1
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Nasci VL, Liu P, Marks AM, Williams AC, Kriegel AJ. Transcriptomic analysis identifies novel candidates in cardiorenal pathology mediated by chronic peritoneal dialysis. Sci Rep 2023; 13:10051. [PMID: 37344499 DOI: 10.1038/s41598-023-36647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Peritoneal dialysis (PD) is associated with increased cardiovascular (CV) risk. Studies of PD-related CV pathology in animal models are lacking despite the clinical importance. Here we introduce the phenotypic evaluation of a rat model of cardiorenal syndrome in response to chronic PD, complemented by a rich transcriptomic dataset detailing chronic PD-induced changes in left ventricle (LV) and kidney tissues. This study aims to determine how PD alters CV parameters and risk factors while identifying pathways for potential therapeutic targets. Sprague Dawley rats underwent Sham or 5/6 nephrectomy (5/6Nx) at 10 weeks of age. Six weeks later an abdominal dialysis catheter was placed in all rats before random assignment to Control or PD (3 daily 1-h exchanges) groups for 8 days. Renal and LV pathology and transcriptomic analysis was performed. The PD regimen reduced circulating levels of BUN in 5/6Nx, indicating dialysis efficacy. PD did not alter blood pressure or cardiovascular function in Sham or 5/6Nx rats, though it attenuated cardiac hypertrophy. Importantly PD increased serum triglycerides in 5/6Nx rats. Furthermore, transcriptomic analysis revealed that PD induced numerous changed transcripts involved with inflammatory pathways, including neutrophil activation and atherosclerosis signaling. We have adapted a uremic rat model of chronic PD. Chronic PD induced transcriptomic changes related to inflammatory signaling that occur independent of 5/6Nx and augmented circulating triglycerides and predicted atherosclerosis signaling in 5/6Nx LV tissues. The changes are indicative of increased CV risk due to PD and highlight several pathways for potential therapeutic targets.
Collapse
Affiliation(s)
- Victoria L Nasci
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Amanda M Marks
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Zhang P, Miyata KN, Nast CC, LaPage JA, Mahoney M, Nguyen S, Khan K, Wu Q, Adler SG, Dai T. Dual therapy with an angiotensin receptor blocker and a JAK1/2 inhibitor attenuates dialysate-induced angiogenesis and preserves peritoneal membrane structure and function in an experimental CKD rat model. ARCH ESP UROL 2022; 43:159-167. [PMID: 35946050 DOI: 10.1177/08968608221116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Peritoneal dialysis (PD) is limited by reduced efficacy over time. We previously showed that a Janus kinase 1/2 inhibitor (JAK1/2i) reduced inflammation, hypervascularity and fibrosis induced by 4.25% dextrose dialysate (4.25%D) intraperitoneally (IP) infused for 10 days in rats with normal kidney function. JAK/STAT signalling mediates inflammatory pathways, including angiotensin signalling. We now tested the effect of long-term JAK1/2i and/or an angiotensin receptor blocker (ARB) on peritoneal membrane (PM) in polycystic kidneys (PCK) rats infused with 4.25%D. METHODS Except for controls, all PCK rats had a tunnelled PD catheter: (1) no infusions; (2) 4.25%D; (3) 4.25%D + JAK1/2i (5 mg/kg); (4) 4.25%D +losartan (5 mg/kg); and (5) 4.25%D + losartan +JAK1/2i (5 mg/kg each) IP BID × 16 weeks (N = 5/group). PM VEGFR2 staining areas and submesothelial compact zone (SMCZ) width were morphometrically measured. Peritoneal equilibration testing measured peritoneal ultrafiltration (UF) by calculating dialysate glucose at time 0 and 90 min (D/D0 glucose). RESULTS 4.25%D caused hypervascularity, SMCZ widening, fibrosis and UF functional decline in PCK rats. Angiogenesis was significantly attenuated by JAK1/2i ± ARB but not by ARB monotherapy. Both treatments reduced SMCZ area. UF was preserved consistently by dual therapy (p < 0.05) but with inconsistent responses by monotherapies. CONCLUSION Long-term JAK1/2i ± ARB reduced angiogenesis and fibrosis, and the combination consistently maintained UF. In clinical practice, angiotensin inhibition has been advocated to maintain residual kidney function. Our study suggests that adding JAK1/2i to angiotensin inhibition may preserve PM structure and UF.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Nephrology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kana N Miyata
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Division of Nephrology, Department of Internal Medicine, Saint Louis University, St Louis, MO, USA
| | - Cynthia C Nast
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janine A LaPage
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Madisyn Mahoney
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sonny Nguyen
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kamran Khan
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Qiaoyuan Wu
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Nephrology, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Sharon G Adler
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tiane Dai
- Division of Nephrology and Hypertension, the Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
4
|
He Q, Wen L, Wang L, Zhang Y, Yu W, Zhang F, Zhang W, Xiao J, Wen X, Zhao Z. miR-15a-5p suppresses peritoneal fibrosis induced by peritoneal dialysis via targeting VEGF in rats. Ren Fail 2021; 42:932-943. [PMID: 32909490 PMCID: PMC7946059 DOI: 10.1080/0886022x.2020.1811123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim When peritoneal fibrosis (PF) causes ultrafiltration failure in peritoneal dialysis (PD) patients, PD has to be discontinued. Currently, there is no effective way to relieve PF. In this study, we aimed to determine whether miR-15a-5p is involved in PF and to determine the underlying mechanism. Methods Six normal rats were used as the control group. A uremic rat model was constructed using 5/6 nephrectomy in a Sprague–Dawley model. The uremic rats were randomly divided into PD, lentivirus-transfected, negative control, VEGFR-inhibited and gavage control groups. Except for the control group, all uremia rats received continuous PD for 28 days. In the lentivirus-transfected group, the miR-15a-5p plasmid was injected into the peritoneal cavity to upregulate miR-15a-5p expression. Axitinib was used to block vascular endothelial growth factor receptor (VEGFR) in the peritoneum. The mRNA levels of miR-15a-5p and VEGF were detected by qRT-PCR and FISH. Protein levels of VEGF, E-cadherin, collagen IV, fibronectin and α-SMA were detected by western blot and immunohistochemistry. Results PD leads to peritoneal thickening and fibrosis. The expression level of miR-15a-5p decreased and that of VEGF increased in the PD group than in the controls. Additionally, E-cadherin was significantly reduced while collagen IV, fibronectin and α-SMA were obviously increased in the PD group compared to controls. FISH showed that VEGF might be the target gene of miR-15a-5p. Overexpression of miR-15a-5p or inhibition of VEGFR could reverse PF. Conclusion miR-15a-5p may participate in the endothelial to mesenchymal transition of PF caused by PD through VEGF.
Collapse
Affiliation(s)
- Qianxin He
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Wen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luyao Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fanliang Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weifeng Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuejun Wen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Sugiyama N, Tawada M, Sun T, Suzuki Y, Kinashi H, Yamaguchi M, Katsuno T, Aten J, Vlahu CA, van Kuppevelt TH, Takei Y, Ishimoto T, Maruyama S, Mizuno M, Ito Y. Low-GDP, pH-neutral solutions preserve peritoneal endothelial glycocalyx during long-term peritoneal dialysis. Clin Exp Nephrol 2021; 25:1035-1046. [PMID: 33999275 DOI: 10.1007/s10157-021-02078-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND During peritoneal dialysis (PD), solute transport and ultrafiltration are mainly achieved by the peritoneal blood vasculature. Glycocalyx lies on the surface of endothelial cells and plays a role in vascular permeability. Low-glucose degradation product (GDP), pH-neutral PD solutions reportedly offer higher biocompatibility and lead to less peritoneal injury. However, the effects on the vasculature have not been clarified. METHODS Peritoneal tissues from 11 patients treated with conventional acidic solutions (acidic group) and 11 patients treated with low-GDP, pH-neutral solutions (neutral group) were examined. Control tissues were acquired from 5 healthy donors of kidney transplants (control group). CD31 and ratio of luminal diameter to vessel diameter (L/V ratio) were evaluated to identify endothelial cells and vasculopathy, respectively. Immunostaining for heparan sulfate (HS) domains and Ulex europaeus agglutinin-1 (UEA-1) binding was performed to assess sulfated glycosaminoglycans and the fucose-containing sugar chain of glycocalyx. RESULTS Compared with the acidic group, the neutral group showed higher CD31 positivity. L/V ratio was significantly higher in the neutral group, suggesting less progression of vasculopathy. Both HS expression and UEA-1 binding were higher in the neutral group, whereas HS expression was markedly more preserved than UEA-1 binding in the acidic group. In vessels with low L/V ratio, which were found only in the acidic group, HS expression and UEA-1 binding were diminished, suggesting a loss of glycocalyx. CONCLUSION Peritoneal endothelial glycocalyx was more preserved in patients treated with low-GDP, pH-neutral solution. The use of low-GDP, pH-neutral solutions could help to protect peritoneal vascular structures and functions.
