacks obvious clinical symptoms in the early stages, and thus, diagnosis is typically made in the later stages, complicating treatment. While research on ferroptosis and acute kidney injury has made continuous progress, studies on the association between ferroptosis and chronic kidney disease remain limited. This review aims to summarize chronic kidney disease, investigate the mechanism and regulation of ferroptosis, and attempt to elucidate the role of ferroptosis in the occurrence and development of chronic kidney disease.
Collapse
Affiliation(s)
- Fulin Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xuesong Huang
- Department of Urology, Jilin People's Hospital, Jilin, China
| | - Shaokun Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Dawei Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | | | - Wei Wei
- Department of Urology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
24
|
Jiang M, Wu S, Xie K, Zhou G, Zhou W, Bao P. The significance of ferroptosis in renal diseases and its therapeutic potential. Heliyon 2024; 10:e35882. [PMID: 39220983 PMCID: PMC11363859 DOI: 10.1016/j.heliyon.2024.e35882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Kidney diseases are significant global public health concern, with increasing prevalence and substantial economic impact. Developing novel therapeutic approaches are essential for delaying disease progression and improving patient quality of life. Cell death signifying the termination of cellular life, could facilitate appropriate bodily development and internal homeostasis. Recently, regulated cell death (RCD) forms such as ferroptosis, characterized by iron-dependent lipid peroxidation, has garnered attention in diverse renal diseases and other pathological conditions. This review offers a comprehensive examination of ferroptosis, encompassing an analysis of the involvement of iron and lipid metabolism, the System Xc - /glutathione/glutathione peroxidase 4 signaling, and additional associated pathways. Meanwhile, the review delves into the potential of targeting ferroptosis as a therapeutic approach in the management of acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy, and renal tumors. Furthermore, it emphasizes the significance of ferroptosis in the transition from AKI to CKD and further accentuates the potential for repurposing drug and utilizing traditional medicine in targeting ferroptosis-related pathways for clinical applications. The integrated review provides valuable insights into the role of ferroptosis in kidney diseases and highlights the potential for targeting ferroptosis as a therapeutic strategy.
Collapse
Affiliation(s)
- Mingzhu Jiang
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shujun Wu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Kun Xie
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Gang Zhou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wei Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ping Bao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Guo S, Zhou L, Liu X, Gao L, Li Y, Wu Y. Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155757. [PMID: 38805781 DOI: 10.1016/j.phymed.2024.155757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/07/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND In acute kidney injury (AKI), ferroptosis is the main mechanism of cell death in the renal tubular epithelium. Baicalein, a traditional Chinese medicine monomer, plays a protective role in various kidney diseases; however, the effect of baicalein on ferroptosis in AKI still needs further exploration. PURPOSE In this study, we explored the role of baicalein and its specific mechanism in mediating ferroptosis in cisplatin-induced AKI. METHODS We used a cisplatin-induced AKI model to study the effects of baicalein on renal tissue and tubular epithelial cell injury. The effects of baicalein on tubular epithelial cell ferroptosis were detected in cisplatin-induced AKI and further verified by folic acid-induced AKI. The Swiss Target Prediction online database was used to predict the possible mechanism by which baicalein regulates ferroptosis, and the specific target proteins were further verified. Molecular docking and SPR were used to further determine the binding potential of baicalein to the target protein. Finally, RNA interference (RNAi) technology and enzymatic inhibition were used to determine whether baicalein regulates ferroptosis through target proteins. RESULTS Baicalein alleviated cisplatin- and folic acid-induced renal dysfunction and pathological damage and improved cisplatin-induced HK2 cell injury. Mechanistically, baicalein reduced the expression of 12-lipoxygenase (ALOX12), which inhibits phospholipid peroxidation and ferroptosis in AKI. Molecular docking and SPR demonstrated direct binding between baicalein and ALOX12. Finally, we found that silencing ALOX12 had a regulatory effect similar to that of baicalein. Comparable results were also obtained with the ALOX12 inhibitor ML355. CONCLUSION This was the first study to confirm that baicalein regulates ferroptosis both in vitro and in vivo in cisplatin-induced AKI and to verify the regulatory effect of baicalein in folic acid-induced AKI. Our results reveal the critical role of ALOX12 in kidney damage and ferroptosis caused by cisplatin and emphasize the regulatory effect of baicalein on renal tubular epithelial cell ferroptosis mediated by ALOX12. Baicalein is an effective drug for treating AKI, and ALOX12 is a potential drug target.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Lang Zhou
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
26
|
Lin Y, Xu J, Gu Q. FerroLigandDB: A Ferroptosis Ligand Database of Structure-Activity Relations. J Chem Inf Model 2024; 64:5052-5062. [PMID: 38885636 DOI: 10.1021/acs.jcim.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Ferroptosis is an iron-dependent programmed cell death characterized by lipid peroxidation that is linked to the pathophysiological processes in many diseases, such as neurodegenerative diseases, cancers, ischemia-reperfusion injuries, and organ damages. Many proteins are associated with ferroptosis signal transduction pathways. Novel chemical compounds are demanded to explore and regulate these pathways. Therefore, a ferroptosis ligand database, which holds relations among chemical structures, targets, bioactivities, and diseases, is needed for discovering and designing new ferroptosis regulators. This work reports FerroLigandDB, a manually curated database for small-molecular ferroptosis regulators. The database comprises 466 ferroptosis inducer entries (with 380 unique molecular structures) and 539 ferroptosis inhibitor entries (with 468 unique molecular structures) (note: one compound can be recorded as multiple entries due to the different assays). Each ferroptosis ligand entry is detailed with compound IDs, structure attributes, bioactivity values, test objects, target information, associated diseases, and references. The fields in the FerroLigandDB database implicitly contain relationships among chemical structures, bioactivities, targets, and diseases. Thus, FerroLigandDB is a comprehensive resource for scientists to design and discover novel ferroptosis regulators. The user interface of FerroLigandDB is implemented with query features and data visualization facilities. With compound identifiers, the compounds are linked to the records of other chemoinformatics databases (such as PubChem and SciFinder). The FerroLigandDB database is freely accessible at http://ferr.gulab.org.cn/.
