1
|
Zhong J, Liu J, Mutchler AL, Yang H, Kirabo A, Shelton EL, Kon V. Moving toward a better understanding of renal lymphatics: challenges and opportunities. Pediatr Nephrol 2025:10.1007/s00467-025-06692-7. [PMID: 39899153 DOI: 10.1007/s00467-025-06692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025]
Abstract
The development of lymphatic-specific markers has enabled detailed visualization of the lymphatic vascular network that has greatly enhanced our ability to explore this often-overlooked system. Lymphatics remove fluid, solutes, macromolecules, and cells from the interstitium and return them to circulation. The kidneys have lymphatics. As in other organs, the kidney lymphatic vessels are highly sensitive to changes in the local microenvironment. The sensitivity to its milieu may be especially relevant in kidneys because they are central in regulating fluid homeostasis and clearance of metabolites delivered into and eliminated from the renal interstitial compartment. Numerous physiologic conditions and diseases modify the renal interstitial volume, pressure, and composition that can, in turn, influence the growth and function of the renal lymphatics. The impact of the renal microenvironment is further heightened by the fact that kidneys are encapsulated. This review considers the development, structure, and function of the renal lymphatic vessels and explores how factors within the kidney interstitial compartment modify their structure and functionality. Moreover, although currently there are no pharmaceutical agents that specifically target the lymphatic network, we highlight several medications currently used in children with kidney disease and hypertension that have significant but underappreciated effects on lymphatics.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing Liu
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA
- Department of Nephrology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Ashley L Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haichun Yang
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elaine L Shelton
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA
| | - Valentina Kon
- Department of Pediatrics, Division of Pediatric Nephrology, Vanderbilt University Medical Center, Medical Center North C-4204, 1161 21st Avenue South, Nashville, TN, 37232-2584, USA.
| |
Collapse
|
2
|
Gurevich E, Landau D. Tubulointerstitial nephritis in children and adolescents. Pediatr Nephrol 2025; 40:319-328. [PMID: 39320551 DOI: 10.1007/s00467-024-06526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
The tubulointerstitial compartment comprises most of the kidney parenchyma. Inflammation in this compartment (tubulointerstitial nephritis-TIN) can be acute and resolves if the offending factor is withdrawn or may enter a chronic process leading to irreversible kidney damage. Etiologic factors differ, including different exposures, infections, and autoimmune and genetic tendency, and the initial damage can be acute, recurrent, or permanent, determining whether the acute inflammatory process will lead to complete healing or to a chronic course of inflammation leading to fibrosis. Clinical and laboratory findings of TIN are often nonspecific, which may lead to delayed diagnosis and a poorer clinical outcome. We provide a general review of TIN, with special mention of the molecular pathophysiological mechanisms of the associated kidney damage.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Pediatrics Department, Barzilai University Medical Center, Ashqelon, Israel.
- Ben Gurion University of Negev, Faculty of Health Sciences, Beer Sheva, Israel.
| | - Daniel Landau
- Department of Nephrology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Wang Z, Hu D, Xu H, Zeng R, Yao Y. Increased Lymphatic Vessels: A Risk Factor for Severe Renal Function Loss in Obstructive Nephropathy Patients. Int J Med Sci 2024; 21:2305-2314. [PMID: 39310255 PMCID: PMC11413892 DOI: 10.7150/ijms.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Obstructive nephropathy (ON), resulting from hindered urine flow, significantly contributes to both acute kidney injury (AKI) and chronic kidney disease (CKD). Research has consistently highlighted increased lymphatic vessels (LVs) density in diverse kidney diseases. However, the precise involvement of LVs in ON remains unclear. Methods: Patients diagnosed with ON were enrolled in this study from January 2020 to December 2023. LVs and histological pathology in renal biopsy tissues were detected through immunohistochemistry and Periodic Acid-Schiff staining. Patients were categorized into two cohorts based on their estimated glomerular filtration rate (eGFR) levels: one cohort included patients with eGFR < 90, while the other encompassed those with eGFR ≥ 90. Univariate and multivariable logistic regression analyses were conducted to determine the odds ratio (OR) and 95% confidence interval (CI) for the association between the two cohorts. Results: 239 patients were enrolled in the study. The density of LVs was elevated in ON, with even higher densities observed in patients with severe renal impairment. Additionally, several risk factors contributing to the deterioration of renal function in ON patients have been identified, including age, ureteral calculi (UC), alanine aminotransferase (ALT), and uric acid (UA). Furthermore, by leveraging LVs density, multiple robust models have been established to predict severe renal impairment in ON. Conclusions: Lymphatic vessels density is significantly elevated in ON, serving as an independent risk factor for the decline in renal function.
Collapse
Affiliation(s)
- Zheng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Danni Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Huzi Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| |
Collapse
|
4
|
McDermott JG, Goodlett BL, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Mitchell BM. Inflammatory Alterations to Renal Lymphatic Endothelial Cell Gene Expression in Mouse Models of Hypertension. Kidney Blood Press Res 2024; 49:588-604. [PMID: 38972305 PMCID: PMC11345939 DOI: 10.1159/000539721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p < 0.01), 274 significantly enriched pathways (p < 0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.