Collapse
Affiliation(s)
- Naoya Sugiyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Tawada
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Jan Aten
- Department of Pathology, Amsterdam University Medical Center (Location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen A Vlahu
- Department of Pathology, Amsterdam University Medical Center (Location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yoshifumi Takei
- Department of Medicinal Biochemistry, Aichi Gakuin University School of Pharmacy, Nagoya, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
6
|
Abstract
♦ Background By virtue of their high net negative charge, glycosaminoglycans and proteoglycans play pivotal roles in biologic processes such as cell–cell and cell–matrix interactions, sequestration of growth factors, activation of chemokines and cytokines, and permselectivity of basement membranes. ♦ Methods The present article reviews the putative roles of glycosaminoglycans and proteoglycans in the peritoneal cavity during normal peritoneal homeostasis and chronic inflammation, the latter induced by constant exposure of the peritoneum to non-physiologic peritoneal dialysis (PD) solutions. ♦ Results Glycosaminoglycans have been identified in the mesothelial glycocalyx, a slippery, non-adhesive layer that protects the peritoneal membrane from abrasion and infection. Dermatan sulfate proteoglycans can neutralize the activity of transforming growth factor β1 and can thus play an essential role in modulating peritoneal fibrosis. Heparan sulfate proteoglycans play a crucial role in the sequestration of growth factors; they also modulate selective permeability of proteins across the peritoneal cavity. Reduced expression of perlecan, a heparan sulfate proteoglycan of the basement membrane, is observed in peritoneal biopsies obtained from established PD patients, consequent to prolonged exposure to the elevated glucose concentrations in conventional PD solutions. Supplementation of PD fluids with glycosaminoglycans has been shown to be beneficial to both the structural and functional integrity of the peritoneum. ♦ Conclusions Recent advances in the field of glycobiology have revealed a multitude of biologic processes that are controlled or influenced by glycosaminoglycans and proteoglycans. Altered synthesis of these macromolecules during PD has serious implications for the peritoneal transport of proteins, host defense, wound healing, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| | - Chan Tak Mao
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
7
|
Abstract
♦ Background The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of the peritoneal mesothelial cell. Mesothelial cells isolated from omental tissue have immunohistochemical markers that are identical to those of mesothelial stem cells, and omental mesothelial cells can be cultivated in vitro to study changes to their biologic functions in the setting of PD. ♦ Method The present article describes the structure and function of mesothelial cells in the normal peritoneum and details the morphologic changes that occur after the introduction of PD. Furthermore, this article reviews the literature of mesothelial cell culture and the limitations of in vitro studies. ♦ Results The mesothelium is now considered to be a dynamic membrane that plays a pivotal role in the homeostasis of the peritoneal cavity, contributing to the control of fluid and solute transport, inflammation, and wound healing. These functional properties of the mesothelium are compromised in the setting of PD. Cultures of peritoneal mesothelial cells from omental tissue provide a relevant in vitro model that allows researchers to assess specific molecular pathways of disease in a distinct population of cells. Structural and functional attributes of mesothelial cells are discussed in relation to long-term culture, proliferation potential, age of tissue donor, use of human or animal in vitro models, and how the foregoing factors may influence in vitro data. ♦ Conclusions The ability to propagate mesothelial cells in culture has resulted, over the past two decades, in an explosion of mesothelial cell research pertaining to PD and peritoneal disorders. Independent researchers have highlighted the potential use of mesothelial cells as targets for gene therapy or transplantation in the search to provide therapeutic strategies for the preservation of the mesothelium during chemical or bacterial injury.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| | - Chan Tak Mao
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
8
|
Abstract
Peritoneal fibrosis (PF) is invariably observed in patients undergoing long-term peritoneal dialysis (PD). The condition is thought to occur in response to a variety of insults, including bioincompatible dialysates (acidic solution, high glucose, glucose degradation products, or a combination), peritonitis, uremia, and chronic inflammation. Recently, the pathophysiologic mechanisms that contribute to the fibrosing process have been intensively studied. Transforming growth factor-β has been shown to be a key mediator of PF. Loss of the mesothelial cell layer has been identified in several studies and shown to correlate with submesothelial thickening and vasculopathy. An association has also been identified between increased submesothelial thickness in the peritoneal membrane and increased solute transport, suggesting a relationship between PF and loss of ultrafiltration capacity. Thus, to maintain long-term PD and improve quality of life for patients, it is important to develop interventions for prevention and treatment of PF. Several strategies for peritoneal fibrosis intervention have been reported, including developing biocompatible dialysate, targeting mediators responsible for inflammation and fibrosis, and reconstituting the peritoneum using mesothelial or bone marrow–derived cells. Recent experimental trials in animal models and clinical studies are presented in this review.
Collapse
Affiliation(s)
- Kayo Kaneko
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Chieko Hamada
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Yung S, Hausser H, Thomas G, Schaefer L, Kresse H, Davies M. Catabolism of Newly Synthesized Decorin in vitro by Human Peritoneal Mesothelial Cells. Perit Dial Int 2020. [DOI: 10.1177/089686080402400205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Previous studies have shown that decorin and biglycan account for over 70% of the proteoglycans (PGs) synthesized by human peritoneal mesothelial cells (HPMCs). Since these PGs are involved in the control of cell growth, cell differentiation, and matrix assembly, we investigated their turnover in cultured HPMCs. Methods Confluent HPMCs were metabolically labeled with [35S]-sulfate and the labeled products isolated from the cell medium and the cell layer characterized by sensitivity to bacterial eliminases. Experiments were undertaken with exogenous labeled decorin, and its metabolic state was studied. Results In a 24-hour labeling period, 75% of the newly synthesized chondroitin sulfate/dermatan sulfate (CS/DS) PGs appeared in the culture medium, the majority of which (90%) was decorin. In the cell layer, protein-free glycosaminoglycan (GAG) chains accounted for 21% of the total CS/DS at 24 hours and exhibited constant specific activity at 12 – 16 hours. The latter material was turned over with a half-life of approximately 2.5 hours. Exogenous decorin underwent receptor-mediated endocytosis and subsequent intracellular degradation. Uptake but not degradation could be inhibited by heparin. Conclusions HPMCs are distinguished by a rapid turnover of decorin. A characteristic metabolic feature is the existence of a large intracellular pool of protein-free DS-GAGs. Understanding the control of decorin turnover in HPMCs might lead to delineation of its potential role in both the physiology and pathophysiology of the membrane in PD patients.
Collapse
Affiliation(s)
- Susan Yung
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, United Kingdom
| | - Heinz Hausser
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Gareth Thomas
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, United Kingdom
| | - Liliana Schaefer
- Medizinische Poliklinik D, University of Münster, Münster, Germany
| | - Hans Kresse
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Malcolm Davies
- Institute of Nephrology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, United Kingdom
| |
Collapse
|
10
|
Margetts PJ, Bonniaud P. Basic Mechanisms and Clinical Implications of Peritoneal Fibrosis. Perit Dial Int 2020. [DOI: 10.1177/089686080302300604] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Peter J. Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philippe Bonniaud
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Abstract
The development of peritoneal dialysis has been paralleled by a growing interest in establishing suitable experimental models to better understand the functional and structural processes operating in the peritoneal membrane. Thus far, most investigations have been performed in rat and rabbit models, with mechanistic insights essentially based on intervention studies using pharmacological agents, blocking antibodies, or transient expression systems. Since the body size of a species is no longer a limiting factor in the performance of in vivo studies related to peritoneal dialysis, it has been considered that mice, particularly once they have been genetically modified, could provide an attractive tool to investigate the molecular mechanisms operating in the peritoneal membrane. The purpose of this review is to illustrate how investigators in peritoneal dialysis research, catching up with other fields of biomedical research, are increasingly taking advantage of mouse models to provide direct evidence of basic mechanisms involved in the major complications of peritoneal dialysis.
Collapse
Affiliation(s)
- Tomoya Nishino
- Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium
| | - Jie Ni
- Division of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Olivier Devuyst
- Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium
| |
Collapse
|
12
|
Hoff CM, Margetts PJ. Adenovirus-Based Transient Expression Systems for Peritoneal Membrane Research. Perit Dial Int 2020. [DOI: 10.1177/089686080602600505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BackgroundPeritoneal membrane research has provided important insights into the physiology and pathophysiology of this tissue that is of vital importance for peritoneal dialysis patients. Among the various tools and methodologies used to study the peritoneum, we have extensively used adenovirus-mediated gene transfer.MethodsA literature review was carried out. Information from reviewed papers was combined with the authors’ experience and results.ResultsWe have used first-generation adenoviruses that are simple to construct and can infect a wide range of dividing and nondividing cell types. These vectors are restricted, however, in that they provide only a short duration of transgene expression and may elicit an inflammatory response. Modifications to this technology with helper-dependent adenovirus may circumvent these problems but with increased complexity of construction. Adenovirus-mediated gene transfer has been used to evaluate the effect of several cytokines and growth factors on peritoneal membrane physiology. We have used intraperitoneal delivery of transforming growth factor-β to generate an experimental model system of resolving peritoneal fibrosis and epithelial mesenchymal transdifferentiation. We have studied the effects of the inflammatory cytokines interleukin-1β and tumor necrosis factor alpha on the peritoneum, and have shown that antiangiogenic factors such as sFLT-1 and angiostatin can reduce the damaging effects of exposure to peritoneal dialysis solutions in an animal model.ConclusionsThe use of recombinant adenoviruses to genetically modify cells and tissues is now a common laboratory research tool. This technique has provided important advances in our understanding of the peritoneal membrane.