Collapse
Affiliation(s)
- Yating Lin
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
27
|
Li J, Fu C, Feng B, Liu Q, Gu J, Khan MN, Sun L, Wu H, Wu H. Polyacrylic Acid-Coated Selenium-Doped Carbon Dots Inhibit Ferroptosis to Alleviate Chemotherapy-Associated Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400527. [PMID: 38689508 PMCID: PMC11267338 DOI: 10.1002/advs.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Cisplatin-associated acute kidney injury (AKI) is a severe clinical syndrome that significantly restricts the chemotherapeutic application of cisplatin in cancer patients. Ferroptosis, a newly characterized programmed cell death driven by the lethal accumulation of lipid peroxidation, is widely reported to be involved in the pathogenesis of cisplatin-associated AKI. Targeted inhibition of ferroptosis holds great promise for developing novel therapeutics to alleviate AKI. Unfortunately, current ferroptosis inhibitors possess low bioavailability or perform non-specific accumulation in the body, making them inefficient in alleviating cisplatin-associated AKI or inadvertently reducing the anti-tumor efficacy of cisplatin, thus not suitable for clinical application. In this study, a novel selenium nanomaterial, polyacrylic acid-coated selenium-doped carbon dots (SeCD), is rationally developed. SeCD exhibits high biocompatibility and specifically accumulates in the kidney. Administration of SeCD effectively scavenges broad-spectrum reactive oxygen species and significantly facilitates GPX4 expression by releasing selenium, resulting in strong mitigation of ferroptosis in renal tubular epithelial cells and substantial alleviation of cisplatin-associated AKI, without compromising the chemotherapeutic efficacy of cisplatin. This study highlights a novel and promising therapeutic approach for the clinical prevention of AKI in cancer patients undergoing cisplatin chemotherapy.
Collapse
Affiliation(s)
- Jiahuan Li
- State Key Laboratory of Agricultural MicrobiologyCollege of Animal Science & Technology and College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Chengcheng Fu
- Hubei Hongshan LaboratoryWuhan430070China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| | - Baoli Feng
- State Key Laboratory of Agricultural MicrobiologyCollege of Animal Science & Technology and College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Qingquan Liu
- Department of NephrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiangjiang Gu
- College of ChemistryHuazhong Agricultural UniversityWuhan430070China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572000China
| | - Lvhui Sun
- State Key Laboratory of Agricultural MicrobiologyCollege of Animal Science & Technology and College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Honghong Wu
- Hubei Hongshan LaboratoryWuhan430070China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| | - Hao Wu
- State Key Laboratory of Agricultural MicrobiologyCollege of Animal Science & Technology and College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
28
|
Mori R, Abe M, Saimoto Y, Shinto S, Jodai S, Tomomatsu M, Tazoe K, Ishida M, Enoki M, Kato N, Yamashita T, Itabashi Y, Nakanishi I, Ohkubo K, Kaidzu S, Tanito M, Matsuoka Y, Morimoto K, Yamada KI. Construction of a screening system for lipid-derived radical inhibitors and validation of hit compounds to target retinal and cerebrovascular diseases. Redox Biol 2024; 73:103186. [PMID: 38744193 PMCID: PMC11109892 DOI: 10.1016/j.redox.2024.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Recent studies have highlighted the indispensable role of oxidized lipids in inflammatory responses, cell death, and disease pathogenesis. Consequently, inhibitors targeting oxidized lipids, particularly lipid-derived radicals critical in lipid peroxidation, which are known as radical-trapping antioxidants (RTAs), have been actively pursued. We focused our investigation on nitroxide compounds that have rapid second-order reaction rate constants for reaction with lipid-derived radicals. A novel screening system was developed by employing competitive reactions between library compounds and a newly developed profluorescence nitroxide probe with lipid-derived radicals to identify RTA compounds. A PubMed search of the top hit compounds revealed their wide application as repositioned drugs. Notably, the inhibitory efficacy of methyldopa, selected from these compounds, against retinal damage and bilateral common carotid artery stenosis was confirmed in animal models. These findings underscore the efficacy of our screening system and suggest that it is an effective approach for the discovery of RTA compounds.
