1
|
Sakakibara N, Nozu K. Tubular proteinuria due to hereditary endocytic receptor disorder of the proximal tubule: Dent disease and chronic benign proteinuria. Pediatr Nephrol 2025:10.1007/s00467-025-06745-x. [PMID: 40163114 DOI: 10.1007/s00467-025-06745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
The proximal tubule has a highly efficient endocytic pathway dedicated to reabsorbing albumin and low-molecular-weight proteins that have passed through the glomerular filtration barrier. This pathway is dependent on multi-ligand receptors: megalin and cubilin. Abnormalities in genes associated with endocytosis in the proximal tubule can lead to tubular proteinuria, where the urine contains albumin and low-molecular-weight proteins. Dent disease is a hereditary X-linked disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, and progressive kidney dysfunction, often leading to CKD stage 5. CLCN5 is the gene responsible for Dent disease-1 and encodes the voltage-gated chloride channel ClC-5. Meanwhile, OCRL is the causative gene of Dent disease-2 and encodes phosphatidylinositol 4,5-bisphosphate 5-phosphatase, and its variants are also associated with Lowe syndrome. ClC-5 and OCRL are essential to the endocytic machinery, and their loss affects endosomal acidification and trafficking, resulting in disruption of megalin and cubilin recycling. CUBN, which encodes cubilin, was originally identified as the causative gene of Imerslund-Gräsbeck syndrome, a disorder of megaloblastic anemia associated with proteinuria. However, recently, a biallelic C-terminal variant of CUBN was shown to be responsible for isolated proteinuria without kidney dysfunction. This proteinuria is recognized as a new disease concept called chronic benign proteinuria (proteinuria, chronic benign: PROCHOB), which contradicts the common belief that proteinuria is harmful and ultimately leads to kidney damage. This article deepens the understanding of genetic tubular proteinuria and its origins, focusing on the role of megalin- and cubilin-mediated endocytosis in the proximal tubule.
Collapse
Affiliation(s)
- Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| |
Collapse
|
2
|
Xiu F, Gai Z, Gehrig P, Wolski WE, Lone MA, Visentin M. The landscape of renal protein S-acylation in mice with lipid-induced nephrotoxicity. Sci Rep 2025; 15:7689. [PMID: 40044913 PMCID: PMC11882957 DOI: 10.1038/s41598-025-92530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/28/2025] [Indexed: 03/09/2025] Open
Abstract
Excess fat intake is associated with kidney toxicity and dysfunction. Because fatty acids can also be reversibly attached onto cysteine residues and modulate the function of several membrane-bound proteins, we studied the effect of high-fat diet (HFD) on the S-acylated proteome of mouse kidneys to uncover novel biochemical changes that might contribute to lipid-induced nephrotoxicity. We compared the S-acylated proteome of kidneys from mice fed a chow diet (CD) or a HFD. HFD caused albuminuria. The HFD intervention induced a large-scale repression of protein S-acylation as well as of the most abundant ceramides and sphingomyelin species, which are highly suggestive of a reduction in acyl-CoA availability. The HFD-induced S-acylation repression mostly affected proteins involved in endocytosis and intracellular transport. Notably, the kidneys of mice fed a HFD displayed a marked decrease in the total amount and in the S-acylated form of megalin, the main tubular protein retrieval system. Further in vitro experiments indicated that S-acylation inhibition results in a reduction of megalin protein level. We conclude that diet-induced derangement of fatty acid metabolism modifies the renal landscape of the S-acylated proteome during the early stages of the kidney injury, which might reduce the efficiency of protein reabsorption by the proximal tubule.
Collapse
Affiliation(s)
- Fangrui Xiu
- Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Peter Gehrig
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland
| | - Witold E Wolski
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland
| | - Museer A Lone
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland.
