1
|
Zhang X, Wu W, Li Y, Peng Z. Exploring the role and therapeutic potential of lipid metabolism in acute kidney injury. Ren Fail 2024; 46:2403652. [PMID: 39319697 PMCID: PMC11425701 DOI: 10.1080/0886022x.2024.2403652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Acute kidney injury (AKI) is a prevalent condition, yet no specific treatment is available. Extensive research has revealed the pivotal role of lipid-related alterations in AKI. Lipid metabolism plays an essential role in the sustenance of the kidneys. In addition to their energy-supplying function, lipids contribute to the formation of renal biomembranes and the establishment of the renal microenvironment. Moreover, lipids or their metabolites actively participate in signal transduction, which governs various vital biological processes, such as proliferation, differentiation, apoptosis, autophagy, and epithelial-mesenchymal transition. While previous studies have focused predominantly on abnormalities in lipid metabolism in chronic kidney disease, this review focuses on lipid metabolism anomalies in AKI. We explore the significance of lipid metabolism products as potential biomarkers for the early diagnosis and classification of AKI. Additionally, this review assesses current preclinical investigations on the modulation of lipid metabolism in the progression of AKI. Finally, on the basis of existing research, this review proposes future directions, highlights challenges, and presents novel targets and innovative ideas for the treatment of and intervention in AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Wen Wu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Wang Y, Li S. Lipid metabolism disorders and albuminuria risk: insights from National Health and Nutrition Examination Survey 2001-2018 and Mendelian randomization analyses. Ren Fail 2024; 46:2420841. [PMID: 39491271 PMCID: PMC11536668 DOI: 10.1080/0886022x.2024.2420841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Previous studies have revealed an underlying connection between abnormal lipid metabolism and albuminuria. We aim to investigate the causal relationship between lipid metabolism disorders and the risk of albuminuria from both a population and genetic perspective. METHODS A cross-sectional study was conducted by using data from the National Health and Nutrition Examination Survey (NHANES) 2001-2018. Multivariable-adjusted logistic regression, subgroup analysis, interaction tests and restricted cubic spline (RCS) were employed statistically. Mendelian randomization (MR) analysis was performed to validate the causal relationship between exposure and outcome to mitigate confounding factors and reverse causation interference. RESULTS After adjusting for confounders, HDL levels (1.03-2.07 nmol/L) were associated with a reduced risk of albuminuria. In contrast, elevated cholesterol levels (>6.2 nmol/L) and triglyceride levels (>2.3 nmol/L) were associated with an increased risk of albuminuria. Serum triglyceride concentration emerged as a potential risk factor for albuminuria. In MR analysis, a reduced risk of albuminuria was associated with serum total HDL level (IVW: OR = 0.91, 95% CI = 0.86-0.97, p = 0.002). In contrast, cholesterol esters in medium VLDL (IVW: OR = 1.05, 95% CI = 1.00-1.10, p = 0.032), chylomicrons and extremely large VLDL (IVW: OR = 1.08, 95% CI = 1.03-1.14, p = 0.003), and triglycerides (IVW: OR = 1.14, 95% CI = 1.09-1.19, p < 0.001) were associated with an increased risk of albuminuria. CONCLUSION A causal relationship exists between serum lipid metabolism disorder and albuminuria risk. Further validation of additional blood lipid metabolism biomarkers is imperative for future studies.
Collapse
Affiliation(s)
- Yangyang Wang
- Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Sen Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Zhu J, Xiang X, Shi L, Song Z, Dong Z. Identification of Differentially Expressed Genes in Cold Storage-associated Kidney Transplantation. Transplantation 2024; 108:2057-2071. [PMID: 38632678 PMCID: PMC11424274 DOI: 10.1097/tp.0000000000005016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Although it is acknowledged that ischemia-reperfusion injury is the primary pathology of cold storage-associated kidney transplantation, its underlying mechanism is not well elucidated. METHODS To extend the understanding of molecular events and mine hub genes posttransplantation, we performed bulk RNA sequencing at different time points (24 h, day 7, and day 14) on a murine kidney transplantation model with prolonged cold storage (10 h). RESULTS In the present study, we showed that genes related to the regulation of apoptotic process, DNA damage response, cell cycle/proliferation, and inflammatory response were steadily elevated at 24 h and day 7. The upregulated gene profiling delicately transformed to extracellular matrix organization and fibrosis at day 14. It is prominent that metabolism-associated genes persistently took the first place among downregulated genes. The gene ontology terms of particular note to enrich are fatty acid oxidation and mitochondria energy metabolism. Correspondingly, the key enzymes of the above processes were the products of hub genes as recognized. Moreover, we highlighted the proximal tubular cell-specific increased genes at 24 h by combining the data with public RNA-Seq performed on proximal tubules. We also focused on ferroptosis-related genes and fatty acid oxidation genes to show profound gene dysregulation in kidney transplantation. CONCLUSIONS The comprehensive characterization of transcriptomic analysis may help provide diagnostic biomarkers and therapeutic targets in kidney transplantation.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs Medical Center, Augusta, GA
| | - Xiaohong Xiang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs Medical Center, Augusta, GA
| |
Collapse
|
4
|
Yu P, Gu T, Rao Y, Liang W, Zhang X, Jiang H, Lu J, She J, Guo J, Yang W, Liu Y, Tu Y, Tang L, Zhou X. A novel marine-derived anti-acute kidney injury agent targeting peroxiredoxin 1 and its nanodelivery strategy based on ADME optimization. Acta Pharm Sin B 2024; 14:3232-3250. [PMID: 39027260 PMCID: PMC11252462 DOI: 10.1016/j.apsb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 07/20/2024] Open
Abstract
Insufficient therapeutic strategies for acute kidney injury (AKI) necessitate precision therapy targeting its pathogenesis. This study reveals the new mechanism of the marine-derived anti-AKI agent, piericidin glycoside S14, targeting peroxiredoxin 1 (PRDX1). By binding to Cys83 of PRDX1 and augmenting its peroxidase activity, S14 alleviates kidney injury efficiently in Prdx1-overexpression (Prdx1-OE) mice. Besides, S14 also increases PRDX1 nuclear translocation and directly activates the Nrf2/HO-1/NQO1 pathway to inhibit ROS production. Due to the limited druggability of S14 with low bioavailability (2.6%) and poor renal distribution, a pH-sensitive kidney-targeting dodecanamine-chitosan nanoparticle system is constructed to load S14 for precise treatment of AKI. l-Serine conjugation to chitosan imparts specificity to kidney injury molecule-1 (Kim-1)-overexpressed cells. The developed S14-nanodrug exhibits higher therapeutic efficiency by improving the in vivo behavior of S14 significantly. By encapsulation with micelles, the AUC0‒t , half-life time, and renal distribution of S14 increase 2.5-, 1.8-, and 3.1-fold, respectively. The main factors contributing to the improved druggability of S14 nanodrugs include the lower metabolic elimination rate and UDP-glycosyltransferase (UGT)-mediated biotransformation. In summary, this study identifies a new therapeutic target for the marine-derived anti-AKI agent while enhancing its ADME properties and druggability through nanotechnology, thereby driving advancements in marine drug development for AKI.
Collapse
Affiliation(s)
- Ping Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yueyang Rao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weimin Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xi Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huanguo Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jindi Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jianmin Guo
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Wei Yang
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Li T, Yang K, Tong Y, Guo S, Gao W, Zou X. Targeted Drug Therapy for Senescent Cells Alleviates Unilateral Ureteral Obstruction-Induced Renal Injury in Rats. Pharmaceutics 2024; 16:695. [PMID: 38931822 PMCID: PMC11206309 DOI: 10.3390/pharmaceutics16060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Hydronephrosis resulting from unilateral ureteral obstruction (UUO) is a common cause of renal injury, often progressing to late-stage renal fibrosis or even potential renal failure. Renal injury and repair processes are accompanied by changes in cellular senescence phenotypes. However, the mechanism is poorly understood. The purpose of this study is to clarify the changes in senescence phenotype at different time points in renal disease caused by UUO and to further investigate whether eliminating senescent cells using the anti-senescence drug ABT263 could attenuate UUO-induced renal disease. Specifically, renal tissues were collected from established UUO rat models on days 1, 2, 7, and 14. The extent of renal tissue injury and fibrosis in rats was assessed using histological examination, serum creatinine, and blood urea nitrogen levels. The apoptotic and proliferative capacities of renal tissues and phenotypic changes in cellular senescence were evaluated. After the intervention of the anti-senescence drug ABT263, the cellular senescence as well as tissue damage changes were re-assessed. We found that before the drug intervention, the UUO rats showed significantly declined renal function, accompanied by renal tubular injury, increased inflammatory response, and oxidative stress, alongside aggravated cellular senescence. Meanwhile, after the treatment with ABT263, the rats had a significantly lower number of senescent cells, attenuated renal tubular injury and apoptosis, enhanced proliferation, reduced oxidative stress and inflammation, improved renal function, and markedly inhibited fibrosis. This suggests that the use of the anti-senescence drug ABT263 to eliminate senescent cells can effectively attenuate UUO-induced renal injury. This highlights the critical role of cellular senescence in the transformation of acute injury into chronic fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Wei Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (T.L.); (K.Y.); (Y.T.); (S.G.)
| | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (T.L.); (K.Y.); (Y.T.); (S.G.)
| |
Collapse
|
6
|
Wu H, Wang L, Kang P, Zhou X, Li W, Xia Z. The SP1/SIRT1/ACLY signaling axis mediates fatty acid oxidation in renal ischemia-reperfusion-induced renal fibrosis. Int Immunopharmacol 2024; 132:112002. [PMID: 38608473 DOI: 10.1016/j.intimp.2024.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. METHODS The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RESULTS RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. CONCLUSION Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.