Collapse
Affiliation(s)
- Justin G. McDermott
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| |
Collapse
|
5
|
Hu D, Wang Z, Wang S, Li Y, Pei G, Zeng R, Xu G. Lymphatic vessels in patients with crescentic glomerulonephritis: association with renal pathology and prognosis. J Nephrol 2024; 37:1285-1298. [PMID: 38526665 DOI: 10.1007/s40620-024-01903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/15/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Various immune cells, including T cells, B cells, macrophages, and neutrophils contribute to the development of crescentic glomerulonephritis. Previous animal studies have suggested that lymphangiogenesis is involved in the migration of inflammatory cells and the activation of adaptive immunity. However, the extent of the association between lymphatic vessels and crescentic glomerulonephritis severity and prognosis remains unknown. METHODS AND RESULTS In this study, we assessed lymphatic vessel density in 71 patients with crescentic glomerulonephritis who underwent renal biopsies between June 2017 and June 2022. By immunohistochemistry and immunofluorescence, we identified increased lymphatic vessel density in the kidneys of patients with crescentic glomerulonephritis compared to controls. Lymphatic vessels were categorized as total, periglomerular, and interstitial. Spearman's rank correlation analysis showed a positive correlation between total and periglomerular lymphatic vessel density and glomerular crescent proportion. High lymphatic vessel density (total and periglomerular) correlated with declining kidney function, increased proteinuria, and severe glomerular and interstitial pathology. Interstitial lymphatic vessel density had minimal relationship with renal lesions. After a median duration of 13 months of follow-up, higher total and periglomerular lymphatic vessel density was associated with poorer prognosis. Transcriptomic analysis revealed increased immune cell activation and migration in crescentic glomerulonephritis patients compared to healthy controls. Periglomerular lymphatic vessels might play a significant role in immune cell infiltration and renal injury. CONCLUSION Elevated lymphatic vessel density in patients with crescentic glomerulonephritis is associated with poor prognosis and may serve as a predictive factor for adverse outcomes in these patients.
Collapse
Affiliation(s)
- Danni Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Zheng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Shujie Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yueqiang Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
6
|
Sedrakyan S. Kidney Endothelial Cell Biology in Health and Disease. J Am Soc Nephrol 2024; 35:522-524. [PMID: 38588513 PMCID: PMC11149031 DOI: 10.1681/asn.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Affiliation(s)
- Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles (CHLA), Los Angeles, California, and Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
7
|
Creed HA, Kannan S, Tate BL, Godefroy D, Banerjee P, Mitchell BM, Brakenhielm E, Chakraborty S, Rutkowski JM. Single-Cell RNA Sequencing Identifies Response of Renal Lymphatic Endothelial Cells to Acute Kidney Injury. J Am Soc Nephrol 2024; 35:549-565. [PMID: 38506705 PMCID: PMC11149045 DOI: 10.1681/asn.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
Affiliation(s)
- Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Saranya Kannan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brittany L. Tate
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - David Godefroy
- Inserm UMR1239 (Nordic Laboratory), UniRouen, Normandy University, Mont Saint Aignan, France
| | - Priyanka Banerjee
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Ebba Brakenhielm
- INSERM EnVI, UMR1096, University of Rouen Normandy, Rouen, France
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
8
|
Hao J, Qiang P, Fan L, Xiong Y, Chang Y, Yang F, Wang X, Shimosawa T, Mu S, Xu Q. Eplerenone reduces lymphangiogenesis in the contralateral kidneys of UUO rats. Sci Rep 2024; 14:9976. [PMID: 38693148 PMCID: PMC11063175 DOI: 10.1038/s41598-024-60636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Inflammation and fibrosis often occur in the kidney after acute injury, resulting in chronic kidney disease and consequent renal failure. Recent studies have indicated that lymphangiogenesis can drive renal inflammation and fibrosis in injured kidneys. However, whether and how this pathogenesis affects the contralateral kidney remain largely unknown. In our study, we uncovered a mechanism by which the contralateral kidney responded to injury. We found that the activation of mineralocorticoid receptors and the increase in vascular endothelial growth factor C in the contralateral kidney after unilateral ureteral obstruction could promote lymphangiogenesis. Furthermore, mineralocorticoid receptor activation in lymphatic endothelial cells resulted in the secretion of myofibroblast markers, thereby contributing to renal fibrosis. We observed that this process could be attenuated by administering the mineralocorticoid receptor blocker eplerenone, which, prevented the development of fibrotic injury in the contralateral kidneys of rats with unilateral ureteral obstruction. These findings offer valuable insights into the intricate mechanisms underlying kidney injury and may have implications for the development of therapeutic strategies to mitigate renal fibrosis in the context of kidney disease.
Collapse
Affiliation(s)
- Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Panpan Qiang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lili Fan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunzhao Xiong
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fan Yang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiangting Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China.