| |
Collapse
|
3
|
Kong Y, Zhang X, Li L, Zhao T, Huang Z, Zhang A, Sun Y, Jiao J, Zhang G, Liu M, Han Y, Yang L, Zhang Z. Microglia-Derived Vitamin D Binding Protein Mediates Synaptic Damage and Induces Depression by Binding to the Neuronal Receptor Megalin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410273. [PMID: 39716879 PMCID: PMC11809382 DOI: 10.1002/advs.202410273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Vitamin D binding protein (VDBP) is a potential biomarker of major depressive disorder (MDD). This study demonstrates for the first time that VDBP is highly expressed in core emotion-related brain regions of mice susceptible to chronic unpredictable mild stress (CUMS). Specifically, the overexpression of microglia (MG)-derived VDBP in the prelimbic leads to depression-like behavior and aggravates CUMS-induced depressive phenotypes in mice, whereas conditional knockout of MG-derived VDBP can reverse both neuronal damage and depression-like behaviors. Mechanistically, the binding of MG-derived VDBP with the neuronal receptor megalin mediates the downstream SRC signaling pathway, leading to neuronal and synaptic damage and depression-like behaviors. These events may be caused by biased activation of inhibitory neurons and excitatory-inhibitory imbalance. Importantly, this study has effectively identified MG-derived VDBP as a pivotal mediator in the interplay between microglia and neurons via its interaction with the neuronal receptor megalin and intricate downstream impacts on neuronal functions, thus offering a promising therapeutic target for MDD.
Collapse
Affiliation(s)
- Yan Kong
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Department of Biochemistry and Molecular BiologySchool of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Xian Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Ling Li
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Te Zhao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Zihan Huang
- Department of Biochemistry and Molecular BiologySchool of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Aini Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Yun Sun
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Jiao Jiao
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Gaojia Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Mengyu Liu
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yijun Han
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Linfeng Yang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Zhijun Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| |
Collapse
|
4
|
Takano-Kawabe K, Matoba K, Nakamura Y, Moriyama M. Low Density Lipoprotein Receptor-related Protein 2 Expression and Function in Cultured Astrocytes and Microglia. Neurochem Res 2024; 49:199-211. [PMID: 37702891 DOI: 10.1007/s11064-023-04022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Activation of glial cells, astrocytes and microglia, has been observed in neurodegenerative diseases including Alzheimer's disease (AD). Amyloid β (Aβ), which is aggregated and the aggregation is detected as characteristic pathology in AD brain, is known to be produced by neurons and to activate glial cells. Clearance of Aβ from the brain via active transport system is important to prevent the accumulation and aggregation. Low density lipoprotein receptor-related protein 2 (LRP2/megalin) is an Aβ transporter. However, expression and contribution of LRP2 in astrocytes and microglia remain to be clarified. In the present study, we examined the expression of LRP2 and its roles in cultured astrocytes prepared from rat embryonic brain cortex and mouse microglial cell line BV-2. Both cultured rat astrocytes and BV-2 cells expressed LRP2 mRNA detected by RT-PCR. When lipopolysaccharide (LPS) or all-trans retinoic acid (ATRA) were added to BV-2 cells, LRP2 mRNA expression and uptake of microbeads, Aβ and insulin were increased. On the other hand, LPS decreased LRP2 expression and uptake of Aβ and insulin in cultured astrocytes. Knockdown of LRP2 using siRNA attenuated the LPS- or ATRA-increased uptake of microbeads, Aβ and insulin in BV-2 cells. These results suggest that LRP2 was expressed in both astrocytes and microglia and might be involved in endocytosis activities. Adequate control of LRP2 expression and function in astrocytes and microglia might regulate Aβ and insulin levels in brain and would be a potential target in AD pathology.