Collapse
Affiliation(s)
- Ryota Mori
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masami Abe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuma Saimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Saki Shinto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sara Jodai
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Manami Tomomatsu
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kaho Tazoe
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Minato Ishida
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masataka Enoki
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nao Kato
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya Izumo, Shimane, 693-8501, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, 89-1 Enya Izumo, Shimane, 693-8501, Japan
| | - Yuta Matsuoka
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazushi Morimoto
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Molecular Pathobiology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
29
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2024:10.1007/s11010-024-05056-3. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
30
|
Tan Q, Wu D, Lin Y, Ai H, Xu J, Zhou H, Gu Q. Identifying eleven new ferroptosis inhibitors as neuroprotective agents from FDA-approved drugs. Bioorg Chem 2024; 146:107261. [PMID: 38460336 DOI: 10.1016/j.bioorg.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
With increasing evidence that ferroptosis is associated with diverse neurological disorders, targeting ferroptosis offers a promising avenue for developing effective pharmaceutical agents for neuroprotection. In this study, we identified ferroptosis inhibitors as neuroprotective agents from US Food and Drug Administration (FDA)-approved drugs. 1176 drugs have been screened against erastin-induced ferroptosis in HT22 cells, resulting in 89 ferroptosis inhibitors. Among them, 26 drugs showed significant activity with EC50 below10 μM. The most active ferroptosis inhibitor is lumateperone tosylate at nanomolar level. 11 drugs as ferroptosis inhibitors were not reported previously. Further mechanistic studies revealed that their mechanisms of actions involve free radical scavenging, Fe2+ chelation, and 15-lipoxygenase inhibition. Notably, the active properties of some drugs were firstly revealed here. These ferroptosis inhibitors increase the chemical diversity of ferroptosis inhibitors, and offer new therapeutic possibilities for the treatments of related neurological diseases.
Collapse
Affiliation(s)
- Qingyun Tan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deyin Wu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yating Lin
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haopeng Ai
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Zhan J, Chen J, Deng L, Lu Y, Luo L. Exploring the ferroptosis-related gene lipocalin 2 as a potential biomarker for sepsis-induced acute respiratory distress syndrome based on machine learning. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167101. [PMID: 38423372 DOI: 10.1016/j.bbadis.2024.167101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Sepsis is a major cause of mortality in patients, and ARDS is one of the most common outcomes. The pathophysiology of acute respiratory distress syndrome (ARDS) caused by sepsis is significantly impacted by genes related to ferroptosis. METHODS In this study, Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) networks, functional enrichment analysis, and machine learning were employed to identify characterized genes and to construct receiver operating characteristic (ROC) curves. Additionally, DNA methylation levels were quantified and single-cell analysis was conducted. To validate the alterations in the expression of Lipocalin-2 (LCN2) and ferroptosis-related proteins in the in vitro model, Western blotting was carried out, and the changes in intracellular ROS and Fe2+ levels were detected. RESULTS A combination of eight machine learning algorithms, including RFE, LASSO, RandomForest, SVM-RFE, GBDT, Bagging, XGBoost, and Boruta, were used with a machine learning model to highlight the significance of LCN2 as a key gene in sepsis-induced ARDS. Analysis of immune cell infiltration showed a positive correlation between neutrophils and LCN2. In a cell model induced by LPS, it was found that Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, was able to reverse the expression of LCN2. Knocking down LCN2 in BEAS-2B cells reversed the LPS-induced lipid peroxidation, Fe2+ levels, ACSL4, and GPX4 levels, indicating that LCN2, a ferroptosis-related gene (FRG), plays a crucial role in mediating ferroptosis. CONCLUSION Upon establishing an FRG model for individuals with sepsis-induced ARDS, we determined that LCN2 could be a dependable marker for predicting survival in these patients. This finding provides a basis for more accurate ARDS diagnosis and the exploration of innovative treatment options.
Collapse
Affiliation(s)
- Jiayi Zhan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Junming Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yining Lu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China.
| |
Collapse
|
32
|
Nakamura T, Ito J, Mourão ASD, Wahida A, Nakagawa K, Mishima E, Conrad M. A tangible method to assess native ferroptosis suppressor activity. CELL REPORTS METHODS 2024; 4:100710. [PMID: 38401540 PMCID: PMC10985226 DOI: 10.1016/j.crmeth.2024.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Ferroptosis, a regulated cell death hallmarked by unrestrained lipid peroxidation, plays a pivotal role in the pathophysiology of various diseases, making it a promising therapeutic target. Glutathione peroxidase 4 (GPX4) prevents ferroptosis by reducing (phospho)lipid hydroperoxides, yet evaluation of its actual activity has remained arduous. Here, we present a tangible method using affinity-purified GPX4 to capture a snapshot of its native activity. Next to measuring GPX4 activity, this improved method allows for the investigation of mutational GPX4 activity, exemplified by the GPX4U46C mutant lacking selenocysteine at its active site, as well as the evaluation of GPX4 inhibitors, such as RSL3, as a showcase. Furthermore, we apply this method to the second ferroptosis guardian, ferroptosis suppressor protein 1, to validate the newly identified ferroptosis inhibitor WIN62577. Together, these methods open up opportunities for evaluating alternative ferroptosis suppression mechanisms.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Bavaria, Germany
| | - Junya Ito
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Bavaria, Germany; Laboratory of Food Function Analysis, Tohoku University Graduate School of Agricultural Science, Sendai, Miyagi 980-8572, Japan
| | - André Santos Dias Mourão
- Institute of Structural Biology, Molecular Targets & Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Bavaria, Germany
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Bavaria, Germany
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Tohoku University Graduate School of Agricultural Science, Sendai, Miyagi 980-8572, Japan
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Bavaria, Germany; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan.