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
9
|
Takahashi H, Inoue A, Tanaka T, Sato Y, Potretzke TA, Masuoka S, Takahashi N, Minami M, Kawashima A. Imaging of Perirenal and Intrarenal Lymphatic Vessels: Anatomy-based Approach. Radiographics 2024; 44:e230065. [PMID: 38386603 DOI: 10.1148/rg.230065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The lymphatic system (or lymphatics) consists of lymphoid organs and lymphatic vessels. Despite the numerous previously published studies describing conditions related to perirenal and intrarenal lymphoid organs in the radiology literature, the radiologic findings of conditions related to intrarenal and perirenal lymphatic vessels have been scarcely reported. In the renal cortex, interlobular lymphatic capillaries do not have valves; therefore, lymph can travel along the primary route toward the hilum, as well as toward the capsular lymphatic plexus. These two lymphatic pathways can be opacified by contrast medium via pyelolymphatic backflow at CT urography, which reflects urinary contrast agent leakage into perirenal lymphatic vessels via forniceal rupture. Pyelolymphatic backflow toward the renal hilum should be distinguished from urinary leakage due to urinary injury. Delayed subcapsular contrast material retention via pyelolymphatic backflow, appearing as hyperattenuating subcapsular foci on CT images, mimics other subcapsular cystic diseases. In contrast to renal parapelvic cysts originating from the renal parenchyma, renal peripelvic cysts are known to be of lymphatic origin. Congenital renal lymphangiectasia is mainly seen in children and assessed and followed up at imaging. Several lymphatic conditions, including lymphatic leakage as an early complication and acquired renal lymphangiectasia as a late complication, are sometimes identified at imaging follow-up of kidney transplant. Lymphangiographic contrast material accumulation in the renal hilar lymphatic vessels is characteristic of chylo-urinary fistula. Chyluria appears as a fat-layering fluid-fluid level in the urinary bladder or upper urinary tract. Recognition of the anatomic pathway of tumor spread via lymphatic vessels at imaging is of clinical importance for accurate management at oncologic imaging. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Hiroaki Takahashi
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| | - Akitoshi Inoue
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| | - Takashi Tanaka
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| | - Yuki Sato
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| | - Theodora A Potretzke
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| | - Sota Masuoka
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| | - Naoki Takahashi
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| | - Manabu Minami
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| | - Akira Kawashima
- From the Department of Radiology (H.T., A.I., T.A.P., N.T.) and Department of Medicine, Division of Rheumatology (Y.S.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Okayama City Hospital, Okayama, Japan (T.T.); Department of Radiology, Jichi Medical University, Tochigi, Japan (S.M.); Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan (M.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (A.K.)
| |
Collapse
|
10
|
Stasi E, Sciascia S, Naretto C, Baldovino S, Roccatello D. Lymphatic System and the Kidney: From Lymphangiogenesis to Renal Inflammation and Fibrosis Development. Int J Mol Sci 2024; 25:2853. [PMID: 38474100 DOI: 10.3390/ijms25052853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The lymphatic kidney system plays a crucial role in managing interstitial fluid removal, regulating fluid balance, and tuning immune response. It also assists in the reabsorption of proteins, electrolytes, cytokines, growth factors, and immune cells. Pathological conditions, including tissue damage, excessive interstitial fluid, high blood glucose levels, and inflammation, can initiate lymphangiogenesis-the formation of new lymphatic vessels. This process is associated with various kidney diseases, including polycystic kidney disease, hypertension, ultrafiltration challenges, and complications post-organ transplantation. Although lymphangiogenesis has beneficial effects in removing excess fluid and immune cells, it may also contribute to inflammation and fibrosis within the kidneys. In this review, we aim to discuss the biology of the lymphatic system, from its development and function to its response to disease stimuli, with an emphasis on renal pathophysiology. Furthermore, we explore how innovative treatments targeting the lymphatic system could potentially enhance the management of kidney diseases.
Collapse
Affiliation(s)
- Elodie Stasi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Carla Naretto
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Simone Baldovino
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| |
Collapse
|
11
|
Chang HC, Wang X, Gu X, Jiang S, Wang W, Wu T, Ye M, Qu X, Bao Z. Correlation of serum VEGF-C, ANGPTL4, and activin A levels with frailty. Exp Gerontol 2024; 185:112345. [PMID: 38092160 DOI: 10.1016/j.exger.2023.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Secretory factors linked to lymphogenesis, such as vascular endothelial growth factor C (VEGF-C), angiopoietin like protein 4 (ANGPTL4), and activin A (ACV-A), have been recognized as potential markers of chronic inflammatory status and age-related diseases. Furthermore, these factors may also be linked to frailty. The primary objective of this study was to examine the serum VEGF-C, ANGPTL4, and ACV-A levels in young individuals, healthy older individuals, and older individuals with pre-frailty and frailty, and to determine their association with pro-inflammatory factor levels. METHODS We conducted an observational study, enrolling a total of 210 older individuals and 20 young healthy volunteers. Participants were divided into four groups based on the Freid frailty phenotype: healthy young group, older patients without frailty group, pre-frail older group, and frail older group. Plasma and peripheral blood mononuclear cells (PBMCs) were collected from all four groups. ELISA was used to measure the serum levels of VEGF-C, ANGPTL4, ACV-A, and pro-inflammatory cytokines, while RT-qPCR was used to measure the transcription level of VEGF-C, ANGPTL4 and ACV-A in PBMCs. RESULTS In comparison to healthy young individuals and older participants without frailty, older participants with frailty exhibited lower renal function, higher serum levels and transcription levels of VEGF-C, ANGPTL4, ACV-A, and elevated levels of pro-inflammatory cytokines (CRP, IL-1β, and TNF-α). Multiple linear regression analysis revealed that serum levels of VEGF-C, ANGPTL4, and ACV-A were positively correlated with the frailty index, independent of age, eGFR, and comorbidities. Furthermore, the receiver operating characteristic (ROC) curve analysis demonstrated that serum levels of VEGF-C, ANGPTL4, and ACV-A have great accuracy in predicting frailty. CONCLUSION Elevated serum levels of VEGF-C, ANGPTL4, and ACV-A are associated with frailty status.