Collapse
Affiliation(s)
- Catherine M. Hoff
- Scientific Affairs, Renal Division, Baxter Healthcare Corporation, McGaw Park, Illinois, USA
| | - Peter J. Margetts
- Department of Medicine, McMaster University and Division of Nephrology, St. Joseph's Hospital, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Jiang N, Zhang Q, Chau MK, Yip MS, Lui SL, Liu S, Chu KM, Ngan HY, Chan TM, Yung S. Anti-fibrotic effect of decorin in peritoneal dialysis and PD-associated peritonitis. EBioMedicine 2020; 52:102661. [PMID: 32062358 PMCID: PMC7016379 DOI: 10.1016/j.ebiom.2020.102661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Progressive peritoneal fibrosis is a common complication in patients on long-term peritoneal dialysis (PD). PD-associated peritonitis is a major exacerbating factor. We investigated the anti-fibrotic properties of decorin secreted by peritoneal mesothelial cells. METHODS Dialysate decorin level in stable PD patients and those with peritonitis was measured. In vitro experiments were conducted to investigate the effect of decorin in fibrotic response in human peritoneal mesothelial cells (HPMC). FINDINGS Increasing PD duration was associated with a progressive decrease of dialysate decorin and CA125 levels. Dialysate decorin level correlated with CA125 level. Peritonitis episodes were associated with a massive drop of dialysate decorin, which persisted for over three months despite clinical recovery. Dialysate decorin level correlated with that of TGF-β1, but was inversely related to IL-1β and IL-8. TGF-β1, IL-1β, IL-6, IL-8, or TNF-α reduced decorin secretion in HPMC, but induced fibronectin expression. The effects were mediated in part through increased p38 MAPK and AKT/PI3K phosphorylation. Decorin abrogated the induction of fibronectin expression in mesothelial cells by PD fluids or pro-fibrotic cytokines, through decreased TGF-βRI, p38 MAPK and AKT/PI3K phosphorylation and increased glycogen synthase kinase-3β phosphorylation. Decorin gene-silencing resulted in increased fibronectin expression under these conditions. INTERPRETATION Our data demonstrate anti-fibrotic actions of decorin in HPMC, when these cells are subjected to the pro-fibrotic effect of peritoneal dialysate and pro-fibrotic cytokines in PD, especially during peritonitis.
Collapse
Affiliation(s)
- Na Jiang
- Department of Medicine, The University of Hong Kong, Hong Kong; Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Mel Km Chau
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Ming S Yip
- Department of Medicine, The University of Hong Kong, Hong Kong
| | | | | | - Kent Man Chu
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Hong Kong.
| | - Susan Yung
- Department of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
14
|
Li X, Liu H, Sun L, Zhou X, Yuan X, Chen Y, Liu F, Liu Y, Xiao L. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. J Cell Mol Med 2019; 23:2372-2383. [PMID: 30693641 PMCID: PMC6433681 DOI: 10.1111/jcmm.14029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Long‐term peritoneal dialysis (PD) can lead to the induction of mesothelial/epithelial‐mesenchymal transition (MMT/EMT) and fibrosis; these effects eventually result in ultrafiltration failure and the discontinuation of PD. MicroRNA‐302c (miR‐302c) is believed to be involved in regulating tumour cell growth and metastasis by suppressing MMT, but the effect of miR‐302c on MMT in the context of PD is unknown. MiR‐302c levels were measured in mesothelial cells isolated from the PD effluents of continuous ambulatory peritoneal dialysis patients. After miR‐302c overexpression using lentivirus, human peritoneal mesothelial cell line (HMrSV5) and PD mouse peritoneum were treated with TGF‐β1 or high glucose peritoneal dialysate respectively. MiR‐302c expression level and MMT‐related factors alteration were observed. In addition, fibrosis of PD mouse peritoneum was alleviated by miR‐302c overexpression. Furthermore, the expression of connective tissue growth factor (CTGF) was negatively related by miR‐302c, and LV‐miR‐302c reversed the up‐regulation of CTGF induced by TGF‐β1. These data suggest that there is a novel TGF‐β1/miR‐302c/CTGF pathway that plays a significant role in the process of MMT and fibrosis during PD. MiR‐302c might be a potential biomarker for peritoneal fibrosis and a novel therapeutic target for protection against peritoneal fibrosis in PD patients.
Collapse
Affiliation(s)
- Xiejia Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinke Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Sustained release of decorin to the surface of the eye enables scarless corneal regeneration. NPJ Regen Med 2018; 3:23. [PMID: 30588331 PMCID: PMC6303295 DOI: 10.1038/s41536-018-0061-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022] Open
Abstract
Disorganization of the transparent collagenous matrix in the cornea, as a consequence of a variety of infections and inflammatory conditions, leads to corneal opacity and sight-loss. Such corneal opacities are a leading cause of blindness, according to the WHO. Public health programs target prevention of corneal scarring, but the only curative treatment of established scarring is through transplantation. Although attempts to minimize corneal scarring through aggressive control of infection and inflammation are made, there has been little progress in the development of anti-scarring therapies. This is owing to eye drop formulations using low viscosity or weak gelling materials having short retention times on the ocular surface. In this study, we report an innovative eye drop formulation that has the ability to provide sustained delivery of decorin, an anti-scarring agent. The novelty of this eye drop lies in the method of structuring during manufacture, which creates a material that can transition between solid and liquid states, allowing retention in a dynamic environment being slowly removed through blinking. In a murine model of Pseudomonaskeratitis, applying the eye drop resulted in reductions of corneal opacity within 16 days. More remarkably, the addition of hrDecorin resulted in restoration of corneal epithelial integrity with minimal stromal opacity endorsed by reduced α-smooth muscle actin (αSMA), fibronectin, and laminin levels. We believe that this drug delivery system is an ideal non-invasive anti-fibrotic treatment for patients with microbial keratitis, potentially without recourse to surgery, saving the sight of many in the developing world, where corneal transplantation may not be available. An eye drop formulation that applies anti-scarring drugs to the surface of the eye helps reverse infection-induced corneal damage in mice. Hill et al. from the University of Birmingham, UK, formulated a fluid gel loaded with a wound-healing protein called decorin that conforms to the ocular surface and is cleared gradually through blinking. With colleagues in California, they applied the therapeutic eye drop to mice with bacterial eye infections that trigger sight-threatening corneal scarring. Within a matter of days, the team saw improvements in corneal transparency, with reductions in scar tissue and reconstitution of healthy cells. Such a drug delivery system, if successful in humans, could help save many people’s sight and reduce the need for corneal transplantation.
Collapse
|
16
|
Raby AC, Labéta MO. Preventing Peritoneal Dialysis-Associated Fibrosis by Therapeutic Blunting of Peritoneal Toll-Like Receptor Activity. Front Physiol 2018; 9:1692. [PMID: 30538643 PMCID: PMC6277495 DOI: 10.3389/fphys.2018.01692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Peritoneal dialysis (PD) is an essential daily life-saving treatment for end-stage renal failure. PD therapy is limited by peritoneal inflammation, which leads to peritoneal membrane failure as a result of progressive fibrosis. Peritoneal infections, with the concomitant acute inflammatory response and membrane fibrosis development, worsen PD patient outcomes. Patients who remain infection-free, however, also show evidence of inflammation-induced membrane damage and fibrosis, leading to PD cessation. In this case, uraemia, prolonged exposure to bio-incompatible PD solutions and surgical catheter insertion have been reported to induce sterile peritoneal inflammation and fibrosis as a result of cellular stress or tissue injury. Attempts to reduce inflammation (either infection-induced or sterile) and, thus, minimize fibrosis development in PD have been hampered because the immunological mechanisms underlying this PD-associated pathology remain to be fully defined. Toll-like receptors (TLRs) are central to mediating inflammatory responses by recognizing a wide variety of microorganisms and endogenous components released following cellular stress or generated as a consequence of extracellular matrix degradation during tissue injury. Given the close link between inflammation and fibrosis, recent investigations have evaluated the role that TLRs play in infection-induced and sterile peritoneal fibrosis development during PD. Here, we review the findings and discuss the potential of reducing peritoneal TLR activity by using a TLR inhibitor, soluble TLR2, as a therapeutic strategy to prevent PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Anne-Catherine Raby
- The Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mario O Labéta
- The Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Witowski J, Kamhieh-Milz J, Kawka E, Catar R, Jörres A. IL-17 in Peritoneal Dialysis-Associated Inflammation and Angiogenesis: Conclusions and Perspectives. Front Physiol 2018; 9:1694. [PMID: 30534087 PMCID: PMC6275317 DOI: 10.3389/fphys.2018.01694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Long-term peritoneal dialysis (PD) is associated with peritoneal membrane remodeling. This includes changes in peritoneal vasculature, which may ultimately lead to inadequate solute and water removal and treatment failure. The potential cause of such alterations is chronic inflammation induced by repeated episodes of infectious peritonitis and/or exposure to bioincompatible PD fluids. While these factors may jeopardize the peritoneal membrane integrity, it is not clear why adverse peritoneal remodeling develops only in some PD patients. Increasing evidence points to the differences that occur between patients in response to the same invading microorganism and/or the differences in the course of inflammatory reaction triggered by different species. Such differences may be related to the involvement of different inflammatory mediators. Here, we discuss the potential role of IL-17 in these processes with emphasis on its impact on peritoneal mesothelial cells and peritoneal vascularity.
Collapse
Affiliation(s)
- Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland.,Department of Nephrology, Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Rusan Catar
- Department of Nephrology, Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Achim Jörres
- Department of Medicine I, Nephrology, Transplantation, Medical Intensive Care, University of Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| |
Collapse
|
18
|
Tamoxifen attenuates dialysate-induced peritoneal fibrosis by inhibiting GSK-3β/β-catenin axis activation. Biosci Rep 2018; 38:BSR20180240. [PMID: 30061174 PMCID: PMC6246765 DOI: 10.1042/bsr20180240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/04/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
Peritoneal fibrosis is a severe complication arising from long-term peritoneal dialysis (PD). Tamoxifen (Tamo) has been clinically proven effective in a series of fibrotic diseases, such as PD-associated encapsulating peritoneal sclerosis (EPS), but the mechanisms underlying Tamoxifen’s protective effects are yet to be defined. In the present study, C57BL/6 mice received intraperitoneal injections of either saline, 4.25% high glucose (HG) PD fluid (PDF) or PDF plus Tamoxifen each day for 30 days. Tamoxifen attenuated thickening of the peritoneum, and reversed PDF-induced peritoneal expression of E-cadherin, Vimentin, matrix metalloproteinase 9 (MMP9), Snail, and β-catenin. Mouse peritoneal mesothelial cells (mPMCs) were cultured in 4.25% glucose or 4.25% glucose plus Tamoxifen for 48 h. Tamoxifen inhibited epithelial-to-mesenchymal transition (EMT) as well as phosphorylation of glycogen synthase kinase-3β (GSK-3β), nuclear β-catenin, and Snail induced by exposure to HG. TWS119 reversed the effects of Tamoxifen on β-catenin and Snail expression. In conclusion, Tamoxifen significantly attenuated EMT during peritoneal epithelial fibrosis, in part by inhibiting GSK-3β/β-catenin activation.