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets & Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Bavaria, Germany.
| |
Collapse
|
33
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
34
|
Hirata Y, Mishima E. Membrane Dynamics and Cation Handling in Ferroptosis. Physiology (Bethesda) 2024; 39:73-87. [PMID: 38193763 PMCID: PMC11283900 DOI: 10.1152/physiol.00029.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Ferroptosis, a regulated cell death hallmarked by excessive lipid peroxidation, is implicated in various (patho)physiological contexts. During ferroptosis, lipid peroxidation leads to a diverse change in membrane properties and the dysregulation of ion homeostasis via the cation channels, ultimately resulting in plasma membrane rupture. This review illuminates cellular membrane dynamics and cation handling in ferroptosis regulation.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
35
|
Yu HY, Chen YS, Wang Y, Zou ZB, Xie MM, Li Y, Li LS, Meng DL, Wu LQ, Yang XW. Anti-necroptosis and anti-ferroptosis compounds from the Deep-Sea-Derived fungus Aspergillus sp. MCCC 3A00392. Bioorg Chem 2024; 144:107175. [PMID: 38335757 DOI: 10.1016/j.bioorg.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Eight undescribed (1-8) and 46 known compounds (9-54) were isolated from the deep-sea-derived Aspergillus sp. MCCC 3A00392. Compounds 1-3 were three novel oxoindolo diterpenoids, 4-6 were three bisabolane sesquiterpenoids, while 7 and 8 were two monocyclic cyclopropanes. Their structures were established by exhaustive analyses of the HRESIMS, NMR, and theoretical calculations of the NMR data and ECD spectra. Compounds 10, 33, 38, and 39 were able to inhibit tumor necrosis factor (TNF)-induced necroptosis in murine L929 cell lines. Functional experiments verified that compounds 10 and 39 inhibited necroptosis by downregulating the phosphorylation of RIPK3 and MLKL. Moreover, compound 39 also reduced the phosphorylation of RIPK1. Compounds 10, 33, and 34 displayed potent inhibitory activities against RSL-3 induced ferroptosis with the EC50 value of 3.0 μM, 0.4 μM, and 0.1 μM, respectively. Compound 10 inhibited ferroptosis by the downregulation of HMOX1, while compounds 33 and 34 inhibited ferroptosis through regulation of NRF2/SLC7A11/GCLM axis. However, these compounds only showed weak effect in either the necroptosis or ferroptosis relative mouse disease models. Further studies of pharmacokinetics and pharmacodynamics might improve their in vivo bioactivities.
Collapse
Affiliation(s)
- Hao-Yu Yu
- School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu-Shi Chen
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - You Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Li-Sheng Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China
| | - Da-Li Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Lan-Qin Wu
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China.
| | - Xian-Wen Yang
- School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
36
|
Bejaoui M, Slim C, Peralta C, Ben Abdennebi H. Effect of PERLA®, a new cold-storage solution, on oxidative stress injury and early graft function in rat kidney transplantation model. BMC Nephrol 2024; 25:62. [PMID: 38389057 PMCID: PMC10882783 DOI: 10.1186/s12882-024-03488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The composition of organ preservation solutions is crucial for maintaining graft integrity and early graft function after transplantation. The aim of this study is to compare new organ preservation solution PERLA® with the gold standard preservation solution University of Wisconsin (UW) regarding oxidative stress and early graft injury. METHODS In order to assess oxidative stress after cold storage, kidney grafts have been preserved for 18 h at 4° C in either UW solution or PERLA® solution and then assessed for oxidative stress injury (protocol 1). To assess kidney injuries and oxidative stress after reperfusion, rat kidneys were harvested, stored in cold UW or in PERLA® solutions for 18 h at 4 °C and then transplanted heterotopically for 6 h (protocol 2). PERLA® is a high Na+/low K+ solution including PEG-35 (1 g/L), trimetazidine (1 µM), carvedilol (10 µM) and tacrolimus (5 µM). RESULTS Our results showed that preservation of kidneys in PERLA® solution significantly attenuates oxidative stress parameters after cold storage and reperfusion. We found a significant decrease in oxidative damage indicators (MDA, CD and CP) and a significant increase in antioxidant indicators (GPx, GSH, CAT, SOD and PSH). Moreover, PERLA® solution decreased kidney injury after reperfusion (creatinine, LDH and uric acid). CONCLUSION PERLA® solution was more effective than UW storage solution in preserving rat's kidney grafts.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Chérifa Slim
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
37
|
Xu W, Wei D, Song X. Identification of SLC40A1, LCN2, CREB5, and SLC7A11 as ferroptosis-related biomarkers in alopecia areata through machine learning. Sci Rep 2024; 14:3800. [PMID: 38360836 PMCID: PMC10869692 DOI: 10.1038/s41598-024-54278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024] Open
Abstract
Alopecia areata (AA) is a common non-scarring hair loss condition driven by the collapse of immune privilege and oxidative stress. The role of ferroptosis, a type of cell death linked to oxidative stress, in AA is yet to be explored, even though it's implicated in various diseases. Using transcriptome data from AA patients and controls from datasets GSE68801 and GSE80342, we aimed to identify AA diagnostic marker genes linked to ferroptosis. We employed Single-sample gene set enrichment analysis (ssGSEA) for immune cell infiltration evaluation. Correlations between ferroptosis-related differentially expressed genes (FRDEGs) and immune cells/functions were identified using Spearman analysis. Feature selection was done through Support vector machine-recursive feature elimination (SVM-RFE) and LASSO regression models. Validation was performed using the GSE80342 dataset, followed by hierarchical internal validation. We also constructed a nomogram to assess the predictive ability of FRDEGs in AA. Furthermore, the expression and distribution of these molecules were confirmed through immunofluorescence. Four genes, namely SLC40A1, LCN2, CREB5, and SLC7A11, were identified as markers for AA. A prediction model based on these genes showed high accuracy (AUC = 0.9052). Immunofluorescence revealed reduced expression of these molecules in AA patients compared to normal controls (NC), with SLC40A1 and CREB5 showing significant differences. Notably, they were primarily localized to the outer root sheath and in proximity to the sebaceous glands. Our study identified several ferroptosis-related genes associated with AA. These findings, emerging from the integration of immune cell infiltration analysis and machine learning, contribute to the evolving understanding of diagnostic and therapeutic strategies in AA. Importantly, this research lays a solid foundation for subsequent studies exploring the intricate relationship between AA and ferroptosis.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Ave 38, Hangzhou, 310009, China
| | - Dongfan Wei
- School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Ave 38, Hangzhou, 310009, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Ave 38, Hangzhou, 310009, China.