Collapse
Affiliation(s)
- Hung-Chen Chang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuchao Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Shuai Jiang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| |
Collapse
|
12
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Wang D, Zhao Y, Zhou Y, Yang S, Xiao X, Feng L. Angiogenesis-An Emerging Role in Organ Fibrosis. Int J Mol Sci 2023; 24:14123. [PMID: 37762426 PMCID: PMC10532049 DOI: 10.3390/ijms241814123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the study of lymphangiogenesis and fibrotic diseases has made considerable achievements, and accumulating evidence indicates that lymphangiogenesis plays a key role in the process of fibrosis in various organs. Although the effects of lymphangiogenesis on fibrosis disease have not been conclusively determined due to different disease models and pathological stages of organ fibrosis, its importance in the development of fibrosis is unquestionable. Therefore, we expounded on the characteristics of lymphangiogenesis in fibrotic diseases from the effects of lymphangiogenesis on fibrosis, the source of lymphatic endothelial cells (LECs), the mechanism of fibrosis-related lymphangiogenesis, and the therapeutic effect of intervening lymphangiogenesis on fibrosis. We found that expansion of LECs or lymphatic networks occurs through original endothelial cell budding or macrophage differentiation into LECs, and the vascular endothelial growth factor C (VEGFC)/vascular endothelial growth factor receptor (VEGFR3) pathway is central in fibrosis-related lymphangiogenesis. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), as a receptor of LECs, is also involved in the regulation of lymphangiogenesis. Intervention with lymphangiogenesis improves fibrosis to some extent. In the complex organ fibrosis microenvironment, a variety of functional cells, inflammatory factors and chemokines synergistically or antagonistically form the complex network involved in fibrosis-related lymphangiogenesis and regulate the progression of fibrosis disease. Further clarifying the formation of a new fibrosis-related lymphangiogenesis network may potentially provide new strategies for the treatment of fibrosis disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Feng
- Division of Liver Surgery, Department of General Surgery and Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; (D.W.); (Y.Z.); (Y.Z.); (S.Y.); (X.X.)
| |
Collapse
|
14
|
Creed HA, Kannan S, Tate BL, Banerjee P, Mitchell BM, Chakraborty S, Rutkowski JM. Single-cell RNA sequencing identifies response of renal lymphatic endothelial cells to acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544380. [PMID: 37333313 PMCID: PMC10274866 DOI: 10.1101/2023.06.09.544380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The inflammatory response to acute kidney injury (AKI) likely dictates future renal health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Due to the relative sparsity of lymphatic endothelial cells (LECs) in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. Here we characterized murine renal LEC subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI. We validated our findings by qPCR in LECs isolated from both cisplatin-injured and ischemia reperfusion injury, by immunofluorescence, and confirmation in in vitro human LECs. We have identified renal LECs and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin injured conditions. Following AKI, renal LECs alter genes involved endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models are also identified with renal LECs further demonstrating changed gene expression between cisplatin and ischemia reperfusion injury models, indicating the renal LEC response is both specific to where they lie in the lymphatic vasculature and the renal injury type. How LECs respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
|
15
|
Baker ML, Cantley LG. The Lymphatic System in Kidney Disease. KIDNEY360 2023; 4:e841-e850. [PMID: 37019177 PMCID: PMC10371377 DOI: 10.34067/kid.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
The high-capacity vessels of the lymphatic system drain extravasated fluid and macromolecules from nearly every part of the body. However, far from merely a passive conduit for fluid removal, the lymphatic system also plays a critical and active role in immune surveillance and immune response modulation through the presentation of fluid, macromolecules, and trafficking immune cells to surveillance cells in regional draining lymph nodes before their return to the systemic circulation. The potential effect of this system in numerous disease states both within and outside of the kidney is increasingly being explored for their therapeutic potential. In the kidneys, the lymphatics play a critical role in both fluid and macromolecule removal to maintain oncotic and hydrostatic pressure gradients for normal kidney function, as well as in shaping kidney immunity, and potentially in balancing physiological pathways that promote healthy organ maintenance and responses to injury. In many states of kidney disease, including AKI, the demand on the preexisting lymphatic network increases for clearance of injury-related tissue edema and inflammatory infiltrates. Lymphangiogenesis, stimulated by macrophages, injured resident cells, and other drivers in kidney tissue, is highly prevalent in settings of AKI, CKD, and transplantation. Accumulating evidence points toward lymphangiogenesis being possibly harmful in AKI and kidney allograft rejection, which would potentially position lymphatics as another target for novel therapies to improve outcomes. However, the extent to which lymphangiogenesis is protective rather than maladaptive in the kidney in various settings remains poorly understood and thus an area of active research.