Collapse
|
19
|
Targeting Toll-like receptors with soluble Toll-like receptor 2 prevents peritoneal dialysis solution-induced fibrosis. Kidney Int 2018; 94:346-362. [PMID: 29861057 DOI: 10.1016/j.kint.2018.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Peritoneal membrane failure due to fibrosis limits the use of peritoneal dialysis (PD). Peritoneal fibrosis may potentially be induced by sterile inflammation caused by ongoing cellular stress due to prolonged exposure to PD solutions (PDS). Effective therapies to prevent this process remain to be developed. Toll-like receptors (TLRs) mediate sterile inflammation by recognizing damage-associated molecular patterns (DAMPs) released by cellular stress. We evaluated the involvement of TLRs and DAMPs in PDS-induced fibrosis models and the therapeutic potential of TLR-DAMP targeting for preventing fibrosis. A range of PDS elicited pro-inflammatory and fibrotic responses from PD patient peritoneal leukocytes, mesothelial cells and mouse peritoneal leukocytes. TLR2/4 blockade of human peritoneal cells or TLR2/4 knockouts inhibited these effects. PDS did not induce rapid ERK phosphorylation or IκB-α degradation, suggesting that they do not contain components capable of direct TLR activation. However, PDS increased the release of Hsp70 and hyaluronan, both TLR2/4 DAMP ligands, by human and mouse peritoneal cells, and their blockade decreased PDS-driven inflammation. Soluble TLR2, a TLR inhibitor, reduced PDS-induced pro-inflammatory and fibrotic cytokine release ex vivo. Daily catheter infusion of PDS in mice caused peritoneal fibrosis, but co-administration of soluble TLR2 prevented fibrosis, suppressed pro-fibrotic gene expression and pro-inflammatory cytokine production, reduced leukocyte/neutrophil recruitment, recovered Treg cell levels and increased the Treg:Th17 ratio. Thus, TLR2/4, Hsp70 and hyaluronan showed major roles in PDS-induced peritoneal inflammation and fibrosis. The study demonstrates the therapeutic potential of a TLR-DAMP targeting strategy to prevent PDS-induced fibrosis.
Collapse
|
20
|
Kariya T, Nishimura H, Mizuno M, Suzuki Y, Matsukawa Y, Sakata F, Maruyama S, Takei Y, Ito Y. TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Am J Physiol Renal Physiol 2018; 314:F167-F180. [DOI: 10.1152/ajprenal.00052.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The characteristic features of chronic peritoneal injury with peritoneal dialysis (PD) are submesothelial fibrosis and neoangiogenesis. Transforming growth factor (TGF)β and vascular endothelial growth factor (VEGF)-A are the main mediators of fibrosis and neoangiogenesis, respectively; however, the effect of the interaction between them on the peritoneum is not well known. In this study, we investigated the relationship between TGF-β1 and VEGF-A in inducing peritoneal fibrosis by use of human tissues and dialysate, cultured cells, and animal models. The VEGF-A concentration correlated with the dialysate-to-plasma ratio of creatinine (D/P Cr) ( P < 0.001) and TGF-β1 ( P < 0.001) in human PD effluent. VEGF-A mRNA levels increased significantly in the peritoneal tissues of human ultrafiltration failure (UFF) patients and correlated with number of vessels ( P < 0.01) and peritoneal thickness ( P < 0.001). TGF-β1 increased VEGF-A production in human mesothelial cell lines and fibroblast cell lines, and TGF-β1-induced VEGF-A was suppressed by TGF-β receptor I (TGFβR-I) inhibitor. Incremental peak values of VEGF-A mRNA stimulated by TGF-β1 in human cultured mesothelial cells derived from PD patients with a range of peritoneal membrane functions correlated with D/P Cr ( P < 0.05). To evaluate the regulatory mechanisms of VEGF-A and neoangiogenesis in vivo, we administered TGFβR-I inhibitor intraperitoneally in a rat chlorhexidine-induced peritoneal injury (CG) model. TGFβR-I inhibitor administration in the CG model decreased peritoneal thickness ( P < 0.001), the number of vessels ( P < 0.001), and VEGF-A levels ( P < 0.05). These results suggest that neoangiogenesis is associated with fibrosis through the TGF-β1-VEGF-A pathway in mesothelial cells and fibroblasts. These findings are important when considering the strategy for management of UFF in PD patients.
Collapse
Affiliation(s)
- Tetsuyoshi Kariya
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hayato Nishimura
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Futatsuya Hospital, Ishikawa, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiko Sakata
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshifumi Takei
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Medical Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Nephrology and Rheumatology, Aichi Medical University School of Medicine, Aichi, Japan
| |
Collapse
|
21
|
Eich G, Bartosova M, Tischer C, Wlodkowski TT, Schaefer B, Pichl S, Kraewer N, Ranchin B, Vondrak K, Liebau MC, Hackert T, Schmitt CP. Bicarbonate buffered peritoneal dialysis fluid upregulates angiopoietin-1 and promotes vessel maturation. PLoS One 2017; 12:e0189903. [PMID: 29253861 PMCID: PMC5734783 DOI: 10.1371/journal.pone.0189903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/04/2017] [Indexed: 11/28/2022] Open
Abstract
Background Ultrafiltration decline is a progressive issue for patients on chronic peritoneal dialysis (PD) and can be caused by peritoneal angiogenesis induced by PD fluids. A recent pediatric trial suggests better preservation of ultrafiltration with bicarbonate versus lactate buffered fluid; underlying molecular mechanisms are unknown. Methods Angiogenic cytokine profile, tube formation capacity and Receptor Tyrosine Kinase translocation were assessed in primary human umbilical vein endothelial cells following incubation with bicarbonate (BPDF) and lactate buffered (LPDF), pH neutral PD fluid with low glucose degradation product content and lactate buffered, acidic PD fluid with high glucose degradation product content (CPDF). Peritoneal biopsies from age-, PD-vintage- and dialytic glucose exposure matched, peritonitis-free children on chronic PD underwent automated histomorphometry and immunohistochemistry. Results In endothelial cells angiopoietin-1 mRNA and protein abundance increased 200% upon incubation with BPDF, but decreased by 70% with LPDF as compared to medium control; angiopoietin-2 remained unchanged. Angiopoietin-1/Angiopoietin-2 protein ratio was 15 and 3-fold increased with BPDF compared to LPDF and medium. Time-lapse microscopy with automated network analysis demonstrated less endothelial cell tube formation with BPDF compared to LPDF and CPDF incubation. Receptor Tyrosine Kinase translocated to the cell membrane in BPDF but not in LPDF or CPDF incubated endothelial cells. In children dialyzed with BPDF peritoneal vessels were larger and angiopoietin-1 abundance in CD31 positive endothelium higher compared to children treated with LPDF. Conclusion Bicarbonate buffered PD fluid promotes vessel maturation via upregulation of angiopoietin-1 in vitro and in children on dialysis. Our findings suggest a molecular mechanism for the observed superior preservation of ultrafiltration capacity with bicarbonate buffered PD fluid with low glucose degradation product content.
Collapse
Affiliation(s)
- Gwendolyn Eich
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Tanja Tamara Wlodkowski
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Betti Schaefer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Pichl
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Kraewer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Ranchin
- Service de Néphrologie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, France
| | - Karel Vondrak
- Department of Pediatrics, University Hospital Motol, Prague, Czech Republic
| | - Max Christoph Liebau
- Pediatric Nephrology, Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | - Thilo Hackert
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
22
|
Igarashi Y, Hoshino T, Ookawara S, Ishibashi K, Morishita Y. Nano-sized carriers in gene therapy for peritoneal fibrosis in vivo. NANO REVIEWS & EXPERIMENTS 2017; 8:1331100. [PMID: 30410706 PMCID: PMC6167028 DOI: 10.1080/20022727.2017.1331100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/11/2017] [Indexed: 11/07/2022]
Abstract
Peritoneal fibrosis is a crucial complication in patients receiving peritoneal dialysis. It is a major pathological feature of peritoneal membrane failure, which leads to withdrawal of peritoneal dialysis. No specific therapy has yet been established for the treatment of peritoneal fibrosis. However, gene therapy may be a viable option, and various nano-sized carriers, including viral and non-viral vectors, have been shown to enhance the delivery and efficacy of gene therapy for peritoneal fibrosis in vivo. This review focuses on the use of nano-sized carriers in gene therapy of peritoneal fibrosis in vivo.