| |
Collapse
|
38
|
Liu J, Li Z, Peng S, Tang J, Zhang D, Ye Y. ONOO - Activatable Fluorescent Sulfur Dioxide Donor for a More Accurate Assessment of Cell Ferroptosis. Anal Chem 2024; 96:2041-2051. [PMID: 38270108 DOI: 10.1021/acs.analchem.3c04565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Ferroptosis is critical in the treatment of tumor therapies. Thus, monitoring reactive oxygen species (ROS) is of great significance for accurate assessment in ferroptosis without any interference. However, current probes for monitoring ROS during ferroptosis suffer from a drawback in that the probes consume ROS during detection, which inhibits the ferroptosis process and thus affects the accuracy and effectiveness of monitoring the process of ferroptosis. Herein, a new fluorescent donor probe, TFMU-SO2D, with the combination of the moiety of the SO2 donor is designed and synthesized by introducing the aryl boronate moieties that could give it the ability to effectively recognize ONOO-. The released SO2 could consume excess glutathione and regulate oxidative stress by elevating ROS levels, which would offset the ROS depletion by TFMU-SO2D and ensure accuracy in monitoring the ferroptosis process. The experimental results demonstrated that TFMU-SO2D possessed satisfactory performance for monitoring ONOO- as well as simultaneously releasing SO2 in oxidative stress stimulated by monensin and ferroptosis stimulated by erastin and RSL3. Additionally, the capability of SO2 synergized with ferroptosis to inhibit the viability of cancer cells was demonstrated by the CCK8 assay, which may be due to the fact that SO2 can potentiate ferroptosis cell death by increasing the ROS level. Overall, these combined results indicated that TFMU-SO2D possesses the excellent ability to precisely monitor ONOO- during ferroptosis without interference, which is significant for accurately accessing ferroptosis, cancer treatment, and drug development.
Collapse
Affiliation(s)
- Jianfei Liu
- Phosphorus Chemical Engineering Research Center of Henan Province, the College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zipeng Li
- Phosphorus Chemical Engineering Research Center of Henan Province, the College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuxin Peng
- Phosphorus Chemical Engineering Research Center of Henan Province, the College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Tang
- School of Chemical and Materials Engineering, Xinxiang University, Xinxiang 453003, China
| | - Di Zhang
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yong Ye
- Phosphorus Chemical Engineering Research Center of Henan Province, the College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
40
|
Cui W, Guo M, Liu D, Xiao P, Yang C, Huang H, Liang C, Yang Y, Fu X, Zhang Y, Liu J, Shi S, Cong J, Han Z, Xu Y, Du L, Yin C, Zhang Y, Sun J, Gu W, Chai R, Zhu S, Chu B. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nat Cell Biol 2024; 26:124-137. [PMID: 38168770 DOI: 10.1038/s41556-023-01314-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
The gut microbiota play a pivotal role in human health. Emerging evidence indicates that gut microbes participate in the progression of tumorigenesis through the generation of carcinogenic metabolites. However, the underlying molecular mechanism is largely unknown. In the present study we show that a tryptophan metabolite derived from Peptostreptococcus anaerobius, trans-3-indoleacrylic acid (IDA), facilitates colorectal carcinogenesis. Mechanistically, IDA acts as an endogenous ligand of an aryl hydrocarbon receptor (AHR) to transcriptionally upregulate the expression of ALDH1A3 (aldehyde dehydrogenase 1 family member A3), which utilizes retinal as a substrate to generate NADH, essential for ferroptosis-suppressor protein 1(FSP1)-mediated synthesis of reduced coenzyme Q10. Loss of AHR or ALDH1A3 largely abrogates IDA-promoted tumour development both in vitro and in vivo. It is interesting that P. anaerobius is significantly enriched in patients with colorectal cancer (CRC). IDA treatment or implantation of P. anaerobius promotes CRC progression in both xenograft model and ApcMin/+ mice. Together, our findings demonstrate that targeting the IDA-AHR-ALDH1A3 axis should be promising for ferroptosis-related CRC treatment.