Collapse
Affiliation(s)
- Huailiang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liyan Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peng Kang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
7
|
Li T, Yang K, Gao W, Peng F, Zou X. Cellular senescence in acute kidney injury: Target and opportunity. Biochem Biophys Res Commun 2024; 706:149744. [PMID: 38479244 DOI: 10.1016/j.bbrc.2024.149744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Acute kidney injury (AKI) is a common clinical disease with a high incidence and mortality rate. It typically arises from hemodynamic alterations, sepsis, contrast agents, and toxic drugs, instigating a series of events that culminate in tissue and renal damage. This sequence of processes often leads to acute renal impairment, prompting the initiation of a repair response. Cellular senescence is an irreversible arrest of the cell cycle. Studies have shown that renal cellular senescence is closely associated with AKI through several mechanisms, including the promotion of oxidative stress and inflammatory response, telomere shortening, and the down-regulation of klotho expression. Exploring the role of cellular senescence in AKI provides innovative therapeutic ideas for both the prevention and treatment of AKI. Furthermore, it has been observed that targeted removal of senescent cells in vivo can efficiently postpone senescence, resulting in an enhanced prognosis for diseases associated with senescence. This article explores the effects of common anti-senescence drugs senolytics and senostatic and lifestyle interventions on renal diseases, and mentions the rapid development of mesenchymal stem cells (MSCs). These studies have taken senescence-related research to a new level. Overall, this article comprehensively summarizes the studies on cellular senescence in AKI, aiming is to elucidate the relationship between cellular senescence and AKI, and explore treatment strategies to improve the prognosis of AKI.
Collapse
Affiliation(s)
- Ting Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China.
| | - Kexin Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
8
|
Kuhn C, Mohebbi N, Ritter A. Metabolic acidosis in chronic kidney disease: mere consequence or also culprit? Pflugers Arch 2024; 476:579-592. [PMID: 38279993 PMCID: PMC11006741 DOI: 10.1007/s00424-024-02912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Metabolic acidosis is a frequent complication in non-transplant chronic kidney disease (CKD) and after kidney transplantation. It occurs when net endogenous acid production exceeds net acid excretion. While nephron loss with reduced ammoniagenesis is the main cause of acid retention in non-transplant CKD patients, additional pathophysiological mechanisms are likely inflicted in kidney transplant recipients. Functional tubular damage by calcineurin inhibitors seems to play a key role causing renal tubular acidosis. Notably, experimental and clinical studies over the past decades have provided evidence that metabolic acidosis may not only be a consequence of CKD but also a driver of disease. In metabolic acidosis, activation of hormonal systems and the complement system resulting in fibrosis have been described. Further studies of changes in renal metabolism will likely contribute to a deeper understanding of the pathophysiology of metabolic acidosis in CKD. While alkali supplementation in case of reduced serum bicarbonate < 22 mmol/l has been endorsed by CKD guidelines for many years to slow renal functional decline, among other considerations, beneficial effects and thresholds for treatment have lately been under intense debate. This review article discusses this topic in light of the most recent results of trials assessing the efficacy of dietary and pharmacological interventions in CKD and kidney transplant patients.
Collapse
Affiliation(s)
- Christian Kuhn
- Clinic for Nephrology and Transplantation Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | | - Alexander Ritter
- Clinic for Nephrology and Transplantation Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.
- Clinic for Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Nagami GT, Kraut JA. The Role of the Endocrine System in the Regulation of Acid-Base Balance by the Kidney and the Progression of Chronic Kidney Disease. Int J Mol Sci 2024; 25:2420. [PMID: 38397097 PMCID: PMC10889389 DOI: 10.3390/ijms25042420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic acid-base status is primarily determined by the interplay of net acid production (NEAP) arising from metabolism of ingested food stuffs, buffering of NEAP in tissues, generation of bicarbonate by the kidney, and capture of any bicarbonate filtered by the kidney. In chronic kidney disease (CKD), acid retention may occur when dietary acid production is not balanced by bicarbonate generation by the diseased kidney. Hormones including aldosterone, angiotensin II, endothelin, PTH, glucocorticoids, insulin, thyroid hormone, and growth hormone can affect acid-base balance in different ways. The levels of some hormones such as aldosterone, angiotensin II and endothelin are increased with acid accumulation and contribute to an adaptive increase in renal acid excretion and bicarbonate generation. However, the persistent elevated levels of these hormones can damage the kidney and accelerate progression of CKD. Measures to slow the progression of CKD have included administration of medications which inhibit the production or action of deleterious hormones. However, since metabolic acidosis accompanying CKD stimulates the secretion of several of these hormones, treatment of CKD should also include administration of base to correct the metabolic acidosis.
Collapse
Affiliation(s)
- Glenn T. Nagami
- Nephrology Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA;
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jeffrey A. Kraut
- Nephrology Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA;
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Tang W, Wei Q. The metabolic pathway regulation in kidney injury and repair. Front Physiol 2024; 14:1344271. [PMID: 38283280 PMCID: PMC10811252 DOI: 10.3389/fphys.2023.1344271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Kidney injury and repair are accompanied by significant disruptions in metabolic pathways, leading to renal cell dysfunction and further contributing to the progression of renal pathology. This review outlines the complex involvement of various energy production pathways in glucose, lipid, amino acid, and ketone body metabolism within the kidney. We provide a comprehensive summary of the aberrant regulation of these metabolic pathways in kidney injury and repair. After acute kidney injury (AKI), there is notable mitochondrial damage and oxygen/nutrient deprivation, leading to reduced activity in glycolysis and mitochondrial bioenergetics. Additionally, disruptions occur in the pentose phosphate pathway (PPP), amino acid metabolism, and the supply of ketone bodies. The subsequent kidney repair phase is characterized by a metabolic shift toward glycolysis, along with decreased fatty acid β-oxidation and continued disturbances in amino acid metabolism. Furthermore, the impact of metabolism dysfunction on renal cell injury, regeneration, and the development of renal fibrosis is analyzed. Finally, we discuss the potential therapeutic strategies by targeting renal metabolic regulation to ameliorate kidney injury and fibrosis and promote kidney repair.
Collapse
Affiliation(s)
- Wenbin Tang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
11
|
Pei Z, Li Y, Yao W, Sun F, Pan X. NAD + Protects against Hyperlipidemia-induced Kidney Injury in Apolipoprotein E-deficient Mice. Curr Pharm Biotechnol 2024; 25:488-498. [PMID: 37592796 DOI: 10.2174/1389201024666230817161454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Background: Hyperlipidemia is an independent risk factor for kidney injury. Several studies have shown that nicotinamide adenine dinucleotide (NAD+) is an important coenzyme involved in normal body metabolism. Therefore, this study aimed to investigate the possible protective effects of NAD+ against hyperlipidemia-induced kidney injury in apolipoprotein Edeficient (ApoE-/-) mice. Methods: Twenty-five eight-week-old male ApoE-/- mice were randomly assigned into four groups: normal diet (ND), ND supplemented with NAD+ (ND+NAD+), high-fat diet (HFD), and HFD supplemented with NAD+ (HFD+NAD+). The mice were subjected to their respective diets for a duration of 16 weeks. Blood samples were obtained from the inferior vena cava, collected in serum tubes, and stored at -80°C until use. Kidney tissues was fixed in 10% formalin and then embedded in paraffin for histological evaluation. The remainder of the kidney tissues was snapfrozen in liquid nitrogen for Western blot analysis. Results: Metabolic parameters (total cholesterol, triglycerides, low-density lipoprotein-cholesterol, creatinine, and blood urea nitrogen) were significantly higher in the HFD group compared to the other groups. Histological analysis revealed prominent pathological manifestations in the kidneys of the HFD group. The HFD+NAD+ group showed increased levels of oxidative stress markers (NRF2 and SOD2) and decreased levels of NOX4 compared to the HFD group. Furthermore, the HFD group exhibited higher levels of TGF-β, Smad3, Collagen I, Collagen III, Bax, and Bak compared to the other groups. NAD+ supplementation in the HFD+NAD+ group significantly increased the levels of SIRT3, HO-1, Bcl-2, and Bcl-xL compared to the HFD group. Additionally, NF-κB protein expression was higher in the HFD group than in the HFD+NAD+ group. Conclusion: These findings demonstrated that NAD+ may hold potential as a clinical treatment for kidney injury caused by hyperlipidemia. .
