1
|
Nicosia M, Valujskikh A. Recognizing Complexity of CD8 T Cells in Transplantation. Transplantation 2024; 108:2186-2196. [PMID: 38637929 PMCID: PMC11489323 DOI: 10.1097/tp.0000000000005001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The major role of CD8 + T cells in clinical and experimental transplantation is well documented and acknowledged. Nevertheless, the precise impact of CD8 + T cells on graft tissue injury is not completely understood, thus impeding the development of specific treatment strategies. The goal of this overview is to consider the biology and functions of CD8 + T cells in the context of experimental and clinical allotransplantation, with special emphasis on how this cell subset is affected by currently available and emerging therapies.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
2
|
Van Laecke S, Glorieux G. Terminally differentiated effector memory T cells in kidney transplant recipients: New crossroads. Am J Transplant 2024:S1600-6135(24)00629-4. [PMID: 39389314 DOI: 10.1016/j.ajt.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Immunosenescence, the age-related dysregulation of innate and adaptive immunity, impairs immune response and increases inflammation, leading to higher infection and cardiovascular risks, particularly outside the field of transplantation. In kidney transplant recipients (KTRs), conditions like cytomegalovirus infection, old age, uremia, smoking, and diabetes, linked to poor outcomes, are associated with enhanced immunosenescence. Recent studies highlight the pathogenic role of cytotoxic T cells, particularly terminally differentiated effector memory T cells that reexpress CD45RA (TEMRA), in graft dysfunction. A higher proportion of circulating CD8+ TEMRA cells is observed in KTRs with chronic rejection. In antibody-mediated rejection, they invade the graft by superior chemotactic properties and binding to human leukocyte antigen (HLA) antibodies through FcγRIIIa (CD16). Also in microvascular inflammation without donor-specific antibodies, and even in patients without rejection but faster decline of kidney function, intragraft CD8+ TEMRA cells were instrumental. CD8+ TEMRA cells may explain the unresolved dismal graft outcomes associated with donor age and cytomegalovirus-serostatus mismatching and could become a novel therapeutic target in KTRs.
Collapse
Affiliation(s)
- Steven Van Laecke
- Renal Division, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.
| | - Griet Glorieux
- Renal Division, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
3
|
Vaulet T, Callemeyn J, Lamarthée B, Antoranz A, Debyser T, Koshy P, Anglicheau D, Colpaert J, Gwinner W, Halloran PF, Kuypers D, Tinel C, Van Craenenbroeck A, Van Loon E, Marquet P, Bosisio F, Naesens M. The Clinical Relevance of the Infiltrating Immune Cell Composition in Kidney Transplant Rejection. J Am Soc Nephrol 2024; 35:886-900. [PMID: 38640017 PMCID: PMC11230711 DOI: 10.1681/asn.0000000000000350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
Key Points The estimated composition of immune cells in kidney transplants correlates poorly with the primary rejection categories defined by Banff criteria. Spatial cell distribution could be coupled with a detailed cellular composition to assess causal triggers for allorecognition. Intragraft CD8temra cells showed strong and consistent association with graft failure, regardless of the Banff rejection phenotypes. Background The link between the histology of kidney transplant rejection, especially antibody-mediated rejection, T-cell–mediated rejection, and mixed rejection, and the types of infiltrating immune cells is currently not well charted. Cost and technical complexity of single-cell analysis hinder large-scale studies of the relationship between cell infiltrate profiles and histological heterogeneity. Methods In this cross-sectional study, we assessed the composition of nine intragraft immune cell types by using a validated kidney transplant–specific signature matrix for deconvolution of bulk transcriptomics in three different kidney transplant biopsy datasets (N =403, N =224, N =282). The association and discrimination of the immune cell types with the Banff histology and the association with graft failure were assessed individually and with multivariable models. Unsupervised clustering algorithms were applied on the overall immune cell composition and compared with the Banff phenotypes. Results Banff-defined rejection was related to high presence of CD8+ effector T cells, natural killer cells, monocytes/macrophages, and, to a lesser extent, B cells, whereas CD4+ memory T cells were lower in rejection compared with no rejection. Estimated intragraft effector memory–expressing CD45RA (TEMRA) CD8+ T cells were strongly and consistently associated with graft failure. The large heterogeneity in immune cell composition across rejection types prevented supervised and unsupervised methods to accurately recover the Banff phenotypes solely on the basis of immune cell estimates. The lack of correlation between immune cell composition and Banff-defined rejection types was validated using multiplex immunohistochemistry. Conclusions Although some specific cell types (FCGR3A + myeloid cells, CD14 + monocytes/macrophages, and NK cells) partly discriminated between rejection phenotypes, the overall estimated immune cell composition of kidney transplants was ill-related to main Banff-defined rejection categories and added to the Banff lesion scoring and evaluation of rejection severity. The estimated intragraft CD8temra cells bore strong and consistent association with graft failure and were independent of Banff-grade rejection.