Collapse
Affiliation(s)
- Weiwei Cui
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Guo
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dong Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuancheng Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haidi Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhui Liang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yudan Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxing Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuang Shi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Jingjing Cong
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zili Han
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunfei Xu
- Qilu hospital of Shandong University, Jinan, China
| | - Lutao Du
- Qilu hospital of Shandong University, Jinan, China
| | - Chengqian Yin
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinpeng Sun
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- School of Life Science, Beijing Institute of Technology, Beijing, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shu Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
41
|
Jia D, Kuang Z, Wang L. The role of microbial indole metabolites in tumor. Gut Microbes 2024; 16:2409209. [PMID: 39353090 PMCID: PMC11445886 DOI: 10.1080/19490976.2024.2409209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
The gut microbiota can produce a variety of microbial-derived metabolites to influence tumor development. Tryptophan, an essential amino acid in the human body, can be converted by microorganisms via the indole pathway to indole metabolites such as Indole-3-Lactic Acid (ILA), Indole-3-Propionic Acid (IPA), Indole Acetic Acid (IAA) and Indole-3-Aldehyde (IAld). Recent studies have shown that indole metabolites play key roles in tumor progression, and they can be used as adjuvant regimens for tumor immunotherapy or chemotherapy. Here, we summarize recent findings on the common microbial indole metabolites and provide a review of the mechanisms of different indole metabolites in the tumor microenvironment. We further discuss the limitations of current indole metabolite research and future possibilities. It is expected that microbial indole metabolites will provide new strategies for clinical therapy.
Collapse
Affiliation(s)
- Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
42
|
Tang Z, Chen K, Sun C, Ying X, Li M. Cordycepin inhibits kidney injury by regulating GSK-3β-mediated Nrf2 activation. J Biochem Mol Toxicol 2024; 38:e23600. [PMID: 38014886 DOI: 10.1002/jbt.23600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
We explored the role and mechanism of cordycepin (COR) in inhibiting kidney injury. A mouse model of kidney injury was established using cisplatin (CDDP), and the kidney function, histopathology, and ferroptosis indices in mice were detected after intervening with COR. The targets of COR-ferroptosis-kidney injury were analyzed by network pharmacology, based on which the association between glycogen synthase kinase-3 beta (GSK-3β) and COR was determined. HK-2 cells were cultured in vitro and treated separately with ferroptosis inducers erastin and CDDP. After the COR intervention, the level of ferroptosis was monitored. In vitro experiments found that COR could inhibit ferroptosis and CDDP-induced kidney injury. Network pharmacological analysis revealed that GSK-3β was the target of COR. After inhibiting GSK-3β expression, COR could not further inhibit the occurrence of ferroptosis. In vitro results also indicated that COR could inhibit ferroptosis in HK-2 cells. According to our findings, COR can ameliorate CDDP-induced kidney injury through GSK-3β-mediated ferroptosis signaling. We identify new pharmacological effect and target for COR, the major component of Cordyceps sinensis.
Collapse
Affiliation(s)
- Zhiling Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Kean Chen
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Chun Sun
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Xiangjun Ying
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Ming Li
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| |
Collapse
|
43
|
Wang T, Xiong T, Yang Y, Chen X, Ma Z, Zuo B, Ning D, Zhou B, Song R, Liu X, Wang D. Estradiol-mediated small GTP-binding protein GDP dissociation stimulator induction contributes to sex differences in resilience to ferroptosis in takotsubo syndrome. Redox Biol 2023; 68:102961. [PMID: 38007983 PMCID: PMC10719533 DOI: 10.1016/j.redox.2023.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Declining beneficial cardiovascular actions of estradiol (E2) have been associated with disproportionate susceptibility to takotsubo syndrome (TTS) in postmenopausal women. However, the underlying mechanisms between E2 and this marked disproportion remain unclear. SmgGDS (small GTP-binding protein GDP dissociation stimulator), as a key modulator of cardiovascular disease, plays protective roles in reducing oxidative stress and exerts pleiotropic effects of statins. Whether SmgGDS levels are influenced by E2 status and the effect of SmgGDS on sex differences in TTS are poorly understood. METHODS Clinical data were reviewed from TTS inpatients. Echocardiography, immunofluorescence, and immunohistochemistry were performed together with expression analysis to uncover phenotypic and mechanism changes in sex differences in TTS-like wild-type (WT) and SmgGDS± mice. HL-1 cardiomyocytes were used to further examine and validate molecular mechanisms. RESULTS In 14 TTS inpatients, TTS had a higher incidence in postmenopausal women as compared to premenopausal women and men. In murine TTS, female WT mice exhibited higher cardiac SmgGDS levels than male WT mice. Ovariectomy reduced SmgGDS expression in female WT mice similar to that observed in male mice, whereas E2 replacement in these ovariectomized (OVX) female mice reversed this effect. The physiological importance of this sex-specific E2-mediated SmgGDS response is underscored by the disparity in cardiac adaptation to isoproterenol (ISO) stimulation between both sexes of WT mice. E2-mediated SmgGDS induction conferred female protection against TTS-like acute cardiac injury involving ferritinophagy-mediated ferroptosis. No such cardioprotection was observed in male WT mice and OVX female. A causal role for SmgGDS in this sex-specific cardioprotective adaptation was indicated, inasmuch as SmgGDS deficiency abolished E2-modulated cardioprotection against ferritinophagy and aggravates TTS progression in both sexes. Consistently, knockdown of SmgGDS in HL-1 cardiomyocytes exacerbated ferroptosis in a ferritinophagy-dependent manner and abrogated the protective role of E2 against ferritinophagy. Mechanistically, our findings revealed that SmgGDS regulated E2-dependent cardioprotective effects via AMPK/mTOR signaling pathway. SmgGDS deficiency abolished E2-conferred protection against ferritinophagy through activating AMPK/mTOR pathway, while treatment with recombinant SmgGDS in HL-1 cells significantly mitigated this pathway-associated ferritinophagy activity. CONCLUSIONS These results demonstrate that SmgGDS is a central mediator of E2-conferred female cardioprotection against ferritinophagy-mediated ferroptosis in TTS.