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116033, China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Yu Li
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116023, China
| | - Wei Yao
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116023, China
| | - Feiyi Sun
- Health Medical Department, Central Hospital of Dalian University of Technology, Dalian, 116033, China
| | - Xiaofang Pan
- Health Medical Department, Central Hospital of Dalian University of Technology, Dalian, 116033, China
| |
Collapse
|
12
|
Nag S, De Bruyker I, Nelson A, Moody M, Fais M, Deymier AC. Acidosis induces significant changes to the murine supraspinatus enthesis organic matrix. Connect Tissue Res 2024; 65:41-52. [PMID: 37962089 DOI: 10.1080/03008207.2023.2275044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023]
Abstract
Rotator cuff pathology is a common musculoskeletal condition that disproportionately affects older adults, as well as patients with diabetes mellitus and chronic kidney disease. It is known that increased age and kidney dysfunction have been correlated to acidotic states, which may be related to the increased incidence of rotator cuff injury. In order to investigate the potential relationship between acidosis and rotator cuff composition and mechanics, this study utilizes a 14-day murine model of metabolic acidosis and examines the effects on the supraspinatus tendon-humeral head attachment complex. The elastic matrix in the enthesis exhibited significant changes beginning at day 3 of acidosis exposure. At day 3 and day 7 timepoints, there was a decrease in collagen content seen in both mineralized and unmineralized tissue as well as a decrease in mineral:matrix ratio. There is also evidence of both mineral dissolution and reprecipitation as buffering ions continually promote pH homeostasis. Mechanical properties of the tendon-to-bone attachment were studied; however, no significant changes were elicited in this 14-day model of acidosis. These findings suggest that acidosis can result in significant changes in enthesis composition over the course of 14 days; however, enthesis mechanics may be more structurally mediated rather than affected by compositional changes.
Collapse
Affiliation(s)
- Saparja Nag
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | | | - Ashley Nelson
- Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mikayla Moody
- Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | - Marla Fais
- Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Alix C Deymier
- Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
13
|
Guo X, Jiao L, Yi Y, Zhang HL, Liu YX, Wang ZY, Sun SC. NAMPT regulates mitochondria function and lipid metabolism during porcine oocyte maturation. J Cell Physiol 2024; 239:180-192. [PMID: 37992208 DOI: 10.1002/jcp.31156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023]
Abstract
Oocyte maturation defect can lead to maternal reproduction disorder. NAMPT is a rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, which can regulate a variety of cellular metabolic processes including glucose metabolism and DNA damage repair. However, the function of NAMPT in porcine oocytes remains unknown. In this study, we showed that NAMPT involved into multiple cellular events during oocyte maturation. NAMPT expressed during all stages of porcine oocyte meiosis, and inhibition of NAMPT activity caused the cumulus expansion and polar body extrusion defects. Mitochondrial dysfunction was observed in NAMPT-deficient porcine oocytes, which showed decreased membrane potential, ATP and mitochondrial DNA content, increased oxidative stress level and apoptosis. We also found that NAMPT was essential for spindle organization and chromosome arrangement based on Ac-tubulin. Moreover, lack of NAMPT activity caused the increase of lipid droplet and affected the imbalance of lipogenesis and lipolysis. In conclusion, our study indicated that lack of NAMPT activity affected porcine oocyte maturation through its effects on mitochondria function, spindle assembly and lipid metabolism.
Collapse
Affiliation(s)
- Xin Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Jiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Yi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ya-Xi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Chao Y, Li N, Xiong S, Zhang G, Gao S, Dong X. Lipidomics based on liquid chromatography-high resolution mass spectrometry reveals the protective role of peroxisome proliferator-activated receptor alpha on kidney stone formation in mice treated with glyoxylate. J Sep Sci 2023; 46:e2300452. [PMID: 37880903 DOI: 10.1002/jssc.202300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
Few studies have examined the relationship between lipid metabolism and kidney stone formation, particularly the role of key lipid regulatory factors in kidney stone formation. We evaluated the effect of the lipid regulatory factor-peroxisome proliferator-activated receptor alpha on the formation of renal stones in mice by injecting them with glyoxylate followed by treatment with either a peroxisome proliferator-activated receptor alpha agonist fenofibrate or an antagonist GW6471 (GW). Liquid chromatography coupled with trapped ion mobility spectrometry-quadrupole-time-of-flight mass spectrometry-based lipidomics was used to determine the lipid profile in the mouse kidneys. Histological and biochemical analyses showed that the mice injected with glyoxylate exhibited crystal precipitation and renal dysfunction. Crystallization decreased significantly in the fenofibrate group, whereas it increased significantly in the GW group. A total of 184 lipids, including fatty acyls, glycerolipids, glycerophospholipids, and sphingolipids differed significantly between the mice in the model and control groups. Peroxisome proliferator-activated receptor alpha activity negatively correlated with glyoxylate-induced kidney stone formation in mice, which may be related to improved fatty acid oxidation, maintenance of ceramide/complex sphingolipids cycle balance, and alleviation of disorder in phospholipid metabolism.
Collapse
Affiliation(s)
- Yufan Chao
- School of Medicine, Shanghai University, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Shili Xiong
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Research Center, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
He S, Chen C, Li F, Xu W, Li D, Liang M, Yang X. A Polymeric Nanosponge as a Broad-Spectrum Reactive Oxygen Species Scavenger for Acute Kidney Injury Treatment. NANO LETTERS 2023; 23:8978-8987. [PMID: 37726233 DOI: 10.1021/acs.nanolett.3c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Acute kidney injury (AKI) is closely associated with the overproduction of reactive oxygen species (ROS), which can cause multiple organ dysfunctions without timely treatment. However, only supportive treatments are currently available for AKI in clinics. Here, we developed nanomaterials of hyperbranched polyphosphoester (PPE) containing abundant thioether (S-PPE NP) and thioketal bonds (TK-PPE NP). Our data demonstrates that S-PPE NP exhibits an excellent capability of absorbing and scavenging multiple types of ROS, including H2O2, •OH, and •O2-, via thioether oxidation to sulfone or sulfoxide; it was also determined that S-PPE NP efficiently eliminates intracellular ROS, thus preventing cellular damage. Moreover, S-PPE NP was able to efficiently accumulate in the injured kidneys of AKI-bearing mice. As a result, the administration of S-PPE NP provided a superior therapeutic effect in AKI-bearing mice by downregulating ROS- and inflammation-related signaling pathways, thus reducing cell apoptosis. This thioether-containing polymer represents a promising broad-spectrum ROS scavenger that can be used for effective AKI treatments.
Collapse
Affiliation(s)
- Shan He
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Chaoran Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Fangzheng Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Wenxuan Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Dongdong Li
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Xianzhu Yang
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
16
|
Cao X, Liang Y, Feng H, Chen L, Liu S. Construction and evaluation of a risk prediction model for pulmonary infection-associated acute kidney injury in intensive care units. Clin Transl Sci 2023; 16:1923-1934. [PMID: 37488744 PMCID: PMC10582653 DOI: 10.1111/cts.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Acute kidney injury (AKI) is one of the common complications of pulmonary infections. However, nomograms predicting the risk of early-onset AKI in patients with pulmonary infections have not been comprehensively researched. In this study, 3278 patients with pulmonary infection were extracted from the Medical Information Mart for Intensive Care III (MIMIC-III) database. These patients were randomly divided into training and validation cohorts, with the training cohort used for model building and the validation cohort used for validation. Independent risk factors for patients with pulmonary infection were determined using the least absolute shrinkage and selection operator (LASSO) method and forward stepwise logistic regression, which revealed that 11 independent risk factors for AKI in patients with pulmonary infections were congestive heart failure (CHF), hypertension, diabetes, transcutaneous oxygen saturation (SpO2), 24-h urine output, white blood cells (WBC), serum creatinine (Scr), prothrombin time (PT), potential of hydrogen (PH), vasopressor use, and mechanical ventilation (MV) use. The nomogram was then constructed and validated. The area under the receiver operating characteristic curve (AUC) values of the nomogram were 0.770 (95% CI = 0.789-0.807) in the training cohort and 0.724 (95% CI = 0.754-0.784) in the validation cohort. High AUC values indicated the good discriminative ability of the nomogram, while the calibration curves and Hosmer-Lemeshow test results indicated that the nomogram was well-calibrated. Improvements in net reclassification index (NRI) and integrated discrimination improvement (IDI) values indicate that our nomogram was superior to the Simplified Acute Physiology Score (SAPS) II scoring system, and the decision-curve analysis (DCA) curves indicate that the nomogram has good clinical application. We established a risk-prediction model for AKI in patients with pulmonary infection, which has good discriminative power and is superior to the SAPS II scoring system. This model can provide clinical reference information for patients with this type of disease in the intensive care unit.