Collapse
Affiliation(s)
- Thibaut Vaulet
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- EFS, INSERM, UMR RIGHT, Université de Franche-Comté, Besançon, France
| | - Asier Antoranz
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Tim Debyser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Priyanka Koshy
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Inserm U1151, Necker Enfants-Malades Institute, Université Paris Cité, Paris, France
| | - Jill Colpaert
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Philip F. Halloran
- Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- EFS, INSERM, UMR RIGHT, Université de Franche-Comté, Besançon, France
- Department of Nephrology and Kidney Transplantation, Dijon University Hospital, Dijon, France
| | - Amaryllis Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Marquet
- Department of Pharmacology and Transplantation, Inserm U1248, Limoges University Hospital, University of Limoges, Limoges, France
| | - Francesca Bosisio
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Ben Nasr M, Usuelli V, Dellepiane S, Seelam AJ, Fiorentino TV, D'Addio F, Fiorina E, Xu C, Xie Y, Balasubramanian HB, Castillo-Leon E, Loreggian L, Maestroni A, Assi E, Loretelli C, Abdelsalam A, El Essawy B, Uccella S, Pastore I, Lunati ME, Sabiu G, Petrazzuolo A, Ducci G, Sacco E, Centofanti L, Venturini M, Mazzucchelli S, Mattinzoli D, Ikehata M, Castellano G, Visner G, Kaifeng L, Lee KM, Wang Z, Corradi D, La Rosa S, Danese S, Yang J, Markmann JF, Zuccotti GV, Abdi R, Folli F, Fiorina P. Glucagon-like peptide 1 receptor is a T cell-negative costimulatory molecule. Cell Metab 2024; 36:1302-1319.e12. [PMID: 38838642 DOI: 10.1016/j.cmet.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic β cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Sergio Dellepiane
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Cong Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - Yanan Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - Hari Baskar Balasubramanian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Eduardo Castillo-Leon
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lara Loreggian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Ahmed Abdelsalam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Basset El Essawy
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Medicine, Al-Azhar University, Cairo, Egypt
| | - Silvia Uccella
- Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Gianmarco Sabiu
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Petrazzuolo
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Giacomo Ducci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | - Lucia Centofanti
- Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | | | | | - Deborah Mattinzoli
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gary Visner
- Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Liu Kaifeng
- Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Kang Mi Lee
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhimin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Domenico Corradi
- Department of Biomedical, Biotechnological and Translational Sciences, Unit of Pathology, University of Parma, Parma, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological innovation, University of Insubria, Varese, Italy; Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele, Milan, Italy
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gian Vincenzo Zuccotti
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Department of Pediatrics, Children's Hospital Buzzi, University of Milan, Milan, Italy
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Franco Folli
- Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy.