Collapse
Affiliation(s)
- Megan L Baker
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
16
|
Sato Y, Tamura M, Yanagita M. Tertiary lymphoid tissues: a regional hub for kidney inflammation. Nephrol Dial Transplant 2023; 38:26-33. [PMID: 34245300 DOI: 10.1093/ndt/gfab212] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/26/2023] Open
Abstract
Tertiary lymphoid tissues (TLTs) are inducible ectopic lymphoid tissues that develop at sites of chronic inflammation in nonlymphoid organs. As with lymph nodes, TLTs initiate adaptive immune responses and coordinate local tissue immunity. Although virtually ignored for decades, TLTs have recently received a great deal of attention for their ability to influence disease severity, prognosis and response to therapy in various diseases, including cancer, autoimmune disorders and infections. TLTs are also induced in kidneys of patients with chronic kidney diseases such as immunoglobulin A nephropathy and lupus nephritis. Nevertheless, TLTs in the kidney have not been extensively investigated and their mechanism of development, functions and clinical relevance remain unknown, mainly because of the absence of adequate murine kidney TLT models and limited availability of human kidney samples containing TLTs. We recently found that aged kidneys, but not young kidneys, exhibit multiple TLTs after injury. Interestingly, although they are a minor component of TLTs, resident fibroblasts in the kidneys diversify into several distinct phenotypes that play crucial roles in TLT formation. Furthermore, the potential of TLTs as a novel kidney injury/inflammation marker as well as a novel therapeutic target for kidney diseases is also suggested. In this review article we describe the current understanding of TLTs with a focus on age-dependent TLTs in the kidney and discuss their potential as a novel therapeutic target and kidney inflammation marker.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Liu X, Cui K, Wu H, Li KS, Peng Q, Wang D, Cowan DB, Dixon JB, Srinivasan RS, Bielenberg DR, Chen K, Wang DZ, Chen Y, Chen H. Promoting Lymphangiogenesis and Lymphatic Growth and Remodeling to Treat Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol 2023; 43:e1-e10. [PMID: 36453280 PMCID: PMC9780193 DOI: 10.1161/atvbaha.122.318406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Kathryn S. Li
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Donghai Wang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Douglas B. Cowan
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - J. Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Diane R. Bielenberg
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Da-Zhi Wang
- USF Heart Institute, Center for Regenerative Medicine, College of Medicine Internal Medicine, University of South Florida, Tampa, FL
| | - Yabing Chen
- Department of Pathology, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Rodas L, Barnadas E, Pereira A, Castrejon N, Saurina A, Calls J, Calzada Y, Madrid Á, Blasco M, Poch E, García-Herrera A, Quintana LF. The Density of Renal Lymphatics Correlates With Clinical Outcomes in IgA Nephropathy. Kidney Int Rep 2022; 7:823-830. [PMID: 35497787 PMCID: PMC9039908 DOI: 10.1016/j.ekir.2021.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/06/2022] Open
Abstract
Introduction IgA nephropathy (IgAN) is the most common primary glomerulonephritis (GN) worldwide. The disease course fluctuates, and the most important challenge is the considerable variation in the time lag between diagnosis and the development of a hard clinical end point, such as end-stage kidney disease (ESKD). The reaction of renal tissue to damage resembles the common wound-healing response. One part of this repair in IgAN is the expansion of lymphatic vessels known as lymphangiogenesis. The aim of this work was to establish the prognostic value of the density of lymphatic vessels in the renal biopsy at the time of diagnosis, for predicting the risk of ESKD in a Spanish cohort of patients with IgAN. Methods We performed a retrospective multicenter study of 76 patients with IgAN. The end point of the study was progression to ESKD. The morphometric analysis of lymphatic vessels was performed on tissue sections stained with antipodoplanin antibody. Results Density of lymphatic vessels was significantly higher in patients with IgAN with mesangial hypercellularity >50%, segmental sclerosis, higher degrees of interstitial fibrosis, and tubular atrophy. Patients with more lymphatic vessels had significantly higher values of proteinuria and lower estimated glomerular filtration rate (eGFR). A density of lymphatic vessels ≥8 per mm2 was associated with a significantly higher rate of progression to ESKD at 3 years from biopsy. After adjustment for the International IgAN prediction score, at the multivariate logistic regression, high density of lymphatic vessels (≥8 per mm2) remained significantly associated with a higher rate of early progression to ESKD. Conclusion This study contributes to the understanding of the natural history of the progression to ESKD in patients with IgAN revealing the density of lymphatics vessels may optimize the prognostic value of the International IgA predicting tool to calculate the risk of ESKD, favoring the evaluation of new targeted therapies.