Collapse
Affiliation(s)
- Yusuke Igarashi
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Taro Hoshino
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
23
|
Ito Y, Kinashi H, Katsuno T, Suzuki Y, Mizuno M. Peritonitis-induced peritoneal injury models for research in peritoneal dialysis review of infectious and non-infectious models. RENAL REPLACEMENT THERAPY 2017. [DOI: 10.1186/s41100-017-0100-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Catar R, Witowski J, Zhu N, Lücht C, Derrac Soria A, Uceda Fernandez J, Chen L, Jones SA, Fielding CA, Rudolf A, Topley N, Dragun D, Jörres A. IL-6 Trans-Signaling Links Inflammation with Angiogenesis in the Peritoneal Membrane. J Am Soc Nephrol 2016; 28:1188-1199. [PMID: 27837150 DOI: 10.1681/asn.2015101169] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is implicated in the peritoneal membrane remodeling that limits ultrafiltration in patients on peritoneal dialysis (PD). Although the exact mechanism of VEGF induction in PD is unclear, VEGF concentrations in drained dialysate correlate with IL-6 levels, suggesting a link between these cytokines. Human peritoneal mesothelial cells (HPMCs), the main source of IL-6 and VEGF in the peritoneum, do not bear the cognate IL-6 receptor and are thus unable to respond to classic IL-6 receptor signaling. Here, we investigated whether VEGF release by HPMCs is controlled by IL-6 in combination with its soluble receptor (IL-6 trans-signaling). Although treatment with either IL-6 or soluble IL-6 receptor (sIL-6R) alone had no effect on VEGF production, stimulation of HPMCs with IL-6 in combination with sIL-6R promoted VEGF expression and secretion through a transcriptional mechanism involving STAT3 and SP4. Conditioned medium from HPMCs cultured with IL-6 and sIL-6R promoted angiogenic endothelial tube formation, which could be blocked by silencing SP4. In vivo, induction of peritoneal inflammation in wild-type and IL-6-deficient mice showed IL-6 involvement in the control of Sp4 and Vegf expression and new vessel formation, confirming the role of IL-6 trans-signaling in these processes. Taken together, these findings identify a novel mechanism linking IL-6 trans-signaling and angiogenesis in the peritoneal membrane.
Collapse
Affiliation(s)
- Rusan Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Janusz Witowski
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nan Zhu
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Lücht
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Lei Chen
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Andras Rudolf
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nicholas Topley
- Division of Infection and Immunity and.,Wales Kidney Research Unit, Cardiff University School of Medicine, Cardiff, United Kingdom; and
| | - Duska Dragun
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Achim Jörres
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; .,Department of Medicine I, Nephrology, Transplantation and Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Cologne, Germany
| |
Collapse
|
25
|
Mori Y, Kakuta T, Miyakogawa T, Takekoshi S, Yuzawa H, Kobayashi H, Kawakami A, Miyata T, Fukagawa M. Effect of Scavenging Circulating Reactive Carbonyls by Oral Pyridoxamine in Uremic Rats on Peritoneal Dialysis. Ther Apher Dial 2016; 20:645-654. [PMID: 27620210 DOI: 10.1111/1744-9987.12446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
Pyridoxamine, a reactive carbonyl (RCO) scavenger, can ameliorate peritoneal deterioration in uremic peritoneal dialysis (PD) rats when given via dialysate. We examined the effects of scavenging circulating RCOs by oral pyridoxamine. Rats underwent nephrectomy and 3 weeks of twice daily PD either alone or with once daily oral pyridoxamine. PD solution was supplemented with methylglyoxal, a major glucose-derived RCO, to quench intraperitoneal pyridoxamine. Oral pyridoxamine achieved comparable blood and dialysate pyridoxamine concentrations, suppressed pentosidine accumulation in the blood but not in the mesenterium or dialysate, and reduced the increases in small solute transport and mesenteric vessel densities, with no effects on submesothelial matrix layer thickening or serum creatinine. Thus, reducing circulating RCOs by giving oral pyridoxamine with PD provides limited peritoneal protection. However, orally given pyridoxamine efficiently reaches the peritoneal cavity and would eliminate intraperitoneal RCOs. Oral pyridoxamine is more clinically favorable and may be as protective as intraperitoneal administration.
Collapse
Affiliation(s)
- Yoshitaka Mori
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.,Unit of Translational Medicine, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takatoshi Kakuta
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan.,Department of Nephrology, Endocrinology and Metabolism, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan
| | - Takayo Miyakogawa
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Susumu Takekoshi
- Division of Basic Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hiroko Yuzawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Atsushi Kawakami
- Unit of Translational Medicine, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masafumi Fukagawa
- Department of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
26
|
Yung S, Lui SL, Ng CKF, Yim A, Ma MKM, Lo KY, Chow CC, Chu KH, Chak WL, Lam MF, Yung CY, Yip TPS, Wong S, Tang CSO, Ng FSK, Chan TM. Impact of a low-glucose peritoneal dialysis regimen on fibrosis and inflammation biomarkers. Perit Dial Int 2016; 35:147-58. [PMID: 25904773 DOI: 10.3747/pdi.2014.00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The impact of a low-glucose peritoneal dialysis (PD) regimen on biomarkers of peritoneal inflammation, fibrosis and membrane integrity remains to be investigated. METHODS In a randomized, prospective study, 80 incident PD patients received either a low-glucose regimen comprising Physioneal (P), Extraneal (E) and Nutrineal (N) (Baxter Healthcare Corporation, Deerfield, IL, USA) (PEN group), or Dianeal (control group) for 12 months, after which both groups continued with Dianeal dialysis for 6 months. Serum and dialysate levels of vascular endothelial growth factor (VEGF), decorin, hepatocyte growth factor (HGF), interleukin-6 (IL-6), macrophage migration inhibitory factor (MIF), hyaluronan (HA), adiponectin, soluble-intracellular adhesion molecule (s-ICAM), vascular cell adhesion molecule-1 (VCAM-1) and P-selectin, and dialysate cancer antigen 125 (CA125), were measured after 12 and 18 months. This paper focuses on results after 12 months, when patients in the PEN group changed to glucose-based PD fluid (PDF). RESULTS At the end of 12 months, effluent dialysate levels of CA125, decorin, HGF, IL-6, adiponectin and adhesion molecules were significantly higher in the PEN group compared to controls, but all decreased after patients switched to glucose-based PDF. Macrophage migration inhibitory factor level was lower in the PEN group but increased after changing to glucose-based PDF and was similar to controls at 18 months. Serum adiponectin level was higher in the PEN group at 12 months, but was similar in the 2 groups at 18 months. Body weight, residual renal function, ultrafiltration volume and total Kt/V did not differ between both groups. Dialysate-to-plasma creatinine ratio at 4 h was higher in the PEN group at 12 months and remained so after switching to glucose-based PDF. CONCLUSION Changes in the biomarkers suggest that the PEN PD regimen may be associated with better preservation of peritoneal membrane integrity and reduced systemic vascular endothelial injury.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | - Chris K F Ng
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Andrew Yim
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | - Colin S O Tang
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Flora S K Ng
- Department of Medicine, University of Hong Kong, Hong Kong Tung Wah Hospital, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, University of Hong Kong, Hong Kong Queen Mary Hospital, Hong Kong
| |
Collapse
|
27
|
Morishita Y, Ookawara S, Hirahara I, Muto S, Nagata D. HIF-1α mediates Hypoxia-induced epithelial-mesenchymal transition in peritoneal mesothelial cells. Ren Fail 2015; 38:282-9. [PMID: 26707495 DOI: 10.3109/0886022x.2015.1127741] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells plays a pivotal role in the development of peritoneal fibrosis. The pathological effects of hypoxia on mesothelial cell EMT have not been fully elucidated. In this study, we, therefore, investigated the effects of hypoxia on EMT in mesothelial cells. Human mesothelial (MeT-5A) cells and primary-cultured rat mesothelial cells were cultured under hypoxic conditions (1% O(2)) for up to 72 h. Changes in cell type were then determined by investigating changes in morphology and in expression of epithelial (E-cadherin and occludin) and mesenchymal (fibronectin-1, vimentin and α-smooth muscle actin) cell markers. In some cases, MeT-5A cells were cultured under hypoxic conditions with a HIF-1α inhibitor and then assessed for changes in morphology and for altered expression of signaling molecules, such as HIF-1α, Snail-1, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2). Levels of HIF-1α, Snail-1, VEGF, and MMP-2 in Met-5A cells were increased by hypoxia. Levels of epithelial cell markers were decreased and those of mesenchymal cell markers were increased. Cell morphology also changed from a cobblestone-like monolayer to spindle-shaped fibroblast-like cells in response to hypoxia. Inhibition of HIF-1α signaling by a HIF-1α inhibitor abrogated these changes. The cell marker and morphological changes induced by hypoxia were also observed in primary-cultured rat mesothelial cells. We can conclude that hypoxia induces EMT in mesothelial cells by activating HIF-1α. This finding indicates that hypoxia has pivotal roles in the development of peritoneal fibrosis in peritoneal dialysis patients.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- a Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Saitama , Japan
| | - Susumu Ookawara
- a Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Saitama , Japan
| | - Ichiro Hirahara
- a Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Saitama , Japan
| | - Shigeaki Muto
- b Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Tochigi , Japan
| | - Daisuke Nagata
- b Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Tochigi , Japan
| |
Collapse
|
28
|
Animal Models of Peritoneal Dialysis: Thirty Years of Our Own Experience. BIOMED RESEARCH INTERNATIONAL 2015; 2015:261813. [PMID: 26236720 PMCID: PMC4506843 DOI: 10.1155/2015/261813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/23/2014] [Accepted: 01/10/2015] [Indexed: 11/17/2022]
Abstract
Experimental animal models improve our understanding of technical problems in peritoneal dialysis PD, and such studies contribute to solving crucial clinical problems. We established an acute and chronic PD model in nonuremic and uremic rats. We observed that kinetics of PD in rats change as the animals are aging, and this effect is due not only to an increasing peritoneal surface area, but also to changes in the permeability of the peritoneum. Changes of the peritoneal permeability seen during chronic PD in rats are comparable to results obtained in humans treated with PD. Effluent dialysate can be drained repeatedly to measure concentration of various bioactive molecules and to correlate the results with the peritoneal permeability. Additionally we can study in in vitro conditions properties of the effluent dialysate on cultured peritoneal mesothelial cells or fibroblasts. We can evaluate acute and chronic effect of various additives to the dialysis fluid on function and permeability of the peritoneum. Results from such study are even more relevant to the clinical scenario when experiments are performed in uremic rats. Our experimental animal PD model not only helps to understand the pathophysiology of PD but also can be used for testing biocompatibility of new PD fluids.