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, ASST Fatebenefratelli Sacco, Milan, Italy.
| |
Collapse
|
5
|
Hu Y, Hao F, An Q, Jiang W. Immune cell signatures and inflammatory mediators: unraveling their genetic impact on chronic kidney disease through Mendelian randomization. Clin Exp Med 2024; 24:94. [PMID: 38703294 PMCID: PMC11069478 DOI: 10.1007/s10238-024-01341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Prior research has established associations between immune cells, inflammatory proteins, and chronic kidney disease (CKD). Our Mendelian randomization study aims to elucidate the genetic causal relationships among these factors and CKD. We applied Mendelian randomization using genetic variants associated with CKD from a large genome-wide association study (GWAS) and inflammatory markers from a comprehensive GWAS summary. The causal links between exposures (immune cell subtypes and inflammatory proteins) and CKD were primarily analyzed using the inverse variance-weighted, supplemented by sensitivity analyses, including MR-Egger, weighted median, weighted mode, and MR-PRESSO. Our analysis identified both absolute and relative counts of CD28 + CD45RA + CD8 + T cell (OR = 1.01; 95% CI = 1.01-1.02; p < 0.001, FDR = 0.018) (OR = 1.01; 95% CI = 1.00-1.01; p < 0.001, FDR = 0.002), CD28 on CD39 + CD8 + T cell(OR = 0.97; 95% CI = 0.96-0.99; p < 0.001, FDR = 0.006), CD16 on CD14-CD16 + monocyte (OR = 1.02; 95% CI = 1.01-1.03; p < 0.001, FDR = 0.004) and cytokines, such as IL-17A(OR = 1.11, 95% CI = 1.06-1.16, p < 0.001, FDR = 0.001), and LIF-R(OR = 1.06, 95% CI = 1.02-1.10, p = 0.005, FDR = 0.043) that are genetically predisposed to influence the risk of CKD. Moreover, the study discovered that CKD itself may causatively lead to alterations in certain proteins, including CST5(OR = 1.16, 95% CI = 1.09-1.24, p < 0.001, FDR = 0.001). No evidence of reverse causality was found for any single biomarker and CKD. This comprehensive MR investigation supports a genetic causal nexus between certain immune cell subtypes, inflammatory proteins, and CKD. These findings enhance the understanding of CKD's immunological underpinnings and open avenues for targeted treatments.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian An
- Department of Nephrology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Sluyter R, McEwan TBD, Sophocleous RA, Stokes L. Methods for studying P2X4 receptor ion channels in immune cells. J Immunol Methods 2024; 526:113626. [PMID: 38311008 DOI: 10.1016/j.jim.2024.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The P2X4 receptor is a trimeric ligand-gated ion channel activated by adenosine 5'-triphosphate (ATP). P2X4 is present in immune cells with emerging roles in inflammation and immunity, and related disorders. This review aims to provide an overview of the methods commonly used to study P2X4 in immune cells, focusing on those methods used to assess P2RX4 gene expression, the presence of the P2X4 protein, and P2X4 ion channel activity in these cells from humans, dogs, mice and rats. P2RX4 gene expression in immune cells is commonly assessed using semi-quantitative and quantitative reverse-transcriptase-PCR. The presence of P2X4 protein in immune cells is mainly assessed using anti-P2X4 polyclonal antibodies with immunoblotting or immunochemistry, but the use of these antibodies, as well as monoclonal antibodies and nanobodies to detect P2X4 with flow cytometry is increasing. Notably, use of an anti-P2X4 monoclonal antibody and flow cytometry has revealed that P2X4 is present on immune cells with a rank order of expression in eosinophils, then neutrophils and monocytes, then basophils and B cells, and finally T cells. P2X4 ion channel activity has been assessed mainly by Ca2+ flux assays using the cell permeable Ca2+-sensitive dyes Fura-2 and Fluo-4 with fluorescence microscopy, spectrophotometry, or flow cytometry. However, other methods including electrophysiology, and fluorescence assays measuring Na+ flux (using sodium green tetra-acetate) and dye uptake (using YO-PRO-12+) have been applied. Collectively, these methods have demonstrated the presence of functional P2X4 in monocytes and macrophages, microglia, eosinophils, mast cells and CD4+ T cells, with other evidence suggestive of functional P2X4 in dendritic cells, neutrophils, B cells and CD8+ T cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
7
|