Collapse
Affiliation(s)
- Xinyi Cao
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong ProvinceChina
- Department of Pulmonary and Critical Care Medicine, Central People's Hospital of ZhanjiangZhanjiangGuangdong ProvinceChina
| | - Yongzhi Liang
- Department of Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong ProvinceChina
| | - Honglin Feng
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong ProvinceChina
| | - Li Chen
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong ProvinceChina
| | - Shengming Liu
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
17
|
Shan K, Li J, Yang Q, Chen K, Zhou S, Jia L, Fu G, Qi Y, Wang Q, Chen YQ. Dietary docosahexaenoic acid plays an opposed role in ferroptotic and non-ferroptotic acute kidney injury. J Nutr Biochem 2023; 120:109418. [PMID: 37490984 DOI: 10.1016/j.jnutbio.2023.109418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Ferroptosis due to polyunsaturated fatty acid (PUFA) peroxidation has been implicated in the pathogenesis of acute kidney injury (AKI), suggesting the risk of dietary intake of PUFA for people susceptible to AKI. Clinically, however, in addition to ferroptosis, other mechanisms also contribute to different types of AKI such as inflammation associated necroptosis and pyroptosis. Therefore, the role of PUFA, especially ω3 PUFA which is a common food supplement, in various AKIs deserves further evaluation. In this study, rhabdomyolysis- and folic acid-induced AKI (Rha-AKI and FA-AKI) were established in mice fed with different fatty acids Histology of kidney, blood urea nitrogen and creatinine, lipid peroxidation, and inflammatory factors were examined. Results showed that these two types of AKIs had diametrically different pathogenesis indicated by that ferrostatin-1 (Fer-1), a lipid antioxidant, can attenuate FA-AKI rather than Rha-AKI. Further, dietary DHA (provided by fish oil) reduced tubular injury and renal lesion by inhibiting peroxidation and inflammation in mice with Rha-AKI while increasing cell death, tissue damage, peroxidation and inflammation in mice with FA-AKI. In human renal tubular epithelial cell line HK-2, MTT assay and DHE staining showed that both myoglobin and ferroptosis inducers can cause cell death and oxidative stress. Ferroptosis inducer-induced cell death was promoted by DHA, while such result was not observed in myoglobin-induced cell death when adding DHA. This study illustrates that the mechanisms of AKI might be either ferroptosis dependent or -independent and the deterioration effect of dietary DHA depends on whether ferroptosis is involved.
Collapse
Affiliation(s)
- Kai Shan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Kang Chen
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Shanshan Zhou
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingling Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang Province, China
| | - Guoling Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qizai Wang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
18
|
Xu J, Li J, Li Y, Shi X, Zhu H, Chen L. Multidimensional Landscape of SA-AKI Revealed by Integrated Proteomics and Metabolomics Analysis. Biomolecules 2023; 13:1329. [PMID: 37759729 PMCID: PMC10526551 DOI: 10.3390/biom13091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a severe and life-threatening condition with high morbidity and mortality among emergency patients, and it poses a significant risk of chronic renal failure. Clinical treatments for SA-AKI remain reactive and non-specific, lacking effective diagnostic biomarkers or treatment targets. In this study, we established an SA-AKI mouse model using lipopolysaccharide (LPS) and performed proteomics and metabolomics analyses. A variety of bioinformatic analyses, including gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), protein and protein interactions (PPI), and MetaboAnalyst analysis, were conducted to investigate the key molecules of SA-AKI. Integrated proteomics and metabolomics analysis revealed that sepsis led to impaired renal mitochondrial function and metabolic disorders. Immune-related pathways were found to be activated in kidneys upon septic infection. The catabolic products of polyamines accumulated in septic kidneys. Overall, our integrated analysis provides a multidimensional understanding of SA-AKI and identifies potential pathways for this condition.
Collapse
Affiliation(s)
- Jiatong Xu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (J.X.); (Y.L.)
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jiaying Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (J.L.); (X.S.)
| | - Yan Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (J.X.); (Y.L.)
| | - Xiaoxiao Shi
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (J.L.); (X.S.)
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (J.X.); (Y.L.)
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (J.L.); (X.S.)
| |
Collapse
|
19
|
Verissimo T, Dalga D, Arnoux G, Sakhi I, Faivre A, Auwerx H, Bourgeois S, Paolucci D, Gex Q, Rutkowski JM, Legouis D, Wagner CA, Hall AM, de Seigneux S. PCK1 is a key regulator of metabolic and mitochondrial functions in renal tubular cells. Am J Physiol Renal Physiol 2023; 324:F532-F543. [PMID: 37102687 PMCID: PMC10202477 DOI: 10.1152/ajprenal.00038.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C) is a cytosolic enzyme converting oxaloacetate to phosphoenolpyruvate, with a potential role in gluconeogenesis, ammoniagenesis, and cataplerosis in the liver. Kidney proximal tubule cells display high expression of this enzyme, whose importance is currently not well defined. We generated PCK1 kidney-specific knockout and knockin mice under the tubular cell-specific PAX8 promoter. We studied the effect of PCK1 deletion and overexpression at the renal level on tubular physiology under normal conditions and during metabolic acidosis and proteinuric renal disease. PCK1 deletion led to hyperchloremic metabolic acidosis characterized by reduced but not abolished ammoniagenesis. PCK1 deletion also resulted in glycosuria, lactaturia, and altered systemic glucose and lactate metabolism at baseline and during metabolic acidosis. Metabolic acidosis resulted in kidney injury in PCK1-deficient animals with decreased creatinine clearance and albuminuria. PCK1 further regulated energy production by the proximal tubule, and PCK1 deletion decreased ATP generation. In proteinuric chronic kidney disease, mitigation of PCK1 downregulation led to better renal function preservation. PCK1 is essential for kidney tubular cell acid-base control, mitochondrial function, and glucose/lactate homeostasis. Loss of PCK1 increases tubular injury during acidosis. Mitigating kidney tubular PCK1 downregulation during proteinuric renal disease improves renal function.NEW & NOTEWORTHY Phosphoenolpyruvate carboxykinase 1 (PCK1) is highly expressed in the proximal tubule. We show here that this enzyme is crucial for the maintenance of normal tubular physiology, lactate, and glucose homeostasis. PCK1 is a regulator of acid-base balance and ammoniagenesis. Preventing PCK1 downregulation during renal injury improves renal function, rendering it an important target during renal disease.
Collapse
Affiliation(s)
- Thomas Verissimo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Delal Dalga
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Grégoire Arnoux
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Imene Sakhi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Anna Faivre
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Hannah Auwerx
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Deborah Paolucci
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | - David Legouis
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
20
|
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 2023; 19:384-400. [PMID: 37016093 DOI: 10.1038/s41581-023-00699-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK.
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Sergio C Lopez-Garcia
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Kleta
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Stephen Walsh
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
21
|
Liu L, Liu T, Jia R, Zhang L, Lv Z, He Z, Qu Y, Sun S, Tai F. Downregulation of fatty acid oxidation led by Hilpda increases G2/M arrest/delay-induced kidney fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166701. [PMID: 36990128 DOI: 10.1016/j.bbadis.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Hypoxia-regulated proximal tubular epithelial cells (PTCs) G2/M phase arrest/delay was involved in production of renal tubulointerstitial fibrosis (TIF). TIF is a common pathological manifestation of progression in patients with chronic kidney disease (CKD), and is often accompanied by lipid accumulation in renal tubules. However, cause-effect relationship between hypoxia-inducible lipid droplet-associated protein (Hilpda), lipid accumulation, G2/M phase arrest/delay and TIF remains unclear. Here we found that overexpression of Hilpda downregulated adipose triglyceride lipase (ATGL) promoted triglyceride overload in the form of lipid accumulation, leading to defective fatty acid β-oxidation (FAO), ATP depletion in a human PTC cell line (HK-2) under hypoxia and in mice kidney tissue treated with unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Hilpda-induced lipid accumulation caused mitochondrial dysfunction, enhanced expression of profibrogenic factors TGF-β1, α-SMA and Collagen I elevation, and reduced expression of G2/M phase-associated gene CDK1, as well as increased CyclinB1/D1 ratio, resulted in G2/M phase arrest/delay and profibrogenic phenotypes. Hilpda deficiency in HK-2 cell and kidney of mice with UUO had sustained expression of ATGL and CDK1 and reduced expression of TGF-β1, Collagen I and CyclinB1/D1 ratio, resulting in the amelioration of lipid accumulation and G2/M arrest/delay and subsequent TIF. Expression of Hilpda correlated with lipid accumulation, was positively associated with tubulointerstitial fibrosis in tissue samples from patients with CKD. Our findings suggest that Hilpda deranges fatty acid metabolism in PTCs, which leads to G2/M phase arrest/delay and upregulation of profibrogenic factors, and consequently promote TIF which possibly underlie pathogenesis of CKD.