Collapse
Affiliation(s)
- Katsura Takano-Kawabe
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Kazuyuki Matoba
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
5
|
Schröder SK, Gasterich N, Weiskirchen S, Weiskirchen R. Lipocalin 2 receptors: facts, fictions, and myths. Front Immunol 2023; 14:1229885. [PMID: 37638032 PMCID: PMC10451079 DOI: 10.3389/fimmu.2023.1229885] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The human 25-kDa Lipocalin 2 (LCN2) was first identified and purified as a protein that in part is associated with gelatinase from neutrophils. This protein shows a high degree of sequence similarity with the deduced sequences of rat α2-microglobulin-related protein and the mouse protein 24p3. Based on its typical lipocalin fold, which consists of an eight-stranded, anti-parallel, symmetrical β-barrel fold structure it was initially thought that LCN2 is a circulating protein functioning as a transporter of small lipophilic molecules. However, studies in Lcn2 null mice have shown that LCN2 has bacteriostatic properties and plays a key role in innate immunity by sequestering bacterial iron siderophores. Numerous reports have further shown that LCN2 is involved in the control of cell differentiation, energy expenditure, cell death, chemotaxis, cell migration, and many other biological processes. In addition, important roles for LCN2 in health and disease have been identified in Lcn2 null mice and multiple molecular pathways required for regulation of Lcn2 expression have been identified. Nevertheless, although six putative receptors for LCN2 have been proposed, there is a fundamental lack in understanding of how these cell-surface receptors transmit and amplify LCN2 to the cell. In the present review we summarize the current knowledge on LCN2 receptors and discuss inconsistencies, misinterpretations and false assumptions in the understanding of these potential LCN2 receptors.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
6
|
Goto S, Hosojima M, Kabasawa H, Saito A. The endocytosis receptor megalin: From bench to bedside. Int J Biochem Cell Biol 2023; 157:106393. [PMID: 36863658 DOI: 10.1016/j.biocel.2023.106393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
The large (∼600 kDa) endocytosis receptor megalin/low-density lipoprotein receptor-related protein 2 is highly expressed at the apical membrane of proximal tubular epithelial cells (PTECs). Megalin plays an important role in the endocytosis of various ligands via interactions with intracellular adaptor proteins, which mediate the trafficking of megalin in PTECs. Megalin mediates the retrieval of essential substances, including carrier-bound vitamins and elements, and impairment of the endocytic process may result in the loss of those substances. In addition, megalin reabsorbs nephrotoxic substances such as antimicrobial (colistin, vancomycin, and gentamicin) or anticancer (cisplatin) drugs and advanced glycation end product-modified or fatty acid-containing albumin. The megalin-mediated uptake of these nephrotoxic ligands causes metabolic overload in PTECs and leads to kidney injury. Blockade or suppression of the megalin-mediated endocytosis of nephrotoxic substances may represent a novel therapeutic strategy for drug-induced nephrotoxicity or metabolic kidney disease. Megalin reabsorbs urinary biomarker proteins such as albumin, α1-microglobulin, β2-microglobulin, and liver-type fatty acid-binding protein; thus, the above-mentioned megalin-targeted therapy may have an effect on the urinary excretion of these biomarkers. We have previously established a sandwich enzyme-linked immunosorbent assay to measure the ectodomain (A-megalin) and full-length (C-megalin) forms of urinary megalin using monoclonal antibodies against the amino- and carboxyl-terminals of megalin, respectively, and reported their clinical usefulness. In addition, there have been reports of patients with novel pathological anti-brush border autoantibodies targeting megalin in the kidney. Even with these breakthroughs in the characterization of megalin, a large number of issues remain to be addressed in future research.
Collapse
Affiliation(s)
- Sawako Goto
- Departments of Applied Molecular Medicine, Japan
| | - Michihiro Hosojima
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hideyuki Kabasawa
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | | |
Collapse
|
7
|
Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Structures of LRP2 reveal a molecular machine for endocytosis. Cell 2023; 186:821-836.e13. [PMID: 36750096 PMCID: PMC9993842 DOI: 10.1016/j.cell.2023.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.
Collapse
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Julia Brasch
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zainab Aziz
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Estefania Y Chavez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Goran Ahlsen
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony W P Fitzpatrick
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Columbia University George M. O'Brien Urology Center, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
8
|
Banks WA, Noonan C, Rhea EM. Evidence for an alternative insulin transporter at the blood-brain barrier. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:100-108. [PMID: 36644126 PMCID: PMC9837797 DOI: 10.31491/apt.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests there is an alternative insulin transporter besides the insulin receptor at the blood-brain barrier (BBB), responsible for shuttling insulin from the circulation into the brain. In this review, we summarize key features of the BBB and what makes it unique compared to other capillary beds; summarize what we know about insulin BBB transport; provide an extensive list of diseases, physiological states, and serum factors tested in modifying insulin BBB transport; and lastly, highlight potential alternative transport systems that may be involved in or have already been tested in mediating insulin BBB transport. Identifying the transport system for insulin at the BBB would aide in controlling central nervous system (CNS) insulin levels in multiple diseases and conditions including Alzheimer's disease (AD) and obesity, where availability of insulin to the CNS is limited.