Zhang F, Ge Q, Meng J, Chen J, Liang C, Zhang M. Characterizing CD8+ TEMRA Cells in CP/CPPS Patients: Insights from Targeted Single-Cell Transcriptomic and Functional Investigations. Immunotargets Ther 2024; 13:111-121. [PMID: 38435982 PMCID: PMC10906729 DOI: 10.2147/itt.s451199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Background The specific involvement of the CD8+ T effector memory RA (TEMRA) subset in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has largely not been explored in the literature. Methods Targeted single-cell RNA sequencing (scRNA-seq) profiles were generated from peripheral blood mononuclear cells (PBMCs) obtained from two CP/CPPS patients and two healthy controls (HCs) in our recent study. Pseudotime series algorithms were used to reveal the differentiation trajectory, CellChat analysis was used to explore the communication between individual cells, and the SCENIC program was used to identify potential transcription factors (TFs). Based on the cosine similarity, clusters of differentially expressed genes (DEGs) were considered to be further enriched in different pathways. To confirm the functional role of the critical clusters, flow cytometry was employed. Results The results revealed the molecular landscape of these clusters, with TEMRA cells exhibiting pronounced cytokine-mediated signaling pathway enrichment. Pseudotime trajectory analysis further mapped the evolution from naïve T cells to that of TEMRA cells, elucidating the developmental pathways involved in the immune context. A significant finding from CellChat analysis was the differential expression of ligands and receptors, with CD8+ TEMRA cells showing enhanced signaling, particularly in the CP/CPPS context, compared to HCs. Flow cytometry confirmed these results, revealing a heightened proinflammatory cytokine profile in patients with chronic prostatitis-like symptoms (CP-LS), suggesting that TEMRA cells play a significant role in disease pathogenesis. TF profiling across the T-cell clusters identified key regulators of cellular identity, identifying novel therapeutic targets. Elevated TNF signaling activity in CD8+ TEMRA cells underscored the involvement of these cells in disease mechanisms. Conclusion This study elucidates the pivotal role of the CD8+ TEMRA cell subset in CP/CPPS, which is characterized by increased TNF signaling and proinflammatory factor expression, highlighting potential biomarkers and opening new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| |
Collapse
|
8
|
Huang CF, Su P, Fisher TD, Levitsky J, Kelleher NL, Forte E. Mass spectrometry-based proteomics for advancing solid organ transplantation research. FRONTIERS IN TRANSPLANTATION 2023; 2:1286881. [PMID: 38993855 PMCID: PMC11235370 DOI: 10.3389/frtra.2023.1286881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Scarcity of high-quality organs, suboptimal organ quality assessment, unsatisfactory pre-implantation procedures, and poor long-term organ and patient survival are the main challenges currently faced by the solid organ transplant (SOT) field. New biomarkers for assessing graft quality pre-implantation, detecting, and predicting graft injury, rejection, dysfunction, and survival are critical to provide clinicians with invaluable prediction tools and guidance for personalized patients' treatment. Additionally, new therapeutic targets are also needed to reduce injury and rejection and improve transplant outcomes. Proteins, which underlie phenotypes, are ideal candidate biomarkers of health and disease statuses and therapeutic targets. A protein can exist in different molecular forms, called proteoforms. As the function of a protein depends on its exact composition, proteoforms can offer a more accurate basis for connection to complex phenotypes than protein from which they derive. Mass spectrometry-based proteomics has been largely used in SOT research for identification of candidate biomarkers and therapeutic intervention targets by so-called "bottom-up" proteomics (BUP). However, such BUP approaches analyze small peptides in lieu of intact proteins and provide incomplete information on the exact molecular composition of the proteins of interest. In contrast, "Top-down" proteomics (TDP), which analyze intact proteins retaining proteoform-level information, have been only recently adopted in transplantation studies and already led to the identification of promising proteoforms as biomarkers for organ rejection and dysfunction. We anticipate that the use of top-down strategies in combination with new technological advancements in single-cell and spatial proteomics could drive future breakthroughs in biomarker and therapeutic target discovery in SOT.