Collapse
Affiliation(s)
- Lida Rodas
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Esther Barnadas
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Arturo Pereira
- Department of Hematology, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Natalia Castrejon
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Anna Saurina
- Department of Nephrology, Hospital Terrasa, Cataluña, Spain
| | - Jordi Calls
- Department of Nephrology, Hospital de Mollet, Cataluña, Spain
| | - Yolanda Calzada
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Álvaro Madrid
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Miquel Blasco
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Esteban Poch
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Adriana García-Herrera
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Luis F. Quintana
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Catalán Group for the Study of Glomerular Diseases (GLOMCAT)
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
- Department of Hematology, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Nephrology, Hospital Terrasa, Cataluña, Spain
- Department of Nephrology, Hospital de Mollet, Cataluña, Spain
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Black LM, Farrell ER, Barwinska D, Osis G, Zmijewska AA, Traylor AM, Esman SK, Bolisetty S, Whipple G, Kamocka MM, Winfree S, Spangler DR, Khan S, Zarjou A, El-Achkar TM, Agarwal A. VEGFR3 tyrosine kinase inhibition aggravates cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2021; 321:F675-F688. [PMID: 34658261 PMCID: PMC8714977 DOI: 10.1152/ajprenal.00186.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Laurence M Black
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elisa R Farrell
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Gunars Osis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna A Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephanie K Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Grace Whipple
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata M Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Daryll R Spangler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
20
|
Liu H, Hiremath C, Patterson Q, Vora S, Shang Z, Jamieson AR, Fiolka R, Dean KM, Dellinger MT, Marciano DK. Heterozygous Mutation of Vegfr3 Reduces Renal Lymphatics without Renal Dysfunction. J Am Soc Nephrol 2021; 32:3099-3113. [PMID: 34551997 PMCID: PMC8638391 DOI: 10.1681/asn.2021010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/29/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Lymphatic abnormalities are observed in several types of kidney disease, but the relationship between the renal lymphatic system and renal function is unclear. The discovery of lymphatic-specific proteins, advances in microscopy, and available genetic mouse models provide the tools to help elucidate the role of renal lymphatics in physiology and disease. METHODS We utilized a mouse model containing a missense mutation in Vegfr3 (dubbed Chy ) that abrogates its kinase ability. Vegfr3 Chy/+ mice were examined for developmental abnormalities and kidney-specific outcomes. Control and Vegfr3 Chy/+ mice were subjected to cisplatin-mediated injury. We characterized renal lymphatics using tissue-clearing, light-sheet microscopy, and computational analyses. RESULTS In the kidney, VEGFR3 is expressed not only in lymphatic vessels but also, in various blood capillaries. Vegfr3 Chy/+ mice had severely reduced renal lymphatics with 100% penetrance, but we found no abnormalities in BP, serum creatinine, BUN, albuminuria, and histology. There was no difference in the degree of renal injury after low-dose cisplatin (5 mg/kg), although Vegfr3 Chy/+ mice developed perivascular inflammation. Cisplatin-treated controls had no difference in total cortical lymphatic volume and length but showed increased lymphatic density due to decreased cortical volume. CONCLUSIONS We demonstrate that VEGFR3 is required for development of renal lymphatics. Our studies reveal that reduced lymphatic density does not impair renal function at baseline and induces only modest histologic changes after mild injury. We introduce a novel quantification method to evaluate renal lymphatics in 3D and demonstrate that accurate measurement of lymphatic density in CKD requires assessment of changes to cortical volume.
Collapse
Affiliation(s)
- Hao Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chitkale Hiremath
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Quinten Patterson
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Saumya Vora
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiguo Shang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew R. Jamieson
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Reto Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael T. Dellinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Denise K. Marciano
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
21
|