Collapse
|
29
|
Mutsaers SE, Birnie K, Lansley S, Herrick SE, Lim CB, Prêle CM. Mesothelial cells in tissue repair and fibrosis. Front Pharmacol 2015; 6:113. [PMID: 26106328 PMCID: PMC4460327 DOI: 10.3389/fphar.2015.00113] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In addition to secreting proinflammatory mediators and contributing to both coagulation and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells. Fibrogenic mesothelial cells have now been identified in tissues where they have not previously been thought to occur, such as within the parenchyma of the fibrotic lung. These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic strategies to prevent or reverse the fibrotic process.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Kimberly Birnie
- Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Sally Lansley
- Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Sarah E Herrick
- Institute of Inflammation and Repair, Faculty of Medical and Human Sciences and Manchester Academic Health Science Centre, University of Manchester , Manchester, UK
| | - Chuan-Bian Lim
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Cecilia M Prêle
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| |
Collapse
|
30
|
Lin F, Wu X, Zhang H, You X, Zhang Z, Shao R, Huang C. A microrna screen to identify regulators of peritoneal fibrosis in a rat model of peritoneal dialysis. BMC Nephrol 2015; 16:48. [PMID: 25884636 PMCID: PMC4546227 DOI: 10.1186/s12882-015-0039-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/24/2015] [Indexed: 12/14/2022] Open
Abstract
Background Peritoneal fibrosis is a common complication in patients treated with long-term peritoneal dialysis. The aim of this study was to identify the microRNAs (miRNAs) involved in regulation of peritoneal fibrosis in a rat model of peritoneal dialysis. Methods Twenty-four Sprague–Dawley (SD) rats were randomly allocated into three groups: (i) Control group (Cg, n = 8); (ii) Saline group (Sg, n = 8): daily intraperitoneal injection with 0.9% normal saline; (iii) Hypertonic dialysate group (HDg, n = 8): daily intraperitoneal injection with 4.25% peritoneal dialysis solution. Rats were sacrificed after four weeks for histological evaluation of peritoneal membrane and the expression of α-SMA and COL-1. A miRNA screen was performed using microarray analysis to identify differentially expressed miRNAs, which were then validated by real-time PCR. Results Compared with the control and the saline groups, hypertonic dialysate group showed impaired peritoneal function accompanied by a spectrum of morphological changes including thicker peritoneal membrane, higher collagen deposition, infiltration of mononuclear cells and neovascularization in the peritoneum. Increased mRNA and protein levels of α-SMA and COL-1 were observed in hypertonic dialysate group, indicating the progression of peritoneal fibrosis. The miRNA screen identified 8 significantly down-regulated miRNAs (miR-31, miR-93, miR-100, miR-152, miR-497, miR-192, miR-194 and miR-200b) and one highly up-regulated miRNA (miR-122) in the hypertonic dialysate group. The results were confirmed by real-time PCR. Conclusions Altered miRNA expression in peritoneum was found in the rat model of peritoneal fibrosis, indicating that these miRNAs may be associated with pathogenesis of peritoneal fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s12882-015-0039-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Lin
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxuexiang Street, Wenzhou, Zhejiang, 325000, China.
| | - Xu Wu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxuexiang Street, Wenzhou, Zhejiang, 325000, China.
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxuexiang Street, Wenzhou, Zhejiang, 325000, China.
| | - Xiaohan You
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxuexiang Street, Wenzhou, Zhejiang, 325000, China.
| | - Zhoucang Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxuexiang Street, Wenzhou, Zhejiang, 325000, China.
| | - Rongrong Shao
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxuexiang Street, Wenzhou, Zhejiang, 325000, China.
| | - Chaoxing Huang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxuexiang Street, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
31
|
Yavaşcan Ö, Aksu N, Alparslan C, Sarıtaş S, Elmas CH, Eraslan AN, Duman S, Mir S. The importance of ultrasonographic measurement of peritoneal wall thickness in pediatric chronic peritoneal dialysis patients. Ren Fail 2015; 37:381-6. [DOI: 10.3109/0886022x.2014.1001280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Yoshizawa H, Morishita Y, Watanabe M, Ishibashi K, Muto S, Kusano E, Nagata D. TGF-β₁-siRNA delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther 2015; 22:333-40. [PMID: 25567535 DOI: 10.1038/gt.2014.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
Gene therapies may be promising for the treatment of peritoneal fibrosis (PF) in subjects undergoing peritoneal dialysis (PD). However, a method of delivery of treatment genes to the peritoneum is lacking. We attempted to develop an in vivo small interfering RNA (siRNA) delivery system with liposome-based nanoparticles (NPs) to the peritoneum to inhibit PF. Transforming growth factor (TGF)-β1-siRNAs encapsulated in NPs (TGF-β1-siRNAs-NPs) dissolved in PD fluid were injected into the peritoneum of mice with PF three times a week for 2 weeks. TGF-β1-siRNAs-NPs knocked down TGF-β1 expression significantly in the peritoneum and inhibited peritoneal thickening with fibrous changes. TGF-β1-siRNAs-NPs also inhibited the increase of expression of α-smooth muscle actin-positive myofibroblasts. These results suggest that the TGF-β1-siRNA delivery system with NPs described here could be an effective therapeutic option for PF in subjects undergoing PD.
Collapse
Affiliation(s)
- H Yoshizawa
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Y Morishita
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - M Watanabe
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - K Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - S Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - E Kusano
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - D Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
33
|
Yu JW, Duan WJ, Huang XR, Meng XM, Yu XQ, Lan HY. MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis. J Transl Med 2014; 94:978-90. [PMID: 25046436 DOI: 10.1038/labinvest.2014.91] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/21/2014] [Accepted: 06/02/2014] [Indexed: 01/03/2023] Open
Abstract
TGF-β/Smad3 signaling plays a pivotal role in the pathogenesis of peritoneal fibrosis associated with peritoneal dialysis (PD). MicroRNA-29 (miR-29) is known as a potent downstream inhibitor of TGF-β/Smad3 in renal fibrosis. In this study, we examined the therapeutic potential for miR-29b on PD-related peritoneal fibrosis in a mouse model of PD induced by daily infusion of 4.25% dextrose-containing PD fluid (PDF). MiR-29b-expressing plasmid was delivered into the peritoneum via an ultrasound-microbubble-mediated system before and at day 14 after PDF. We found that mice on PD developed peritoneal fibrosis with impaired peritoneal function, which was associated with a loss of miR-29b. In contrast, overexpression of miR-29b before the PDF infusion showed a protective effect on peritoneal fibrosis including EMT and prevented peritoneal dysfunction. Moreover, delayed miR-29b treatment until peritoneal fibrosis was established at day 14 also halted the progression of peritoneal fibrosis at day 28. Further studies identified that blockade of the Sp1-TGF-β/Smad3 pathway may be a mechanism by which miR-29b inhibited peritoneal fibrosis. In conclusion, treatment with miR-29b may represent a novel and effective therapy for PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Jian-Wen Yu
- 1] Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China [2] Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen-Juan Duan
- 1] Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China [2] Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- 1] Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiao-Ming Meng
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xue-Qing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Yao Lan
- 1] Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
34
|
Chaudhary K, Moore H, Tandon A, Gupta S, Khanna R, Mohan RR. Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis. Am J Physiol Renal Physiol 2014; 307:F777-82. [PMID: 25056353 DOI: 10.1152/ajprenal.00653.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peritoneal dialysis (PD) is a life-sustaining therapy for end-stage renal disease (ESRD), used by 10-15% of the dialysis population worldwide. Peritoneal fibrosis (PF) is a known complication of long-term PD and frequently follows episodes of peritonitis, rendering the peritoneal membrane inadequate for dialysis. Transforming growth factor (TGF)-β is an inducer of fibrosis in several tissues and organs, and its overexpression has been correlated with PF. Animal models of peritonitis have shown an increase in expression of TGF-β in the peritoneal tissue. Decorin, a proteoglycan and component of the extracellular matrix, inactivates TGF-β, consequently reducing fibrosis in many tissues. Recently, gold nanoparticles (GNP) have been used for drug delivery in a variety of settings. In the present study, we tested the possibility that GNP-delivered decorin gene therapy ameliorates zymosan-mediated PF. We created a PF model using zymosan-induced peritonitis. Rats were treated with no decorin, GNP-decorin, or adeno-associated virus-decorin (AAV-decorin) and compared with controls. Tissue samples were then stained for Masson's trichrome, enface silver, and hematoxylin and eosin, and immunohistochemistry was carried out with antibodies to TGF-β1, α-smooth muscle actin (α-SMA), and VEGF. Animals which were treated with GNP-decorin and AAV-decorin gene therapy had significant reductions in PF compared with untreated animals. Compared with untreated animals, the treated animals had better preserved peritoneal mesothelial cell size, a significant decrease in peritoneal thickness, and decreased α-SMA. Quantitative PCR measurements showed a significant decrease in the peritoneal tissue levels of α-SMA, TGF-β, and VEGF in treated vs. untreated animals. This study shows that both GNP-delivered and AAV-mediated decorin gene therapies significantly decrease PF in vivo in a rodent model. This approach has important clinical translational potential in providing a therapeutic strategy to prevent PF in PD patients.