Collapse
Affiliation(s)
- Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Pei Su
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Comprehensive Transplant Center Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Tao P, Han X, Wang Q, Wang S, Zhang J, Liu L, Fan X, Liu C, Liu M, Guo L, Lee PY, Aksentijevich I, Zhou Q. A gain-of-function variation in PLCG1 causes a new immune dysregulation disease. J Allergy Clin Immunol 2023; 152:1292-1302. [PMID: 37422272 PMCID: PMC10770301 DOI: 10.1016/j.jaci.2023.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Phospholipase C (PLC) γ1 is a critical enzyme regulating nuclear factor-κB (NF-κB), extracellular signal-related kinase, mitogen-activated protein kinase, and nuclear factor of activated T cells signaling pathways, yet germline PLCG1 mutation in human disease has not been reported. OBJECTIVE We aimed to investigate the molecular pathogenesis of a PLCG1 activating variant in a patient with immune dysregulation. METHODS Whole exome sequencing was used to identify the patient's pathogenic variants. Bulk RNA sequencing, single-cell RNA sequencing, quantitative PCR, cytometry by time of flight, immunoblotting, flow cytometry, luciferase assay, IP-One ELISA, calcium flux assay, and cytokine measurements in patient PBMCs and T cells and COS-7 and Jurkat cell lines were used to define inflammatory signatures and assess the impact of the PLCG1 variant on protein function and immune signaling. RESULTS We identified a novel and de novo heterozygous PLCG1 variant, p.S1021F, in a patient presenting with early-onset immune dysregulation disease. We demonstrated that the S1021F variant is a gain-of-function variant, leading to increased inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and increased phosphorylation of extracellular signal-related kinase, p65, and p38. The transcriptome and protein expression at the single-cell level revealed exacerbated inflammatory responses in the patient's T cells and monocytes. The PLCG1 activating variant resulted in enhanced NF-κB and type II interferon pathways in T cells, and hyperactivated NF-κB and type I interferon pathways in monocytes. Treatment with either PLCγ1 inhibitor or Janus kinase inhibitor reversed the upregulated gene expression profile in vitro. CONCLUSIONS Our study highlights the critical role of PLCγ1 in maintaining immune homeostasis. We illustrate immune dysregulation as a consequence of PLCγ1 activation and provide insight into therapeutic targeting of PLCγ1.
Collapse
Affiliation(s)
- Panfeng Tao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qintao Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shihao Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lin Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaorui Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chenlu Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meng Liu
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li Guo
- Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Kudryavtsev I, Zinchenko Y, Serebriakova M, Akisheva T, Rubinstein A, Savchenko A, Borisov A, Belenjuk V, Malkova A, Yablonskiy P, Kudlay D, Starshinova A. A Key Role of CD8+ T Cells in Controlling of Tuberculosis Infection. Diagnostics (Basel) 2023; 13:2961. [PMID: 37761328 PMCID: PMC10528134 DOI: 10.3390/diagnostics13182961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The main role in the control of tuberculosis infection is played by macrophages and Th1 and CD8+ T cells. The study aimed to identify the most diagnostically significant CD8+ T cell subsets in tuberculosis patients. METHODS Peripheral blood samples from patients with clinical, radiological, and bacteriologically confirmed pulmonary tuberculosis (TB, n = 32) and healthy subjects (HC, n = 31) were collected and analyzed using 10-color flow cytometry. RESULTS The frequency of the EM4 CD3+CD8+ cells was reduced in the peripheral blood of patients with pulmonary tuberculosis, while the relative and absolute number of EM1 CD3+CD8+ cells increased compared to the control group. CD57 expression was reduced in patients with pulmonary tuberculosis on EM1, EM2, and pE1 CD3+CD8+ cells, whereas the EM3 cells had a high level of CD57 expression. The relative and absolute number of Tc2 (CCR6-CXCR3-) cells in peripheral blood in patients with pulmonary tuberculosis was increased, while the frequency of Tc1 (CCR6-CXCR3+) was decreased, compared to healthy donors. CONCLUSIONS Patients with pulmonary tuberculosis have an abnormal CD3+CD8+ cell profile and demonstrate their impaired maturation and functional activity.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| | - Yulia Zinchenko
- Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia; (Y.Z.); (P.Y.)
| | - Maria Serebriakova
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Tatiana Akisheva
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Artem Rubinstein
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Andrei Savchenko
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Alexandr Borisov
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Vasilij Belenjuk
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Anna Malkova
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel;
| | - Piotr Yablonskiy
- Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia; (Y.Z.); (P.Y.)