Collapse
|
22
|
The mechanisms of alkali therapy in targeting renal diseases. Biochem Soc Trans 2023; 51:223-232. [PMID: 36744634 DOI: 10.1042/bst20220690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is characterized by progressive reduction in kidney function and treatments aiming at stabilizing or slowing its progression may avoid or delay the necessity of kidney replacement therapy and the increased mortality associated with reduced kidney function. Metabolic acidosis, and less severe stages of the acid stress continuum, are common consequences of CKD and some interventional studies support that its correction slows the progression to end-stage kidney disease. This correction can be achieved with mineral alkali in the form of bicarbonate or citrate salts, ingestion of diets with fewer acid-producing food components or more base-producing food components, or a pharmacological approach. In this mini-review article, we summarize the potential mechanisms involved in the beneficial effects of alkali therapy. We also discuss the perspectives in the field and challenges that must be overcome to advance our understanding of such mechanisms.
Collapse
|
23
|
Li S, Wang R, Wang Y, Liu Y, Qiao Y, Li P, Chen J, Pan S, Feng Q, Liu Z, Liu D. Ferroptosis: A new insight for treatment of acute kidney injury. Front Pharmacol 2022; 13:1065867. [PMID: 36467031 PMCID: PMC9714487 DOI: 10.3389/fphar.2022.1065867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 09/16/2023] Open
Abstract
Acute kidney injury (AKI), one of the most prevalent clinical diseases with a high incidence rate worldwide, is characterized by a rapid deterioration of renal function and further triggers the accumulation of metabolic waste and toxins, leading to complications and dysfunction of other organs. Multiple pathogenic factors, such as rhabdomyolysis, infection, nephrotoxic medications, and ischemia-reperfusion injury, contribute to the onset and progression of AKI. However, the detailed mechanism remains unclear. Ferroptosis, a recently identified mechanism of nonapoptotic cell death, is iron-dependent and caused by lipid peroxide accumulation in cells. A variety of studies have demonstrated that ferroptosis plays a significant role in AKI development, in contrast to other forms of cell death, such as apoptosis, necroptosis, and pyroptosis. In this review, we systemically summarized the definition, primary biochemical mechanisms, key regulators and associated pharmacological research progress of ferroptosis in AKI. We further discussed its therapeutic potential for the prevention of AKI, in the hope of providing a useful reference for further basic and clinical studies.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Rui Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yong Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jingfang Chen
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
24
|
Guan X, Liu Y, Xin W, Qin S, Gong S, Xiao T, Zhang D, Li Y, Xiong J, Yang K, He T, Zhao J, Huang Y. Activation of EP4 alleviates AKI-to-CKD transition through inducing CPT2-mediated lipophagy in renal macrophages. Front Pharmacol 2022; 13:1030800. [DOI: 10.3389/fphar.2022.1030800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with complex pathogenesis, characterized by a rapid decline in kidney function in the short term. Worse still, the incomplete recovery from AKI increases the risk of progression to chronic kidney disease (CKD). However, the pathogenesis and underlying mechanism remain largely unknown. Macrophages play an important role during kidney injury and tissue repair, but its role in AKI-to-CKD transition remains elusive. Herein, single nucleus RNA sequencing (snRNA-Seq) and flow cytometry validations showed that E-type prostaglandin receptor 4 (EP4) was selectively activated in renal macrophages, rather than proximal tubules, in ischemia-reperfusion injury (IRI)-induced AKI-to-CKD transition mouse model. EP4 inhibition aggravated AKI-to-CKD transition, while EP4 activation impeded the progression of AKI to CKD though regulating macrophage polarization. Mechanistically, network pharmacological analysis and subsequent experimental verifications revealed that the activated EP4 inhibited macrophage polarization through inducing Carnitine palmitoyltransferase 2 (CPT2)-mediated lipophagy in macrophages. Further, CPT2 inhibition abrogated the protective effect of EP4 on AKI-to-CKD transition. Taken together, our findings demonstrate that EP4-CPT2 signaling-mediated lipophagy in macrophages plays a pivotal role in the transition of AKI to CKD and targeting EP4-CPT2 axis could serve as a promising therapeutic approach for retarding AKI and its progression to CKD.
Collapse
|
25
|
Nguyen HTT, Radwanska M, Magez S. Tipping the balance between erythroid cell differentiation and induction of anemia in response to the inflammatory pathology associated with chronic trypanosome infections. Front Immunol 2022; 13:1051647. [PMID: 36420267 PMCID: PMC9676970 DOI: 10.3389/fimmu.2022.1051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Infection caused by extracellular single-celled trypanosomes triggers a lethal chronic wasting disease in livestock and game animals. Through screening of 10 Trypanosoma evansi field isolates, exhibiting different levels of virulence in mice, the current study identifies an experimental disease model in which infection can last well over 100 days, mimicking the major features of chronic animal trypanosomosis. In this model, despite the well-controlled parasitemia, infection is hallmarked by severe trypanosomosis-associated pathology. An in-depth scRNA-seq analysis of the latter revealed the complexity of the spleen macrophage activation status, highlighting the crucial role of tissue resident macrophages (TRMs) in regulating splenic extramedullary erythropoiesis. These new data show that in the field of experimental trypanosomosis, macrophage activation profiles have so far been oversimplified into a bi-polar paradigm (M1 vs M2). Interestingly, TRMs exert a double-sided effect on erythroid cells. On one hand, these cells express an erythrophagocytosis associated signature. On another hand, TRMs show high levels of Vcam1 expression, known to support their interaction with hematopoietic stem and progenitor cells (HSPCs). During chronic infection, the latter exhibit upregulated expression of Klf1, E2f8, and Gfi1b genes, involved in erythroid differentiation and extramedullary erythropoiesis. This process gives rise to differentiation of stem cells to BFU-e/CFU-e, Pro E, and Baso E subpopulations. However, infection truncates progressing differentiation at the orthochromatic erythrocytes level, as demonstrated by scRNAseq and flow cytometry. As such, these cells are unable to pass to the reticulocyte stage, resulting in reduced number of mature circulating RBCs and the occurrence of chronic anemia. The physiological consequence of these events is the prolonged poor delivery of oxygen to various tissues, triggering lactic acid acidosis and the catabolic breakdown of muscle tissue, reminiscent of the wasting syndrome that is characteristic for the lethal stage of animal trypanosomosis.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
26
|
Kaufman JS. Acute Kidney Injury in CKD : Role of Metabolic Acidosis. Kidney Int Rep 2022; 7:2555-2557. [PMID: 36506223 PMCID: PMC9727512 DOI: 10.1016/j.ekir.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- James S. Kaufman
- Nephrology Division, New York University Grossman School of Medicine and VA New York Harbor Healthcare System, New York, New York, USA,Correspondence: James S. Kaufman, Research Office, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, New York 10010, USA.
| |
Collapse
|
27
|
Doke T, Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol 2022; 32:841-853. [PMID: 35473814 PMCID: PMC9464682 DOI: 10.1016/j.tcb.2022.03.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
Abstract
More than 800 million people suffer from kidney disease. Genetic studies and follow-up animal models and cell biological experiments indicate the key role of proximal tubule metabolism. Kidneys have one of the highest mitochondrial densities. Mitochondrial biogenesis, mitochondrial fusion and fission, and mitochondrial recycling, such as mitophagy are critical for proper mitochondrial function. Mitochondrial dysfunction can lead to an energetic crisis, orchestrate different types of cell death (apoptosis, necroptosis, pyroptosis, and ferroptosis), and influence cellular calcium levels and redox status. Collectively, mitochondrial defects in renal tubules contribute to epithelial atrophy, inflammation, or cell death, orchestrating kidney disease development.
Collapse
Affiliation(s)
- Tomohito Doke
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Sun T, Cao Y, Huang T, Sang Y, Dai Y, Tao Z. Comprehensive analysis of fifteen hub genes to identify a promising diagnostic model, regulated networks, and immune cell infiltration in acute kidney injury. J Clin Lab Anal 2022; 36:e24709. [PMID: 36125921 DOI: 10.1002/jcla.24709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Acute kidney injury is a common clinical problem with no sensitive and specific diagnostic biomarkers and definitive treatments. The underlying molecular mechanisms of acute kidney injury are unclear. Therefore, it is pivotal to explore the underlying mechanisms and screen for novel diagnostic biomarkers, and therapeutic targets. METHODS The present study identified 15 hub genes by WGCNA analysis. LASSO-based logistic regression analysis was used to select key features and construct a diagnostic model of AKI. In addition, GO and KEGG analyses were performed and TF-mRNA and miRNA-mRNA network analysis and immune infiltration analysis of hub genes were performed to reveal the underlying mechanisms of AKI. RESULTS A diagnostic model was constructed by LASSO-based logistic regression analysis and was validated by RT-qPCR based on 15 hub genes. GO and KEGG analyses revealed DEGs were enriched in oxidation-reduction process, cell adhesion, proliferation, migration, and metabolic process. The enriched TFs were BRD2, EP300, ETS1, MYC, SPI1, and ZNF263. The enriched miRNAs were miR-181c-5p, miR-218-5p, miR-485-5p, miR-532-5p and miR-6884-5p. The immune infiltration analysis showed that Macrophages M2 was decreasing significantly revealing a protective factor for further AKI treatment. CONCLUSIONS The present study identified 15 hub genes based on WGCNA. Development and validation of a potentially diagnostic model based on 15 hub genes. In addition, exploring the interaction between transcriptional factors and 15 hub genes, and miRNA-mRNA relationship pairs. Furthermore, immune infiltration analysis was performed by analyzing gene expression profiles of AKI. Our study provides some basis for further experimental studies.