Collapse
Affiliation(s)
- Kunal Chaudhary
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Department of Medicine, Division of Nephrology, University of Missouri, Columbia, Missouri;
| | - Harold Moore
- Department of Medicine, Division of Nephrology, University of Missouri, Columbia, Missouri
| | - Ashish Tandon
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri; and
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Ramesh Khanna
- Department of Medicine, Division of Nephrology, University of Missouri, Columbia, Missouri
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri; and College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
35
|
Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv Med 2014; 2014:473134. [PMID: 26556413 PMCID: PMC4590954 DOI: 10.1155/2014/473134] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/03/2022] Open
Abstract
Peritoneal dialysis (PD) is a therapeutic option for the treatment of end-stage renal disease and is based on the use of the peritoneum as a semipermeable membrane for the exchange of toxic solutes and water. Long-term exposure of the peritoneal membrane to hyperosmotic PD fluids causes inflammation, loss of the mesothelial cells monolayer, fibrosis, vasculopathy, and angiogenesis, which may lead to peritoneal functional decline. Peritonitis may further exacerbate the injury of the peritoneal membrane. In parallel with these peritoneal alterations, mesothelial cells undergo an epithelial to mesenchymal transition (EMT), which has been associated with peritoneal deterioration. Factors contributing to the bioincompatibility of classical PD fluids include the high content of glucose/glucose degradation products (GDPs) and their acidic pH. New generation low-GDPs-neutral pH fluids have improved biocompatibility resulting in better preservation of the peritoneum. However, standard glucose-based fluids are still needed, as biocompatible solutions are expensive for many potential users. An alternative approach to preserve the peritoneal membrane, complementary to the efforts to improve fluid biocompatibility, is the use of pharmacological agents protecting the mesothelium. This paper provides a comprehensive review of recent advances that point to the EMT of mesothelial cells as a potential therapeutic target to preserve membrane function.
Collapse
|
36
|
Peritoneal fibrosis and the putative role of decorin. Int J Organ Transplant Med 2013. [DOI: 10.1016/j.hkjn.2013.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Peng W, Dou X, Hao W, Zhou Q, Tang R, Nie J, Lan HY, Yu X. Smad7 gene transfer attenuates angiogenesis in peritoneal dialysis rats. Nephrology (Carlton) 2013; 18:138-47. [PMID: 23217002 DOI: 10.1111/nep.12017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2012] [Indexed: 12/13/2022]
Abstract
AIM Transforming growth factor-β (TGF-β) has been shown to play a role in peritoneal angiogenesis associated with peritoneal dialysis (PD). The present study investigated whether blockade of TGF-β signalling with Smad7 has a therapeutic effect on PD induced-peritoneal angiogenesis. METHODS A rat model of peritoneal dialysis was induced by a daily intraperitoneal injection of 4.25% Dianeal and lipopolysaccharides. PD rats were transfected with a doxycycline regulated, Smad7-expressing plasmid using an ultrasound-microbubble-mediated system on day 0 and day 14 after initiation of PD and an empty vector was used as control. Peritoneal microvessel density (MVD) in peritoneal tissue was assessed by anti-CD31 immunohistochemistry after 4 weeks of PD and peritoneal angiogenic growth factors, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was also examined by immunofluorescence, western blot and reverse transcription-polymerase chain reaction. RESULTS In contrast to the normal control group, at 4 weeks after PD, PD rats displayed peritoneal lesions, peritoneal angiogenesis and increased mRNA and protein expression of VEGF, bFGF and PDGF. Smad7 gene transfer significantly attenuated the peritoneal MVD and inhibited the upregulation of VEGF, bFGF and PDGF. Moreover, inhibition of peritoneal angiogenesis by overexpression of Smad7 was associated with inhibition of phosphorylation of Smad3 and downregulation of TGF-β expression. CONCLUSION Smad7 gene transfer via an ultrasound-microbubble-mediated system is able to attenuate peritoneal angiogenesis in a rat model of PD. Those results suggest that blockade of the TGF-β/Smad signalling pathway may represent a novel therapeutic approach to prevent PD-induced peritoneal angiogenesis.
Collapse
Affiliation(s)
- Weisheng Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
XIAO JING, GUO JIA, LIU XINXIN, ZHANG XIAOXUE, LI ZHENZHEN, ZHAO ZHANZHENG, LIU ZHANGSUO. Soluble Tie2 fusion protein decreases peritoneal angiogenesis in uremic rats. Mol Med Rep 2013; 8:267-71. [DOI: 10.3892/mmr.2013.1478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/23/2013] [Indexed: 11/05/2022] Open
|
39
|
Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm 2012; 2012:484167. [PMID: 22577250 PMCID: PMC3337720 DOI: 10.1155/2012/484167] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 01/08/2023] Open
Abstract
The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the
peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of
defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and
is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With
appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD
patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and
thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental
changes in the peritoneal membrane structure and function correlate with the number and severity
of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical
resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the
peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the
structural and functional changes that occur in the peritoneal membrane during peritonitis and how
mesothelial cells contribute to these changes and respond to infection. The latter part of the review
discusses the potential of mesothelial cell transplantation and genetic manipulation in the
preservation of the peritoneal membrane.
Collapse
|
40
|
Tomino Y. Mechanisms and interventions in peritoneal fibrosis. Clin Exp Nephrol 2011; 16:109-14. [PMID: 21935614 DOI: 10.1007/s10157-011-0533-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 08/22/2011] [Indexed: 11/25/2022]
Abstract
Peritoneal dialysis (PD) is an attractive treatment for patients with end-stage kidney disease (ESKD). However, long-term peritoneal dialysis is associated with development of functional and structural alterations of the peritoneal membrane. Several factors are implicated in the development of peritoneal fibrosis in PD patients. Inflammatory cytokines, which are induced in the peritoneal cavity during peritonitis, may also induce chronic inflammation and fibrosis. Transforming growth factor β1 (TGF-β1) is generally considered to play an important role in peritoneal fibrosis. The objective of this review is to summarize the mechanisms of peritoneal fibrosis using in vitro and in vivo studies, and the current status and future prospects of interventions in the peritoneal fibrosis.
Collapse
Affiliation(s)
- Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
41
|
Abstract
Encapsulating peritoneal sclerosis (EPS) is a rare complication of peritoneal dialysis (PD), but carries significant morbidity and mortality. We review the clinical features and radiologic and histologic changes found at diagnosis of EPS. Although EPS is strongly associated with the duration of PD, the pathogenesis remains only partly understood. We discuss the mechanisms thought to underlie the abnormally thickened, sclerotic peritoneal membrane seen in long-term PD patients including epithelial to mesenchymal transition and the molecular mediators of fibrosis and angiogenesis. We review how exposure to high-glucose, nonphysiological dialysis fluids, peritonitis, and uremia may be responsible for these changes. Much remains to be learned about optimal management of EPS, both medical and surgical, because the literature lacks controlled studies. Future research challenges include defining the role of surgery, immunosuppression, and antifibrotic agents in the management of EPS. We also need to understand why some patients progress from asymptomatic peritoneal sclerosis to the extreme levels of fibrin deposition and bowel encapsulation seen in EPS. Screening PD patients for potential future EPS remains difficult, and we need strategies for monitoring patients on longer-term PD that enable us to better quantify the risk of EPS for the individual patient.
Collapse
Affiliation(s)
- Catriona Goodlad
- Imperial College Kidney and Transplant Institute, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
42
|
ZHAO ZHANZHENG, CAO YING, LIU ZHANGSUO, XIAO JING, TANG LIN, WANG PEI, LIANG XIANHUI. Effects of recombinant human endostatin on peritoneal angiogenesis in peritoneal dialysis rats. Nephrology (Carlton) 2011; 16:599-606. [DOI: 10.1111/j.1440-1797.2011.01465.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Mohan RR, Tandon A, Sharma A, Cowden JW, Tovey JCK. Significant inhibition of corneal scarring in vivo with tissue-selective, targeted AAV5 decorin gene therapy. Invest Ophthalmol Vis Sci 2011; 52:4833-41. [PMID: 21551414 DOI: 10.1167/iovs.11-7357] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the stroma with adeno-associated virus serotype 5 (AAV5) inhibits corneal fibrosis in vivo without significant side effects. METHODS An in vivo rabbit model of corneal fibrosis was used. Targeted decorin gene therapy was delivered to the rabbit cornea by a single topical application of AAV5 (100 μL; 6.5 × 10(12) μg/mL) onto the bare stroma for 2 minutes. The levels of corneal fibrosis were determined with stereomicroscopy, slit lamp biomicroscopy, α-smooth muscle actin (αSMA), fibronectin, and F-actin immunocytochemistry, and/or immunoblotting. CD11b, F4/80 immunocytochemistry, and TUNEL assay were used to examine immunogenicity and cytotoxicity of AAV5 to the cornea. Transmission electron microscopy (TEM) was used to investigate ultrastructural features. Slot-blot-quantified the copy number of AAV5-delivered decorin genes. RESULTS Selective decorin delivery into the stroma showed a significant (P < 0.01) decrease in corneal haze (1.3 ± 0.3) compared with the no-decorin-delivered control rabbit corneas (3 ± 0.4) quantified using slit lamp biomicroscopy. Immunostaining and immunoblot analyses detected significantly reduced levels of αSMA, F-actin, and fibronectin proteins (59%-73%; P < 0.001 or <0.01) in decorin-delivered rabbit corneas compared with the no-decorin-delivered controls. The visual clinical eye examination, slit lamp clinical studies, TUNEL, CD11b, and F4/80 assays revealed that AAV5-mediated decorin gene therapy is nonimmunogenic and nontoxic for the cornea. TEM studies suggested that decorin gene delivery does not jeopardize collagen fibrillogenesis as no significant differences in collagen fibril diameter and arrangement were observed in decorin-delivered and no-decorin-delivered control corneas. CONCLUSIONS Tissue-targeted AAV5-mediated decorin gene therapy is effective and safe for treating corneal fibrosis in vivo.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.
| | | | | | | | | |
Collapse
|
44
|
Washida N, Wakino S, Tonozuka Y, Homma K, Tokuyama H, Hara Y, Hasegawa K, Minakuchi H, Fujimura K, Hosoya K, Hayashi K, Itoh H. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrol Dial Transplant 2011; 26:2770-9. [PMID: 21378147 DOI: 10.1093/ndt/gfr012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Peritoneal fibrosis (PF) and angiogenesis are typical morphological changes, leading to loss of peritoneal functions in patients undergoing peritoneal dialysis. The small G protein, Rho, and its downstream effector Rho-kinase have been shown to be involved in the tissue fibrosis process. This study was undertaken to investigate the role of Rho-kinase in the pathogenesis of these alterations. METHODS PF was induced by intraperitoneal administration of chlorhexidine (CHX) in male rats (CHX group). These rats were treated with a Rho-kinase inhibitor, fasudil (Fas group). Human pleural mesothelial cells, MeT-5A cells, were stimulated by glucose with or without another Rho-kinase inhibitor, Y-27632. RESULTS Peritoneal damage including peritoneal thickening, fibrous changes, macrophage migration and angiogenesis were evident in the CHX group and were ameliorated in the Fas group. The expression of markers of tissue fibrosis, such as transforming growth factor (TGF)-β, fibronectin and α-smooth muscle cell actin, were increased in the CHX group and were downregulated by fasudil. Similar results were also seen with an inducer of angiogenesis, vascular endothelial growth factor (VEGF). Rho-kinase was activated in the peritoneum of the CHX group, which was inhibited by fasudil. In MeT-5A cells, high glucose increased TGF-β expression and VEGF secretion, which were blocked by Y-27632. CONCLUSIONS The activation of Rho-kinase is involved in peritoneal damage at multiple stages including tissue fibrosis and angiogenesis. The inhibition of Rho-kinase constitutes a novel strategy for the treatment of PF.