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St-Petersburg, Russia
| | - Dmitry Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- NRC Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| |
Collapse
|
11
|
Holtan SG, Hoeschen A, Cao Q, Ustun C, Betts BC, Jurdi NE, Maakaron J, Rashidi A, Miller JS, Wagner JE, Blazar BR, Jacobson PA, Panoskaltsis-Mortari A, Weisdorf DJ, MacMillan ML. Phase II, Open-Label Clinical Trial of Urinary-Derived Human Chorionic Gonadotropin/Epidermal Growth Factor for Life-Threatening Acute Graft-versus-Host Disease. Transplant Cell Ther 2023; 29:509.e1-509.e8. [PMID: 37279855 PMCID: PMC11015887 DOI: 10.1016/j.jtct.2023.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
Treatments that aid inflammation resolution, immune tolerance, and epithelial repair may improve outcomes beyond high-dose corticosteroids and other broad immunosuppressants for life-threatening acute graft-versus-host disease (aGVHD). We studied the addition of urinary-derived human chorionic gonadotropin/epidermal growth factor (uhCG/EGF; Pregnyl; Organon, Jersey City, NJ) to standard aGVHD therapy in a prospective Phase II clinical trial (ClinicalTrials.gov identifier NCT02525029). Twenty-two patients with Minnesota (MN) high-risk aGVHD received methylprednisolone 48 mg/m2/day plus 2000 units/m2 of uhCG/EGF s.c. every other day for 1 week. Patients requiring second-line aGVHD therapy received uhCG/EGF 2000 to 5000 units/m2 s.c. every other day for 2 weeks plus standard of care immunosuppression (physician's choice). Responding patients were eligible to receive maintenance doses twice weekly for 5 weeks. Immune cell subsets in peripheral blood were evaluated by mass cytometry and correlated with plasma amphiregulin (AREG) level and response to therapy. Most patients had stage 3-4 lower gastrointestinal tract GVHD (52%) and overall grade III-IV aGVHD (75%) at time of enrollment. The overall proportion of patients with a response at day 28 (primary endpoint) was 68% (57% with complete response, 11% with partial response). Nonresponders had higher baseline counts of KLRG1+ CD8 cells and T cell subsets expressing TIM-3. Plasma AREG levels remained persistently elevated in nonresponders and correlated with AREG expression on peripheral blood T cells and plasmablasts. The addition of uhCG/EGF to standard therapy is a feasible supportive care measure for patients with life-threatening aGVHD. As a commercially available, safe, and inexpensive drug, uhCG/EGF added to standard therapy may reduce morbidity and mortality from severe aGVHD and merits further study.
Collapse
Affiliation(s)
- Shernan G Holtan
- Blood and Marrow Transplant & Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Andrea Hoeschen
- Clinical Trials Office, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics and Informatics, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minnesota
| | - Celalettin Ustun
- Blood and Marrow Transplant Program, Rush University, Chicago, Illinois
| | - Brian C Betts
- Blood and Marrow Transplant & Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Najla El Jurdi
- Blood and Marrow Transplant & Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Maakaron
- Blood and Marrow Transplant & Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Armin Rashidi
- Blood and Marrow Transplant & Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplant & Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - John E Wagner
- Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R Blazar
- Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Pamala A Jacobson
- Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Angela Panoskaltsis-Mortari
- Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weisdorf
- Blood and Marrow Transplant & Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Margaret L MacMillan
- Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Laphanuwat P, Gomes DCO, Akbar AN. Senescent T cells: Beneficial and detrimental roles. Immunol Rev 2023; 316:160-175. [PMID: 37098109 PMCID: PMC10952287 DOI: 10.1111/imr.13206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of PharmacologyFaculty of Medicine, Khon Kaen UniversityKhon KaenThailand