Collapse
Affiliation(s)
- Ti Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China; Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA
| | - Ting Xiong
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxue Yang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Xiwei Chen
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Ziwei Ma
- Clinical Medical College, Dalian Medical University, Dalian, Liaoning, China
| | - Bangyun Zuo
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Dong Ning
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Beibei Zhou
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuesong Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China.
| |
Collapse
|
44
|
Pope LE, Dixon SJ. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol 2023; 33:1077-1087. [PMID: 37407304 PMCID: PMC10733748 DOI: 10.1016/j.tcb.2023.05.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023]
Abstract
Ferroptosis is an iron-dependent lethal mechanism that can be activated in disease and is a proposed target for cancer therapy. Ferroptosis is defined by the overwhelming accumulation of membrane lipid peroxides. Ferroptotic lipid peroxidation is initiated on internal membranes and then appears at the plasma membrane, triggering lethal ion imbalances and membrane permeabilization. Sensitivity to ferroptosis is governed by the levels of peroxidizable polyunsaturated lipids and associated lipid metabolic enzymes. A different network of enzymes and endogenous metabolites restrains lipid peroxidation by interfering with the initiation or propagation of this process. This emerging understanding is informing new approaches to treat disease by modulating lipid metabolism to enhance or inhibit ferroptosis.
Collapse
Affiliation(s)
- Lauren E Pope
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Kainat KM, Ansari MI, Bano N, Jagdale PR, Ayanur A, Kumar M, Sharma PK. Rifampicin-induced ER stress and excessive cytoplasmic vacuolization instigate hepatotoxicity via alternate programmed cell death paraptosis in vitro and in vivo. Life Sci 2023; 333:122164. [PMID: 37827230 DOI: 10.1016/j.lfs.2023.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
AIMS Rifampicin-induced hepatotoxicity is a primary cause of drug-induced liver injury (DILI), posing a significant challenge to its continued clinical application. Moreover, the mechanism underlying rifampicin-induced hepatotoxicity remains unclear. MAIN METHODS Human hepatocyte line-17 (HHL-17) cells were treated with an increasing dose of rifampicin for 24 h, and male Wistar rats were given rifampicin [150 mg/kg body weight (bw)] orally for 28 days. Viability assay, protein expression, and cell death assays were analyzed in vitro. Moreover, liver serum markers, body/organ weight, H&E staining, protein expression, etc., were assayed in vivo. KEY FINDINGS Rifampicin induced a dose-dependent hepatotoxicity in HHL-17 cells (IC50; 600 μM), and increased the serum levels of liver injury markers, e.g., alanine transaminase (ALT) and aspartate transaminase (AST) in rats. Rifampicin-induced cell death was non-apoptotic and non-necroptotic both in vitro and in vivo. Further, excessive cellular vacuolization and reduced expression of Alix protein confirmed the induction of paraptosis both in vitro and in vivo. In addition, a significant increase in the endoplasmic reticulum (ER) stress markers (e.g., BiP, CHOP, and total polyubiquitinated proteins) was detected, demonstrating the induction of ER stress and altered protein homeostasis. Interestingly, rifampicin-induced hepatotoxicity was associated with the inhibition of autophagy and enhanced reactive oxygen species (ROS) generation in HHL-17 cells. Furthermore, inhibition of protein synthesis by cycloheximide (CHX) suppressed paraptosis by alleviating rifampicin-induced ER stress and ROS generation. SIGNIFICANCE Rifampicin-induced hepatotoxicity involves ER stress-driven paraptosis as a novel mechanism of its toxicity that may be targeted to protect liver cells from rifampicin toxicity.
Collapse
Affiliation(s)
- K M Kainat
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nuzhat Bano
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
46
|
Guo Y, Li X, Yuan R, Ren J, Huang Y, Tian H. Compound 5 alleviated acute kidney injury without affecting the antitumor effect after cisplatin treatment. Biochem Biophys Res Commun 2023; 680:177-183. [PMID: 37742346 DOI: 10.1016/j.bbrc.2023.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Despite being a powerful weapon against cancer cells, cisplatin's therapeutic potential is hampered by numerous adverse reactions, including acute kidney injury (AKI). Compound 5 has 3-SH fragments at the end of the vertical short alkyl side chain, which is an ROS scavenger synthesized. In this study, we evaluated the protective effect of compound 5 on the kidney after cisplatin administration and its mechanism. The results founded that compound 5 can alleviate serum urea nitrogen and serum creatinine induced by cisplatin administration in vivo. In addition, histopathological analysis of the kidneys showed that compound 5 significantly reduced cisplatin-induced (Cis-induced) renal toxicity compared with the cisplatin group. A mechanism study showed that compound 5 significantly reduces NOX4 levels, improves the activity of antioxidant enzymes (SOD and GSH-Px), reduces Malondialdehyde (MDA) levels, increases the total antioxidant level, reduces oxidative stress, and thus reduces kidney tissue damage. At the same time, compound 5 activated the Nrf2 signaling pathway. In addition, it can increase the expression of Bax, reduce the expression of Bcl-2 and caspase-3, a marker of apoptosis, which is beneficial to the survival of kidney cells. Additionally, compound 5 did not interfere with the antitumor effects of cisplatin in in vivo xenotransplantation models.