Collapse
Affiliation(s)
- Naoki Washida
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aguirre AR, Abensur H. Protective measures against ultrafiltration failure in peritoneal dialysis patients. Clinics (Sao Paulo) 2011; 66:2151-7. [PMID: 22189743 PMCID: PMC3226613 DOI: 10.1590/s1807-59322011001200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/18/2011] [Indexed: 01/17/2023] Open
Abstract
Ultrafiltration failure in patients undergoing peritoneal dialysis is a condition with an incidence that increases over time. It is related to increased cardiovascular morbidity and mortality and is a major cause of the abandonment of the treatment technique. Because the number of patients undergoing renal replacement therapy is increasing with society aging and because approximately 10% of this population is treated with peritoneal dialysis, this matter is becoming more common in everyday practice for clinicians involved in the care of patients with chronic renal failure. In this review, we summarize the available measures used to prevent and treat ultrafiltration failure and the current state of research in the field, both in the experimental and clinical settings, focusing on the possible clinical applications of recent findings.
Collapse
Affiliation(s)
- Anna Rita Aguirre
- Hospital das Clínicas, Universidade de São Paulo, Nephrology Division, São Paulo, SP, Brazil.
| | | |
Collapse
|
46
|
Abstract
The use of peritoneal dialysis (PD) has become wide spread since the introduction of continuous ambulatory PD more than 25 years ago. Over this time, many advances have been made and PD is an alternative to hemodialysis (HD), with excellent comparable survival, lower cost, and improved quality of life. The percentage of prevalent PD patients in the United States is approximately 7%, which is significantly lower compared with the 15% PD prevalence from the mid-1980s. Despite comparable survival of HD and PD and improved PD technique survival over the last few years, the percentage of patients performing PD in the United States has declined. The increased numbers of in-center HD units, physician comfort with the modality, perceived superiority of HD, and reimbursement incentives have all contributed to the underutilization of PD. In addition to a higher transplantation rate among patients treated with PD in the United States, an important reason for the low PD prevalence is the transfer to HD. There are various reasons for the transfer (e.g., episodes of peritonitis, membrane failure, patient fatigue, etc.). This review discusses the various factors that contribute to PD underutilization and the rationale and strategies to implement "PD first" and how to maintain it. The PD first concept implies that when feasible, PD should be offered as the first dialysis modality. This concept of PD first and HD second must not be seen as a competition between therapies, but rather that they are complementary, keeping in mind the long-term goals for the patient.
Collapse
Affiliation(s)
- Kunal Chaudhary
- Harry S. Truman VA Hospital, and Division of Nephrology, Department of Internal Medicine, University of Missouri, 1 Hospital Drive, CE 422, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
47
|
Mohan RR, Gupta R, Mehan MK, Cowden JW, Sinha S. Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts. Exp Eye Res 2010; 91:238-45. [PMID: 20546727 DOI: 10.1016/j.exer.2010.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/30/2010] [Accepted: 05/17/2010] [Indexed: 12/22/2022]
Abstract
Decorin, a small leucine-rich proteoglycan, is a natural inhibitor of transforming growth factor beta (TGFbeta). Myofibroblast and haze formation in the cornea have been attributed to TGFbeta hyperactivity released from corneal epithelium following injury to eye. This study tested the hypothesis that decorin-gene transfer inhibits TGFbeta-driven myofibroblast and haze formation in the cornea. Human corneal fibroblast (HSF) cultures generated from donor human corneas were used. Decorin cDNA was cloned into mammalian expression vector. Restriction enzyme analysis and DNA sequencing confirmed the nucleotide sequence of generated vector construct. The decorin gene cloned into mammalian expression vector was introduced into HSF with lipofectamine transfection kit. Expression of decorin in selected clones was characterized with RT-PCR, immunocytochemistry and western blotting. Phage contrast microscopy and trypan blue exclusion assay evaluated the effects of decorin-gene transfer on HSF phenotype and viability, respectively. Real-time PCR, western blot and immunocytochemistry were used to analyze inhibitory effects of decorin-gene transfer on TGFbeta-induced myofibroblast formation by measuring differential expression of alpha smooth muscle actin (SMA), a myofibroblast marker, mRNA and protein expression. Analysis of variance (ANOVA) and the Bonferroni-Dunn adjustment for repeated measures were used for statistical analysis. Our data indicate that decorin-gene transfer into HSF do not alter cellular phenotype or viability. Decorin over-expressing HSF clones grown in the presence of TGFbeta1 under serum-free conditions showed a statistically significant 80-83% decrease in SMA expression (p value < 0.01) compared to naked-vector transfected clones or un-transfected HSF controls. Decorin-transfected, naked-vector transfected and un-transfected HSF grown in the absence of TGFbeta1 showed no or extremely low expression of SMA. Furthermore, decorin over-expression did not affect HSF phenotype and decreased TGFbeta-induced RNA levels of profibrogenic genes such as fibronectin, collagen type I, III, and IV that play important role in stromal matrix modulation and corneal wound healing. The results of study suggest that decorin-gene transfer effectively prevents TGFbeta-driven transformation of keratocyte and corneal fibroblast to myofibroblasts. We postulate that decorin-gene therapy can be used to treat corneal haze in vivo.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | | | | | | | | |
Collapse
|
48
|
Devuyst O, Margetts PJ, Topley N. The Pathophysiology of the Peritoneal Membrane. J Am Soc Nephrol 2010; 21:1077-85. [DOI: 10.1681/asn.2009070694] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
49
|
Yung S, Chan TM. Tissue remodeling and inflammation during peritoneal dialysis: catheter versus fluid. Perit Dial Int 2010; 30:274-6. [PMID: 20424196 DOI: 10.3747/pdi.2010.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong.
| | | |
Collapse
|
50
|
Vrtovsnik F, Coester AM, Lopes-Barreto D, de Waart DR, Van der Wal AC, Struijk DG, Krediet RT, Zweers MM. Induction of chronic kidney failure in a long-term peritoneal exposure model in the rat: effects on functional and structural peritoneal alterations. Perit Dial Int 2010; 30:558-69. [PMID: 20421431 DOI: 10.3747/pdi.2008.00272] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND A long-term peritoneal exposure model has been developed in Wistar rats. Chronic daily exposure to 3.86% glucose based, lactate buffered, conventional dialysis solutions is possible for up to 20 weeks and induces morphological abnormalities similar to those in long-term peritoneal dialysis (PD) patients. The possible effects of kidney failure in this model are unknown. The aim was to analyze the effects of chronic kidney failure on peritoneal function and morphology, alone and in combination with PD exposure, in a well-established, long term, peritoneal exposure model in the rat. ♢ METHODS 40 male Wistar rats were randomly assigned into four experimental groups: no nephrectomy, no peritoneal exposure (sham; n = 8); nephrectomy, no peritoneal exposure (Nx; n = 12); no nephrectomy, with peritoneal exposure (PD; n = 8); and nephrectomy, with peritoneal exposure (NxPD; n = 12). The nephrectomy consisted of a one-step 70% nephrectomy. The peritoneal exposure groups were infused once daily for 16 weeks with a 3.86% glucose-based dialysis solution. Development of chronic kidney disease was monitored during the experiment. Peritoneal function and morphological assessment of the peritoneal membrane were performed at the end of the experiment. ♢ RESULTS During follow-up the nephrectomized groups developed uremia with remarkable renal tubular dilatation and glomerular sclerosis in the renal morphology. Functionally, uremia (Nx) and PD exposure (PD) alone showed faster small solute transport and a decreased ultrafiltration capacity, which were most pronounced in the combination group (NxPD). The presence of uremia resulted in histological alterations but the most severe fibrous depositions and highest vessel counts were present in the PD exposure groups (PD and NxPD). Significant relationships were found between the number of vessels and functional parameters of the peritoneal vascular surface area. ♢ CONCLUSION It is possible to induce chronic kidney failure in our existing long-term peritoneal infusion model in the rat. The degree of impairment of kidney function after 16 weeks is comparable to chronic kidney disease stage IV. Uremia per se induces both functional and morphological alterations of the peritoneal membrane. An additive effect of these alterations is present with the addition of chronic kidney failure to the model. The latter makes the present long-term model important in better understanding the pathophysiology of the peritoneal membrane in PD.
Collapse
Affiliation(s)
- François Vrtovsnik
- Division of Nephrology, Department of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|