Baranwal G, Creed HA, Black LM, Auger A, Quach AM, Vegiraju R, Eckenrode HE, Agarwal A, Rutkowski JM. Expanded renal lymphatics improve recovery following kidney injury. Physiol Rep 2021; 9:e15094. [PMID: 34806312 PMCID: PMC8606868 DOI: 10.14814/phy2.15094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a major cause of patient mortality and a major risk multiplier for the progression to chronic kidney disease (CKD). The mechanism of the AKI to CKD transition is complex but is likely mediated by the extent and length of the inflammatory response following the initial injury. Lymphatic vessels help to maintain tissue homeostasis through fluid, macromolecule, and immune modulation. Increased lymphatic growth, or lymphangiogenesis, often occurs during inflammation and plays a role in acute and chronic disease processes. What roles renal lymphatics and lymphangiogenesis play in AKI recovery and CKD progression remains largely unknown. To determine if the increased lymphatic density is protective in the response to kidney injury, we utilized a transgenic mouse model with inducible, kidney-specific overexpression of the lymphangiogenic protein vascular endothelial growth factor-D to expand renal lymphatics. "KidVD" mouse kidneys were injured using inducible podocyte apoptosis and proteinuria (POD-ATTAC) or bilateral ischemia reperfusion. In the acute injury phase of both models, KidVD mice demonstrated a similar loss of function measured by serum creatinine and glomerular filtration rate compared to their littermates. While the initial inflammatory response was similar, KidVD mice demonstrated a shift toward more CD4+ and fewer CD8+ T cells in the kidney. Reduced collagen deposition and improved functional recovery over time was also identified in KidVD mice. In KidVD-POD-ATTAC mice, an increased number of podocytes were counted at 28 days post-injury. These data demonstrate that increased lymphatic density prior to injury alters the injury recovery response and affords protection from CKD progression.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Heidi A. Creed
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Laurence M. Black
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Alexa Auger
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Alexander M. Quach
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Rahul Vegiraju
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Han E. Eckenrode
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anupam Agarwal
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Veterans AffairsBirmingham Veterans Administration Medical CenterBirminghamAlabamaUSA
| | - Joseph M. Rutkowski
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| |
Collapse
|
22
|
Black LM, Winfree S, Khochare SD, Kamocka MM, Traylor AM, Esman SK, Khan S, Zarjou A, Agarwal A, El-Achkar TM. Quantitative 3-dimensional imaging and tissue cytometry reveals lymphatic expansion in acute kidney injury. J Transl Med 2021; 101:1186-1196. [PMID: 34017058 PMCID: PMC8373805 DOI: 10.1038/s41374-021-00609-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies. While LA research has gained traction in the last decade, there exists a significant lack of understanding of this process in the kidney. Though innovative studies have elucidated markers and models with which to study LA, the field is still evolving with ways to visualize lymphatics in vivo. Prospero-related homeobox-1 (Prox-1) is the master regulator of LA and determines lymphatic cell fate through its action on vascular endothelial growth factor receptor expression. Here, we investigate the consequences of AKI on the abundance and distribution of lymphatic endothelial cells using Prox1-tdTomato reporter mice (ProxTom) coupled with large-scale three-dimensional quantitative imaging and tissue cytometry (3DTC). Using these technologies, we describe the spatial dynamics of lymphatic vasculature in quiescence and post-AKI. We also describe the use of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) as a marker of lymphatic vessels using 3DTC in the absence of the ProxTom reporter mice as an alternative approach. The use of 3DTC for lymphatic research presents a new avenue with which to study the origin and distribution of renal lymphatic vessels. These findings will enhance our understanding of renal lymphatic function during injury and could inform the development of novel therapeutics for intervention in AKI.
Collapse
Affiliation(s)
- Laurence M Black
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seth Winfree
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA
| | - Suraj D Khochare
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA
| | - Malgorzata M Kamocka
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA
| | - Amie M Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie K Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shehnaz Khan
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Veterans Affairs, Birmingham, AL, USA.
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA.
- Indianapolis Veterans Affairs Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney disease: Challenges and opportunities? Microcirculation 2021; 28:e12661. [PMID: 33025626 PMCID: PMC9990864 DOI: 10.1111/micc.12661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Kidneys are highly vascular organs that despite their relatively small size receive 20% of the cardiac output. The highly intricate, delicately organized structure of renal microcirculation is essential to enable renal function and glomerular filtration rate through the local modulation of renal blood flow and intraglomerular pressure. Not surprisingly, the dysregulation of blood flow within the microvessels (abnormal vasoreactivity), fibrosis driven by disordered vascular-renal cross talk, or the loss of renal microvasculature (rarefaction) is associated with kidney disease. In addition, kidney disease can cause microcirculatory dysfunction in distant organs such as the heart and brain, mediated by mechanisms that remain to be elucidated. The objective of this review is to highlight the role of renal microvasculature in kidney disease. The overview will outline the impetus to study renal microvasculature, the bidirectional relationship between kidney disease and microvascular dysfunction, the key pathways driving microvascular diseases such as vasoreactivity, the cell dynamics coordinating fibrosis, and vessel rarefaction. Finally, we will also briefly highlight new therapies targeting the renal microvasculature to improve renal function.