Collapse
Affiliation(s)
- Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Jingming Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yichi Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
47
|
Liu J, Han X, Zhou J, Leng Y. Molecular Mechanisms of Ferroptosis and Their Involvement in Acute Kidney Injury. J Inflamm Res 2023; 16:4941-4951. [PMID: 37936596 PMCID: PMC10627075 DOI: 10.2147/jir.s427505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Ferroptosis is a novel way of regulating cell death, which occurs in a process that is closely linked to intracellular iron metabolism, lipid metabolism, amino acid metabolism, and multiple signaling pathways. The latest research shows that ferroptosis plays a key role in the pathogenesis of acute kidney injury (AKI). Ferroptosis may be an important target for treating AKI caused by various reasons, such as ischemia-reperfusion injury, rhabdomyolysis syndrome, sepsis, and nephrotoxic drugs. This paper provides a review on the regulatory mechanisms of ferroptosis and its role in AKI, which may help to provide new research ideas for the treatment of AKI and future research.
Collapse
Affiliation(s)
- Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoxia Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
48
|
Shan Y, Guan C, Wang J, Qi W, Chen A, Liu S. Impact of ferroptosis on preeclampsia: A review. Biomed Pharmacother 2023; 167:115466. [PMID: 37729725 DOI: 10.1016/j.biopha.2023.115466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Preeclampsia (PE) is usually associated with the accumulation of reactive oxygen species (ROS) resulting from heightened oxidative stress (OS). Ferroptosis is a unique type of lipid peroxidation-induced iron-dependent cell death distinct from traditional apoptosis, necroptosis, and pyroptosis and most likely contributes considerable to PE pathogenesis. At approximately 10-12 weeks of gestation, trophoblasts create an environment rich in oxygen and iron. In patients with PE, ferroptosis-related genes such as HIF1 and MAPK8 are downregulated, whereas PLIN2 is upregulated. Furthermore, miR-30b-5p overexpression inhibits solute carrier family 11 member 2, resulting in a decrease in glutathione levels and an increase in the labile iron pool. At the maternal-fetal interface, physiological hypoxia/reperfusion and excessive iron result in lipid peroxidation and ROS production. Owing to the high expression of Fpn and polyunsaturated fatty acid-containing phospholipid-related enzymes, including acyl-CoA synthetase long-chain family member 4, lysophosphatidylcholine acyl-transferase 3, and spermidine/spermine N1-acetyltransferase 1, trophoblasts become more susceptible to OS and ROS damage. In stage 1, the injured trophoblasts exhibit poor invasion and incomplete uterine spiral artery remodeling caused by ferroptosis, leading to placental ischemia and hypoxia. Subsequently, ferroptosis marked by OS occurs in stage 2, eventually causing PE. We aimed to explore the new therapeutic target of PE through OS in ferroptosis.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengcheng Guan
- Laboratory Department, Qingdao Haici Hospital, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihong Qi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
49
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
50
|
Zhong D, Quan L, Hao C, Chen J, Qiao R, Lin T, Ying C, Sun D, Jia Z, Sun Y. Targeting mPGES-2 to protect against acute kidney injury via inhibition of ferroptosis dependent on p53. Cell Death Dis 2023; 14:710. [PMID: 37907523 PMCID: PMC10618563 DOI: 10.1038/s41419-023-06236-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality but no specific therapy. Microsomal prostaglandin E synthase-2 (mPGES-2) is a PGE2 synthase but can metabolize PGH2 to malondialdehyde by forming a complex with heme. However, the role and mechanism of action of mPGES-2 in AKI remain unclear. To examine the role of mPGES-2, both global and tubule-specific mPGES-2-deficient mice were treated with cisplatin to induce AKI. mPGES-2 knockdown or overexpressing HK-2 cells were exposed to cisplatin to cause acute renal tubular cell injury. The mPGES-2 inhibitor SZ0232 was used to test the translational potential of targeting mPGES-2 in treating AKI. Additionally, mice were subjected to unilateral renal ischemia/reperfusion to further validate the effect of mPGES-2 on AKI. Interestingly, both genetic and pharmacological blockage of mPGES-2 led to decreased renal dysfunction and morphological damage induced by cisplatin and unilateral renal ischemia/reperfusion. Mechanistic exploration indicated that mPGES-2 deficiency inhibited ferroptosis via the heme-dependent regulation of the p53/SLC7A11/GPX4 axis. The present study indicates that mPGES-2 blockage may be a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Lingling Quan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Chang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, P. R. China
| | - Ranran Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Tengfei Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, P. R. China
- Institute of Nephrology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Dong Sun
- Institute of Nephrology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, P. R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China.
| |
Collapse
|