Collapse
Affiliation(s)
- Tao Sun
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Ying Cao
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Tiancha Huang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yiwen Sang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yibei Dai
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Zhihua Tao
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| |
Collapse
|
29
|
Gritter M, Wouda RD, Yeung SM, Wieërs ML, Geurts F, de Ridder MA, Ramakers CR, Vogt L, de Borst MH, Rotmans JI, Hoorn EJ. Effects of Short-Term Potassium Chloride Supplementation in Patients with CKD. J Am Soc Nephrol 2022; 33:1779-1789. [PMID: 35609996 PMCID: PMC9529195 DOI: 10.1681/asn.2022020147] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Observational studies suggest that adequate dietary potassium intake (90-120 mmol/day) may be renoprotective, but the effects of increasing dietary potassium and the risk of hyperkalemia are unknown. METHODS This is a prespecified analysis of the run-in phase of a clinical trial in which 191 patients (age 68±11 years, 74% males, 86% European ancestry, eGFR 31±9 ml/min per 1.73 m2, 83% renin-angiotensin system inhibitors, 38% diabetes) were treated with 40 mmol potassium chloride (KCl) per day for 2 weeks. RESULTS KCl supplementation significantly increased urinary potassium excretion (72±24 to 107±29 mmol/day), plasma potassium (4.3±0.5 to 4.7±0.6 mmol/L), and plasma aldosterone (281 [198-431] to 351 [241-494] ng/L), but had no significant effect on urinary sodium excretion, plasma renin, BP, eGFR, or albuminuria. Furthermore, KCl supplementation increased plasma chloride (104±3 to 105±4 mmol/L) and reduced plasma bicarbonate (24.5±3.4 to 23.7±3.5 mmol/L) and urine pH (all P<0.001), but did not change urinary ammonium excretion. In total, 21 participants (11%) developed hyperkalemia (plasma potassium 5.9±0.4 mmol/L). They were older and had higher baseline plasma potassium. CONCLUSIONS In patients with CKD stage G3b-4, increasing dietary potassium intake to recommended levels with potassium chloride supplementation raises plasma potassium by 0.4 mmol/L. This may result in hyperkalemia in older patients or those with higher baseline plasma potassium. Longer-term studies should address whether cardiorenal protection outweighs the risk of hyperkalemia.Clinical trial number: NCT03253172.
Collapse
Affiliation(s)
- Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rosa D. Wouda
- Division of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Stanley M.H. Yeung
- Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel L.A. Wieërs
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Geurts
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria A.J. de Ridder
- Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Liffert Vogt
- Division of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martin H. de Borst
- Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Imenez Silva PH, Mohebbi N. Kidney metabolism and acid-base control: back to the basics. Pflugers Arch 2022; 474:919-934. [PMID: 35513635 PMCID: PMC9338915 DOI: 10.1007/s00424-022-02696-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
Kidneys are central in the regulation of multiple physiological functions, such as removal of metabolic wastes and toxins, maintenance of electrolyte and fluid balance, and control of pH homeostasis. In addition, kidneys participate in systemic gluconeogenesis and in the production or activation of hormones. Acid-base conditions influence all these functions concomitantly. Healthy kidneys properly coordinate a series of physiological responses in the face of acute and chronic acid-base disorders. However, injured kidneys have a reduced capacity to adapt to such challenges. Chronic kidney disease patients are an example of individuals typically exposed to chronic and progressive metabolic acidosis. Their organisms undergo a series of alterations that brake large detrimental changes in the homeostasis of several parameters, but these alterations may also operate as further drivers of kidney damage. Acid-base disorders lead not only to changes in mechanisms involved in acid-base balance maintenance, but they also affect multiple other mechanisms tightly wired to it. In this review article, we explore the basic renal activities involved in the maintenance of acid-base balance and show how they are interconnected to cell energy metabolism and other important intracellular activities. These intertwined relationships have been investigated for more than a century, but a modern conceptual organization of these events is lacking. We propose that pH homeostasis indissociably interacts with central pathways that drive progression of chronic kidney disease, such as inflammation and metabolism, independent of etiology.
Collapse
Affiliation(s)
- Pedro Henrique Imenez Silva
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| | - Nilufar Mohebbi
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
- Praxis Und Dialysezentrum Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Hall AM, de Seigneux S. Metabolic mechanisms of acute proximal tubular injury. Pflugers Arch 2022; 474:813-827. [PMID: 35567641 PMCID: PMC9338906 DOI: 10.1007/s00424-022-02701-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
Damage to the proximal tubule (PT) is the most frequent cause of acute kidney injury (AKI) in humans. Diagnostic and treatment options for AKI are currently limited, and a deeper understanding of pathogenic mechanisms at a cellular level is required to rectify this situation. Metabolism in the PT is complex and closely coupled to solute transport function. Recent studies have shown that major changes in PT metabolism occur during AKI and have highlighted some potential targets for intervention. However, translating these insights into effective new therapies still represents a substantial challenge. In this article, in addition to providing a brief overview of the current state of the field, we will highlight three emerging areas that we feel are worthy of greater attention. First, we will discuss the role of axial heterogeneity in cellular function along the PT in determining baseline susceptibility to different metabolic hits. Second, we will emphasize that elucidating insult specific pathogenic mechanisms will likely be critical in devising more personalized treatments for AKI. Finally, we will argue that uncovering links between tubular metabolism and whole-body homeostasis will identify new strategies to try to reduce the considerable morbidity and mortality associated with AKI. These concepts will be illustrated by examples of recent studies emanating from the authors' laboratories and performed under the auspices of the Swiss National Competence Center for Kidney Research (NCCR Kidney.ch).
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| | - Sophie de Seigneux
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
32
|
Alkali therapy protects renal function, suppresses inflammation, and improves cellular metabolism in kidney disease. Clin Sci (Lond) 2022; 136:557-577. [PMID: 35389462 DOI: 10.1042/cs20220095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Chronic kidney disease (CKD) affects about 10-13 % of the population worldwide and halting its progression is a major clinical challenge. Metabolic acidosis is both a consequence and a possible driver of CKD progression. Alkali therapy counteracts these effects in CKD patients, but underlying mechanisms remain incompletely understood. Here we show that bicarbonate supplementation protected renal function in a murine CKD model induced by an oxalate-rich diet. Alkali therapy had no effect on the aldosterone-endothelin axis but promoted levels of the anti-aging protein klotho; moreover, it suppressed adhesion molecules required for immune cell invasion along with reducing T helper cell and inflammatory monocyte invasion. Comparing transcriptomes from the murine crystallopathy model and from human biopsies of kidney transplant recipients suffering from acidosis with or without alkali therapy unveils parallel transcriptome responses mainly associated with lipid metabolism and oxidoreductase activity. Our data reveal novel pathways associated with acidosis in kidney disease and sensitive to alkali therapy and identifies potential targets through which alkali therapy may act on CKD and that may be amenable for more targeted therapies.
Collapse
|
33
|
What If Not All Metabolites from the Uremic Toxin Generating Pathways Are Toxic? A Hypothesis. Toxins (Basel) 2022; 14:toxins14030221. [PMID: 35324718 PMCID: PMC8953523 DOI: 10.3390/toxins14030221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
The topic of uremic toxicity has received broad attention from the nephrological community over the past few decades. An aspect that is much less often considered is the possibility that the metabolic pathways that generate uremic toxins also may produce molecules that benefit body functions. Here, we discuss this dualism based on the example of tryptophan-derived metabolites, which comprise elements that are mainly toxic, such as indoxyl sulfate, kynurenine and kynurenic acid, but also beneficial compounds, such as indole, melatonin and indole-3-propionic acid, and ambivalent (beneficial for some aspects and harmful for others) compounds such as serotonin. This dualism can also be perceived at the level of the main receptor of the tryptophan-derived metabolites, the aryl hydrocarbon receptor (AHR), which has also been linked to both harm and benefit. We hypothesize that these beneficial effects are the reason why uremic toxin generation remained preserved throughout evolution. This duality is also not unique for the tryptophan-derived metabolites, and in this broader context we discuss the remote sensing and signaling theory (RSST). The RSST proposes that transporters (e.g., organic anion transporter 1—OAT1; ATP-binding cassette transporter G—ABCG2) and drug metabolizing enzymes form a large network of proteins interacting to promote small molecule remote communication at the inter-organ (e.g., gut–liver–heart–brain–kidney) and inter-organismal (e.g., gut microbe–host) levels. These small molecules include gut microbe-derived uremic toxins as well as beneficial molecules such as those discussed here. We emphasize that this positive side of uremic metabolite production needs more attention, and that this dualism especially needs to be considered when assessing and conceiving of therapeutic interventions. These homeostatic considerations are central to the RSST and suggest that interventions be aimed at preserving or restoring the balance between positive and negative components rather than eliminating them all without distinction.