Collapse
Affiliation(s)
- Suraj Krishnan
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
24
|
Riedel JH, Turner JE, Panzer U. T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 2021; 385:281-292. [PMID: 33598825 PMCID: PMC8523400 DOI: 10.1007/s00441-020-03403-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are key drivers of autoimmune diseases, including crescentic GN. Many effector mechanisms employed by T cells to mediate renal damage and repair, such as local cytokine production, depend on their presence at the site of inflammation. Therefore, the mechanisms regulating the renal CD4+ T cell infiltrate are of central importance. From a conceptual point of view, there are four distinct factors that can regulate the abundance of T cells in the kidney: (1) T cell infiltration, (2) T cell proliferation, (3) T cell death and (4) T cell retention/egress. While a substantial amount of data on the recruitment of T cells to the kidneys in crescentic GN have accumulated over the last decade, the roles of T cell proliferation and death in the kidney in crescentic GN is less well characterized. However, the findings from the data available so far do not indicate a major role of these processes. More importantly, the molecular mechanisms underlying both egress and retention of T cells from/in peripheral tissues, such as the kidney, are unknown. Here, we review the current knowledge of mechanisms and functions of T cell migration in renal autoimmune diseases with a special focus on chemokines and their receptors.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
25
|
Creed HA, Rutkowski JM. Emerging roles for lymphatics in acute kidney injury: Beneficial or maleficent? Exp Biol Med (Maywood) 2021; 246:845-850. [PMID: 33467886 DOI: 10.1177/1535370220983235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury, a sudden decline in renal filtration, is a surprisingly common pathology resulting from ischemic events, local or systemic infection, or drug-induced toxicity in the kidney. Unchecked, acute kidney injury can progress to renal failure and even recovered acute kidney injury patients are at an increased risk for developing future chronic kidney disease. The initial extent of inflammation, the specific immune response, and how well inflammation resolves are likely determinants in acute kidney injury-to-chronic kidney disease progression. Lymphatic vessels and their roles in fluid, solute, antigen, and immune cell transport make them likely to have a role in the acute kidney injury response. Lymphatics have proven to be an attractive target in regulating inflammation and immunomodulation in other pathologies: might these strategies be employed in acute kidney injury? Acute kidney injury studies have identified elevated levels of lymphangiogenic ligands following acute kidney injury, with an expansion of the lymphatics in several models post-injury. Manipulating the lymphatics in acute kidney injury, by augmenting or inhibiting their growth or through targeting lymphatic-immune interactions, has met with a range of positive, negative, and sometimes inconclusive results. This minireview briefly summarizes the findings of lymphatic changes and lymphatic roles in the inflammatory response in the kidney following acute kidney injury to discuss whether renal lymphatics are a beneficial, maleficent, or a passive contributor to acute kidney injury recovery.
Collapse
Affiliation(s)
- Heidi A Creed
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
26
|
Shelton EL, Yang HC, Zhong J, Salzman MM, Kon V. Renal lymphatic vessel dynamics. Am J Physiol Renal Physiol 2020; 319:F1027-F1036. [PMID: 33103446 DOI: 10.1152/ajprenal.00322.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Similar to other organs, renal lymphatics remove excess fluid, solutes, and macromolecules from the renal interstitium. Given the kidney's unique role in maintaining body fluid homeostasis, renal lymphatics may be critical in this process. However, little is known regarding the pathways involved in renal lymphatic vessel function, and there are no studies on the effects of drugs targeting impaired interstitial clearance, such as diuretics. Using pressure myography, we showed that renal lymphatic collecting vessels are sensitive to changes in transmural pressure and have an optimal range of effective pumping. In addition, they are responsive to vasoactive factors known to regulate tone in other lymphatic vessels including prostaglandin E2 and nitric oxide, and their spontaneous contractility requires Ca2+ and Cl-. We also demonstrated that Na+-K+-2Cl- cotransporter Nkcc1, but not Nkcc2, is expressed in extrarenal lymphatic vessels. Furosemide, a loop diuretic that inhibits Na+-K+-2Cl- cotransporters, induced a dose-dependent dilation in lymphatic vessels and decreased the magnitude and frequency of spontaneous contractions, thereby reducing the ability of these vessels to propel lymph. Ethacrynic acid, another loop diuretic, had no effect on vessel tone. These data represent a significant step forward in our understanding of the mechanisms underlying renal lymphatic vessel function and highlight potential off-target effects of furosemide that may exacerbate fluid accumulation in edema-forming conditions.
Collapse
Affiliation(s)
- Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Jianyong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Michele M Salzman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
27
|
Van Laecke S, Van Biesen W. Novel non-cystic features of polycystic kidney disease: having new eyes or seeking new landscapes. Clin Kidney J 2020; 14:746-755. [PMID: 33777359 PMCID: PMC7986322 DOI: 10.1093/ckj/sfaa138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 01/08/2023] Open
Abstract
For decades, researchers have been trying to decipher the complex pathophysiology of autosomal dominant polycystic kidney disease (ADPKD). So far these efforts have led to clinical trials with different candidate treatments, with tolvaptan being the only molecule that has gained approval for this indication. As end-stage kidney disease due to ADPKD has a substantial impact on health expenditures worldwide, it is likely that new drugs targeting kidney function will be developed. On the other hand, recent clinical observations and experimental data, including PKD knockout models in various cell types, have revealed unexpected involvement of many other organs and cell systems of variable severity. These novel non-cystic features, some of which, such as lymphopenia and an increased risk to develop infections, should be validated or further explored and might open new avenues for better risk stratification and a more tailored approach. New insights into the aberrant pathways involved with abnormal expression of PKD gene products polycystin-1 and -2 could, for instance, lead to a more directed approach towards early-onset endothelial dysfunction and subsequent cardiovascular disease. Furthermore, a better understanding of cellular pathways in PKD that can explain the propensity to develop certain types of cancer can guide post-transplant immunosuppressive and prophylactic strategies. In the following review article we will systematically discuss recently discovered non-cystic features of PKD and not well-established characteristics. Overall, this knowledge could enable us to improve the outcome of PKD patients apart from ongoing efforts to slow down cyst growth and attenuate kidney function decline.
Collapse
Affiliation(s)
- Steven Van Laecke
- Renal Division, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Wim Van Biesen
- Renal Division, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|