| | - Daniel Claudio Oliveira Gomes
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
- Núcleo de BiotecnologiaUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
13
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
14
|
d’Alessandro M, Bergantini L, Gangi S, Cameli P, Armati M, Fanetti M, Mezzasalma F, Baglioni S, Bargagli E. Imbalance of Lymphocyte Subsets and CD45RA-Expressing Cells in Intrathoracic Lymph Nodes, Alveolar Compartment and Bloodstream of Pulmonary Sarcoidosis Patients. Int J Mol Sci 2023; 24:10344. [PMID: 37373490 PMCID: PMC10299444 DOI: 10.3390/ijms241210344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Sarcoidosis is a systemic granulomatous disease mainly affecting the lungs and hilomediastinal lymph nodes. It is characterized by non-caseating epithelioid cell granulomas in lymph nodes and lungs. Our study aimed to evaluate and compare T, B and NK cell subsets in the alveolar compartment, lymph nodes and the bloodstream simultaneously in the same patients to elucidate the immune responses associated with the development and progression of sarcoidosis. A secondary aim was to evaluate the distribution of CD45RA-expressing cells in the different anatomical compartments. Patients suspected to have sarcoidosis and who underwent bronchoscopy with bronchoalveolar lavage (BAL), lung-draining lymph node (LLN) biopsy by EBUS-TBNA and peripheral blood (PB) sampling were included in the study. They were monitored at the Regional Referral Centre of Siena University Hospital and the Respiratory Diseases Unit of Perugia Hospital. Multicolour flow cytometry analysis through FASCLyric was performed to assess T, B and NK cell subsets. Thirty-two patients (median age (IQR) 57 (52-58) years) were consecutively and prospectively enrolled. Machine learning analysis created a model which selected CD56dim16bright, CD8, Tfc, Th17, Th12, Tfh17, Tfh2, TcemRA, ThemRA, T naïve, Tc naïve, Breg, CD1d+CD5+, Th-reg, Tfh, Th1 and CD4 cells with an accuracy of 0.9500 (kappa 0.8750). Comparative analysis found 18 cell populations that differed significantly between the three anatomical compartments. The bloodstream was enriched in ThemRA (p = 0.0416), Tfh2 (p = 0.0189), Tfh17 (p = 0.0257), Th2 (p = 0.0212), Th17 (p = 0.0177), Th-naïve (p = 0.0368), CD56dimCD16bright (p < 0.0001), CD8 (p = 0.0319), TcemRA (p < 0.0001) and Tfc cells (p = 0.0004) compared with the alveolar compartment, while Th-reg were lower in PB than BAL (p = 0.0329). The alveolar compartment was enriched in Breg (p = 0.0249) and CD1d+CD5+ (p = 0.0013) with respect to LLN samples and PB. Conversely, Tfh (p = 0.0470), Th1 (p = 0.0322), CD4 (p = 0.0486) and Tc-naïve (p = 0.0009) were more abundant in LLN than in BAL and PB. It has been speculated that changes in the relative contents of PB cells could be related to changes in production and to the selective redistribution of PB cells to granulomatous foci. This study further supports the fact that sarcoidosis is multisystemic in nature. However, the low level of immune cells in peripheral blood of patients with sarcoidosis is concerning. A re-expression of CD45RA on CD4+ and CD8+ cells could result in a reduction in peripheral immune activity. Thus, changes in the spectrum of the bloodstream may reflect both pathogenic and compensatory processes.
Collapse
Affiliation(s)
- Miriana d’Alessandro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy (E.B.)
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy (E.B.)
| | - Sara Gangi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy (E.B.)
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy (E.B.)
| | - Martina Armati
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy (E.B.)
| | - Matteo Fanetti
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy (E.B.)
| | - Fabrizio Mezzasalma
- Diagnostic and Interventional Bronchoscopy Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), 53100 Siena, Italy
| | | | - SARC-SI Study Group
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy (E.B.)
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy (E.B.)