Collapse
|
34
|
Ho KM, Morgan DJR. The Proximal Tubule as the Pathogenic and Therapeutic Target in Acute Kidney Injury. Nephron Clin Pract 2022; 146:494-502. [PMID: 35272287 DOI: 10.1159/000522341] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In 2004, the term acute kidney injury (AKI) was introduced with the intention of broadening our understanding of rapid declines in renal function and to replace the historical terms of acute renal failure and acute tubular necrosis (ATN). Despite this evolution in terminology, the mechanisms of AKI have stayed largely elusive with the pathophysiological concepts of ATN remaining the mainstay in our understanding of AKI. SUMMARY The proximal tubule (PT), having the highest mitochondrial content in the kidney and relying heavily on oxidative phosphorylation to generate ATP, is vulnerable to ischaemic insults and mitochondrial dysfunction. Histologically, pathological changes in the PT are more consistent than changes to the glomeruli or the loop of Henle in AKI. Physiologically, activation of tubuloglomerular feedback due to PT dysfunction leads to an increase in preglomerular afferent arteriole resistance and a reduction in glomerular filtration. Pharmacologically, frusemide - a drug commonly used in the setting of oliguric AKI - is actively secreted by the PT and its diuretic effect is compromised by its failure to be secreted into the urine and thus be delivered to its site of action at the loop of Henle in AKI. Increases in the urinary, but not plasma biomarkers, of PT injury within 1 h of shock suggest that the PT as the initiation pathogenic target of AKI. KEY MESSAGE Therapeutic agents targeting specifically the PT epithelial cells, in particular its mitochondria - including amino acid ergothioneine and superoxide scavenger MitoTEMPO - show great promises in ameliorating AKI.
Collapse
Affiliation(s)
- Kwok M Ho
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Washington, Australia.,Medical School, University of Western Australia, Perth, Washington, Australia.,School of Veterinary & Life Sciences, Murdoch University, Perth, Washington, Australia
| | - David J R Morgan
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Washington, Australia
| |
Collapse
|
35
|
Cheng Y, Yu W, Zhou Y, Zhang T, Chi H, Xu C. Novel predictor of the occurrence of DKA in T1DM patients without infection: A combination of neutrophil/lymphocyte ratio and white blood cells. Open Life Sci 2022; 16:1365-1376. [PMID: 35071771 PMCID: PMC8760182 DOI: 10.1515/biol-2021-0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
The role of inflammation has been identified in the pathogenesis of diabetic ketoacidosis (DKA). The neutrophil/lymphocyte ratio (NLR) and white blood cells (WBC) can be used to predict a systemic inflammatory response. Changes in NLR and WBC levels have never been explored in type 1 diabetes mellitus (T1DM) patients with DKA and an uninfected state. This retrospective study included a total of 644 participants. NLR and WBC were measured in the control group (n = 316) and in T1DM patients with mild-DKA (n = 92), severe-DKA (n = 52), and non-DKA (n = 184) in an uninfected state. Then, we assessed the independent predictors of DKA occurrence in T1DM patients in an uninfected state. The diagnostic performance of variables was determined by receiver operating characteristic curve analysis. Serum NLR of T1DM patients is significantly higher than that of normal controls, and if DKA occurs, NLR increases further and increases with the severity of DKA. In addition to diastolic blood pressure, blood urea nitrogen, glycated hemoglobin (HbA1c), and WBC, NLR was also independently associated with DKA in T1DM patients with an uninfected state (OR = 1.386, 95% CI: 1.127-1.705, p = 0.002). Furthermore, the diagnosis analysis showed that except for NLR and WBC, the area under the curve (AUC) of indicators with a statistical difference in patients with and without DKA were 0.747 for DKA diagnosis, and after the addition of NLR and WBC, the AUC was 0.806. The increased NLR level represents a low-cost and highly accessible predictor for DKA in T1DM patients with an uninfected state. The addition of inflammation indicators can play a statistically significant role in the prediction model of the DKA occurrence.
Collapse
Affiliation(s)
- Yiping Cheng
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324, Jing 5 Road, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Road, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Wenhao Yu
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Yuping Zhou
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital, 70, Heping Road, Weihai, 264299, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Haiyan Chi
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital, 70, Heping Road, Weihai, 264299, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324, Jing 5 Road, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Road, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| |
Collapse
|
36
|
Wieërs MLAJ, Mulder J, Rotmans JI, Hoorn EJ. Potassium and the kidney: a reciprocal relationship with clinical relevance. Pediatr Nephrol 2022; 37:2245-2254. [PMID: 35195759 PMCID: PMC9395506 DOI: 10.1007/s00467-022-05494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 10/26/2022]
Abstract
By controlling urinary potassium excretion, the kidneys play a key role in maintaining whole-body potassium homeostasis. Conversely, low urinary potassium excretion (as a proxy for insufficient dietary intake) is increasingly recognized as a risk factor for the progression of kidney disease. Thus, there is a reciprocal relationship between potassium and the kidney: the kidney regulates potassium balance but potassium also affects kidney function. This review explores this relationship by discussing new insights into kidney potassium handling derived from recently characterized tubulopathies and studies on sexual dimorphism. These insights reveal a central but non-exclusive role for the distal convoluted tubule in sensing potassium and subsequently modifying the activity of the sodium-chloride cotransporter. This is another example of reciprocity: activation of the sodium-chloride cotransporter not only reduces distal sodium delivery and therefore potassium secretion but also increases salt sensitivity. This mechanism helps explain the well-known relationship between dietary potassium and blood pressure. Remarkably, in children, blood pressure is related to dietary potassium but not sodium intake. To explore how potassium deficiency can cause kidney injury, we review the mechanisms of hypokalemic nephropathy and discuss if these mechanisms may explain the association between low dietary potassium intake and adverse kidney outcomes. We discuss if potassium should be repleted in patients with kidney disease and what role dietary potassium plays in the risk of hyperkalemia. Supported by data and physiology, we reach the conclusion that we should view potassium not only as a potentially dangerous cation but also as a companion in the battle against kidney disease.
Collapse
Affiliation(s)
- Michiel L. A. J. Wieërs
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Room Ns403, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jaap Mulder
- grid.5645.2000000040459992XDepartment of Pediatrics, Division of Pediatric Nephrology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.10419.3d0000000089452978Department of Pediatrics, Division of Pediatric Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris I. Rotmans
- grid.10419.3d0000000089452978Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J. Hoorn
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Room Ns403, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
37
|
Guo L, Chen S, Ou L, Li S, Ye ZN, Liu HF. Disrupted Alpha-Ketoglutarate Homeostasis: Understanding Kidney Diseases from the View of Metabolism and Beyond. Diabetes Metab Syndr Obes 2022; 15:1961-1974. [PMID: 35783031 PMCID: PMC9248815 DOI: 10.2147/dmso.s369090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Alpha-ketoglutarate (AKG) is a key intermediate of various metabolic pathways including tricarboxylic acid (TCA) cycle, anabolic and catabolic reactions of amino acids, and collagen biosynthesis. Meanwhile, AKG also participates in multiple signaling pathways related to cellular redox regulation, epigenetic processes, and inflammation response. Emerging evidence has shown that kidney diseases like diabetic nephropathy and renal ischemia/reperfusion injury are associated with metabolic disorders. In consistence with metabolic role of AKG, further metabolomics study demonstrated a dysregulated AKG level in kidney diseases. Intriguingly, earlier studies during the years of 1980s and 1990s indicated that AKG may benefit wound healing and surgery recovery. Recently, interests on AKG are arising again due to its protective roles on healthy ageing, which may shed light on developing novel therapeutic strategies against age-related diseases including renal diseases. This review will summarize the physiological and pathological properties of AKG, as well as the underlying molecular mechanisms, with a special emphasis on kidney diseases.
Collapse
Affiliation(s)
- Lijing Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shihua Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Liping Ou
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Correspondence: Zhen-Nan Ye; Hua-Feng Liu, Email ;
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
38
|
Endothelial Dysfunction Accelerates Impairment of Mitochondrial Function in Ageing Kidneys via Inflammasome Activation. Int J Mol Sci 2021; 22:ijms22179269. [PMID: 34502177 PMCID: PMC8430754 DOI: 10.3390/ijms22179269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Chronic kidney disease is a common problem in the elderly and is associated with increased mortality. We have reported on the role of nitric oxide, which is generated from endothelial nitric oxide synthase (eNOS), in the progression of aged kidneys. To elucidate the role of endothelial dysfunction and the lack of an eNOS-NO pathway in ageing kidneys, we conducted experiments using eNOS and ASC-deficient mice. C57B/6 J mice (wild type (WT)), eNOS knockout (eNOS KO), and ASC knockout (ASC KO) mice were used in the present study. Then, eNOS/ASC double-knockout (eNOS/ASC DKO) mice were generated by crossing eNOS KO and ASC KO mice. These mice were sacrificed at 17-19 months old. The Masson positive area and the KIM-1 positive area tended to increase in eNOS KO mice, compared with WT mice, but not eNOS/ASC DKO mice. The COX-positive area was significantly reduced in eNOS KO mice, compared with WT and eNOS/ASC DKO mice. To determine whether inflammasomes were activated in infiltrating macrophages, the double staining of IL-18 and F4/80 was performed. IL-18 and F4/80 were found to be co-localised in the tubulointerstitial areas. Inflammasomes play a pivotal role in inflammaging in ageing kidneys. Furthermore, inflammasome activation may accelerate cellular senescence via mitochondrial dysfunction. The importance of endothelial function as a regulatory mechanism suggests that protection of endothelial function may be a potential therapeutic target.
Collapse
|
39
|
Figueiredo M, Daryadel A, Sihn G, Müller DN, Popova E, Rouselle A, Nguyen G, Bader M, Wagner CA. The (pro)renin receptor (ATP6ap2) facilitates receptor-mediated endocytosis and lysosomal function in the renal proximal tubule. Pflugers Arch 2021; 473:1229-1246. [PMID: 34228176 PMCID: PMC8302575 DOI: 10.1007/s00424-021-02598-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
The ATP6ap2 (Pro)renin receptor protein associates with H+-ATPases which regulate organellar, cellular, and systemic acid-base homeostasis. In the kidney, ATP6ap2 colocalizes with H+-ATPases in various cell types including the cells of the proximal tubule. There, H+-ATPases are involved in receptor-mediated endocytosis of low molecular weight proteins via the megalin/cubilin receptors. To study ATP6ap2 function in the proximal tubule, we used an inducible shRNA Atp6ap2 knockdown rat model (Kd) and an inducible kidney-specific Atp6ap2 knockout mouse model. Both animal lines showed higher proteinuria with elevated albumin, vitamin D binding protein, and procathepsin B in urine. Endocytosis of an injected fluid-phase marker (FITC- dextran, 10 kDa) was normal whereas processing of recombinant transferrin, a marker for receptor-mediated endocytosis, to lysosomes was delayed. While megalin and cubilin expression was unchanged, abundance of several subunits of the H+-ATPase involved in receptor-mediated endocytosis was reduced. Lysosomal integrity and H+-ATPase function are associated with mTOR signaling. In ATP6ap2, KO mice mTOR and phospho-mTOR appeared normal but increased abundance of the LC3-B subunit of the autophagosome was observed suggesting a more generalized impairment of lysosomal function in the absence of ATP6ap2. Hence, our data suggests a role for ATP6ap2 for proximal tubule function in the kidney with a defect in receptor-mediated endocytosis in mice and rats.
Collapse
Affiliation(s)
- Marta Figueiredo
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dominik N Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anthony Rouselle
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | | | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Charite University Medicine Berlin, Berlin, Germany.
- Institute for Biology, University of Lübeck, Lübeck, Germany.
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
40
|
Silva PHI, Wiegand A, Daryadel A, Russo G, Ritter A, Gaspert A, Wüthrich RP, Wagner CA, Mohebbi N. Acidosis and alkali therapy in patients with kidney transplant is associated with transcriptional changes and altered abundance of genes involved in cell metabolism and acid-base balance. Nephrol Dial Transplant 2021; 36:1806-1820. [PMID: 34240183 DOI: 10.1093/ndt/gfab210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metabolic acidosis occurs frequently in patients with kidney transplant and is associated with higher risk for and accelerated loss of graft function. To date, it is not known whether alkali therapy in these patients improves kidney function and whether acidosis and its therapy is associated with altered expression of proteins involved in renal acid-base metabolism. METHODS We collected retrospectively kidney biopsies from 22 patients. Of these patients, 9 had no acidosis, 9 had metabolic acidosis (plasma HCO3- < 22 mmol/l), and 4 had acidosis and received alkali therapy. We performed transcriptome analysis and immunohistochemistry for proteins involved in renal acid-base handling. RESULTS We found the expression of 40 transcripts significantly changed between kidneys from non-acidotic and acidotic patients. These genes are mostly involved in proximal tubule amino acid and lipid metabolism and energy homeostasis. Three transcripts were fully recovered by alkali therapy: the Kir4.2 K+-channel, an important regulator of proximal tubule HCO3--metabolism and transport, ACADSB and SHMT1, genes involved in beta-oxidation and methionine metabolism. Immunohistochemistry showed reduced staining for the proximal tubule NBCe1 HCO3- transporter in kidneys from acidotic patients that recovered with alkali therapy. In addition, the HCO3-exchanger pendrin was affected by acidosis and alkali therapy. CONCLUSIONS Metabolic acidosis in kidney transplant recipients is associated with alterations in the renal transcriptome that are partly restored by alkali therapy. Acid-base transport proteins mostly from proximal tubule were also affected by acidosis and alkali therapy suggesting that the downregulation of critical players contributes to metabolic acidosis in these patients.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Anna Wiegand
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Alexander Ritter
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Rudolf P Wüthrich
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Martins JR, Haenni D, Bugarski M, Polesel M, Schuh C, Hall AM. Intravital kidney microscopy: entering a new era. Kidney Int 2021; 100:527-535. [PMID: 34015315 DOI: 10.1016/j.kint.2021.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
The development of intravital imaging with multiphoton microscopy has had a major impact on kidney research. It provides the unique opportunity to visualize dynamic behavior of cells and organelles in their native environment and to relate this to the complex 3-dimensional structure of the organ. Moreover, changes in cell/organelle function can be followed in real time in response to physiological interventions or disease-causing insults. However, realizing the enormous potential of this exciting approach has necessitated overcoming several substantial practical hurdles. In this article, we outline the nature of these challenges and how a variety of technical advances have provided effective solutions. In particular, improvements in laser/microscope technology, fluorescent probes, transgenic animals, and abdominal windows are collectively making previously opaque processes visible. Meanwhile, the rise of machine learning-based image analysis is facilitating the rapid generation of large amounts of quantitative data, amenable to deeper statistical interrogation. Taken together, the increased capabilities of multiphoton imaging are opening up huge new possibilities to study structure-function relationships in the kidney in unprecedented detail. In addition, they are yielding important new insights into cellular mechanisms of tissue damage, repair, and adaptive remodeling during disease states. Thus, intravital microscopy is truly entering an exciting new era in translational kidney research.
Collapse
Affiliation(s)
- Joana R Martins
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland; Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Claus Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
The Cross-Link between Ferroptosis and Kidney Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6654887. [PMID: 34007403 PMCID: PMC8110383 DOI: 10.1155/2021/6654887] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Acute and chronic kidney injuries result from structural dysfunction and metabolic disorders of the kidney in various etiologies, which significantly affect human survival and social wealth. Nephropathies are often accompanied by various forms of cell death and complex microenvironments. In recent decades, the study of kidney diseases and the traditional forms of cell death have improved. Nontraditional forms of cell death, represented by ferroptosis and necroptosis, have been discovered in the field of kidney diseases, which have reshuffled the role of traditional cell death in nephropathies. Although interactions between ferroptosis and acute kidney injury (AKI) have been continuously explored, studies on ferroptosis and chronic kidney disease (CKD) remain limited. Here, we have reviewed the therapeutic significance of ferroptosis in AKI and anticipated the curative potential of ferroptosis for CKD in the hope of providing insights into ferroptosis and CKD.
Collapse
|
43
|
Wu W, Fu Y, Liu Z, Shu S, Wang Y, Tang C, Cai J, Dong Z. NAM protects against cisplatin-induced acute kidney injury by suppressing the PARP1/p53 pathway. Toxicol Appl Pharmacol 2021; 418:115492. [PMID: 33722665 DOI: 10.1016/j.taap.2021.115492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Cisplatin is a commonly used anti-cancer drug, but it induces nephrotoxicity. As a water-soluble vitamin B family member, nicotinamide (NAM) was recently demonstrated to have beneficial effects for renal injury, but its underlying mechanism remains largely unclear. Here, we suggest that NAM may exert protective effects against cisplatin-induced acute kidney injury (AKI) mainly via suppressing the poly ADP-ribose polymerase 1 (PARP1)/p53 pathway. In our experiment, NAM protected against cisplatin-induced apoptosis both in cultured renal proximal tubular cells and AKI in mice. Mechanistically, NAM suppressed the expression and activation of p53, a known mediator of cisplatin-induced AKI. Upstream of p53, NAM attenuated the induction of γ-H2AX, a hallmark of DNA damage response. Interestingly, PARP1 was activated in cisplatin AKI and this activation was inhibited by NAM. Pharmacological inhibition of PARP1 with PJ34 significantly ameliorated p53 activation and cisplatin-induced cell death in RPTCs and AKI in mice. Thus, NAM may protect against cisplatin-induced AKI by suppressing the PARP1/p53 pathway.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Shaoqun Shu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China.
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA..
| |
Collapse
|