| |
Collapse
|
15
|
Xiong H, Cui M, Kong N, Jing J, Xu Y, Liu X, Yang F, Xu Z, Yan Y, Zhao D, Zou Z, Xia M, Cen J, Tan G, Huai C, Fu Q, Guo Q, Chen K. Cytotoxic CD161 -CD8 + T EMRA cells contribute to the pathogenesis of systemic lupus erythematosus. EBioMedicine 2023; 90:104507. [PMID: 36893588 PMCID: PMC10011749 DOI: 10.1016/j.ebiom.2023.104507] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease affecting multiple organs and tissues with high cellular heterogeneity. CD8+ T cell activity is involved in the SLE pathogenesis. However, the cellular heterogeneity and the underlying mechanisms of CD8+ T cells in SLE remain to be identified. METHODS Single-cell RNA sequencing (scRNA-seq) of PBMCs from a SLE family pedigree (including 3 HCs and 2 SLE patients) was performed to identify the SLE-associated CD8+ T cell subsets. Flow cytometry analysis of a SLE cohort (including 23 HCs and 33 SLE patients), qPCR analysis of another SLE cohort (including 30 HCs and 25 SLE patients) and public scRNA-seq datasets of autoimmune diseases were employed to validate the finding. Whole-exome sequencing (WES) of this SLE family pedigree was used to investigate the genetic basis in dysregulation of CD8+ T cell subsets identified in this study. Co-culture experiments were performed to analyze the activity of CD8+ T cells. FINDINGS We elucidated the cellular heterogeneity of SLE and identified a new highly cytotoxic CD8+ T cell subset, CD161-CD8+ TEMRA cell subpopulation, which was remarkably increased in SLE patients. Meanwhile, we discovered a close correlation between mutation of DTHD1 and the abnormal accumulation of CD161-CD8+ TEMRA cells in SLE. DTHD1 interacted with MYD88 to suppress its activity in T cells and DTHD1 mutation promoted MYD88-dependent pathway and subsequently increased the proliferation and cytotoxicity of CD161-CD8+ TEMRA cells. Furthermore, the differentially expressed genes in CD161-CD8+ TEMRA cells displayed a strong out-of-sample prediction for case-control status of SLE. INTERPRETATION This study identified DTHD1-associated expansion of CD161-CD8+ TEMRA cell subpopulation is critical for SLE. Our study highlights genetic association and cellular heterogeneity of SLE pathogenesis and provides a mechanistical insight into the diagnosis and treatment of SLE. FUNDINGS Stated in the Acknowledgements section of the manuscript.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Mintian Cui
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Ni Kong
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Jiongjie Jing
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Ying Xu
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Xiuting Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Fan Yang
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Zhen Xu
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Yu Yan
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Dongyang Zhao
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ziqi Zou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junjie Cen
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Qing Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| | - Kun Chen
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China; Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
16
|
Gao X, Guo Z, Wang P, Liu Z, Wang Z. Transcriptomic analysis reveals the potential crosstalk genes and immune relationship between IgA nephropathy and periodontitis. Front Immunol 2023; 14:1062590. [PMID: 36793719 PMCID: PMC9924229 DOI: 10.3389/fimmu.2023.1062590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Background It is well known that periodontitis has an important impact on systemic diseases. The aim of this study was to investigate potential crosstalk genes, pathways and immune cells between periodontitis and IgA nephropathy (IgAN). Methods We downloaded periodontitis and IgAN data from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify shared genes. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the shared genes. Hub genes were further screened using least absolute shrinkage and selection operator (LASSO) regression, and a receiver operating characteristic (ROC) curve was drawn according to the screening results. Finally, single-sample GSEA (ssGSEA) was used to analyze the infiltration level of 28 immune cells in the expression profile and its relationship with shared hub genes. Results By taking the intersection of WGCNA important module genes and DEGs, we found that the SPAG4, CCDC69, KRT10, CXCL12, HPGD, CLDN20 and CCL187 genes were the most important cross-talk genes between periodontitis and IgAN. GO analysis showed that the shard genes were most significantly enriched in kinase regulator activity. The LASSO analysis results showed that two overlapping genes (CCDC69 and CXCL12) were the optimal shared diagnostic biomarkers for periodontitis and IgAN. The immune infiltration results revealed that T cells and B cells play an important role in the pathogenesis of periodontitis and IgAN. Conclusion This study is the first to use bioinformatics tools to explore the close genetic relationship between periodontitis and IgAN. The SPAG4, CCDC69, KRT10, CXCL12, HPGD, CLDN20 and CCL187 genes were the most important cross-talk genes between periodontitis and IgAN. T-cell and B-cell-driven immune responses may play an important role in the association between periodontitis and IgAN.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ziyi Guo
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|