Collapse
Affiliation(s)
- William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Cassidy Noonan
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
9
|
Zhao B, Tu C, Shen S, Qu J, Morris ME. Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice. AAPS J 2022; 24:109. [PMID: 36253507 DOI: 10.1208/s12248-022-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Megalin and cubilin, endocytic proteins present in the proximal tubule of the kidney, are responsible for reabsorbing filtered proteins from urine. Our hypothesis was that potential substrates of megalin/cubilin could be identified by examining urinary protein differences between control (WT) mice and kidney-specific megalin knockdown (KD) mice. Using the IonStar proteomics approach, 877 potential megalin/cubilin substrates were discovered, with 23 of these compounds representing known megalin/cubilin substrates. Some of the proteins with the largest fold changes in the urine between KD and WT included the known megalin substrates retinol-binding protein and vitamin D-binding protein. Of the total proteins identified as novel substrates, about three-quarters of compounds had molecular weights (MWs) below 69 kDa, the MW of albumin, and the remaining had higher MWs, with about 5% of the proteins having MWs greater than 150 kDa. Sex differences in the number of identified substrates occurred, but this may be due to differences in kidney megalin expression between both male and female megalin KD and WT animals, with the ratio of megalin between WT and KD being 2.76 and 2.14 for female and male mice, respectively. The top three ingenuity canonical pathways based on the urinary proteins in both female and male KD mice were acute phase response signaling, liver X receptor/retinoid X receptor activation, and intrinsic prothrombin activation pathways. In conclusion, analysis of urine samples from kidney-specific megalin KD and WT mice was found to be useful for the identification of potential endogenous substrates for megalin and cubilin.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
10
|
Nakamura M, Satoh N, Horita S, Nangaku M. Insulin-induced mTOR signaling and gluconeogenesis in renal proximal tubules: A mini-review of current evidence and therapeutic potential. Front Pharmacol 2022; 13:1015204. [PMID: 36299884 PMCID: PMC9589488 DOI: 10.3389/fphar.2022.1015204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Energy is continuously expended in the body, and gluconeogenesis maintains glucose homeostasis during starvation. Gluconeogenesis occurs in the liver and kidneys. The proximal tubule is the primary location for renal gluconeogenesis, accounting for up to 25% and 60% of endogenous glucose production during fasting and after a meal, respectively. The mechanistic target of rapamycin (mTOR), which exists downstream of the insulin pathway, plays an important role in regulating proximal tubular gluconeogenesis. mTOR is an atypical serine/threonine kinase present in two complexes. mTORC1 phosphorylates substrates that enhance anabolic processes such as mRNA translation and lipid synthesis and catabolic processes such as autophagy. mTORC2 regulates cytoskeletal dynamics and controls ion transport and proliferation via phosphorylation of SGK1. Therefore, mTOR signaling defects have been implicated in various pathological conditions, including cancer, cardiovascular disease, and diabetes. However, concrete elucidations of the associated mechanisms are still unclear. This review provides an overview of mTOR and describes the relationship between mTOR and renal.
Collapse
Affiliation(s)
- Motonobu Nakamura
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Zhang J, Wang Z, Zhang H, Li S, Li J, Liu H, Cheng Q. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front Mol Neurosci 2022; 15:930526. [PMID: 36187347 PMCID: PMC9520288 DOI: 10.3389/fnmol.2022.930526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic and hemorrhagic stroke (including intracerebral hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage) is the dominating cause of disability and death worldwide. Neuroinflammation, blood–brain barrier (BBB) disruption, neuronal death are the main pathological progress, which eventually causes brain injury. Increasing evidence indicated that lipocalin 2 (LCN2), a 25k-Da acute phase protein from the lipocalin superfamily, significantly increased immediately after the stroke and played a vital role in these events. Meanwhile, there exists a close relationship between LCN2 levels and the worse clinical outcome of patients with stroke. Further research revealed that LCN2 elimination is associated with reduced immune infiltrates, infarct volume, brain edema, BBB leakage, neuronal death, and neurological deficits. However, some studies revealed that LCN2 might also act as a beneficial factor in ischemic stroke. Nevertheless, the specific mechanism of LCN2 and its primary receptors (24p3R and megalin) involving in brain injury remains unclear. Therefore, it is necessary to investigate the mechanism of LCN2 induced brain damage after stroke. This review focuses on the role of LCN2 and its receptors in brain injury and aiming to find out possible therapeutic targets to reduce brain damage following stroke.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shuwang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hongwei Liu,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng,
| |
Collapse
|
12
|
Megalin and Vitamin D Metabolism—Implications in Non-Renal Tissues and Kidney Disease. Nutrients 2022; 14:nu14183690. [PMID: 36145066 PMCID: PMC9506339 DOI: 10.3390/nu14183690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Megalin is an endocytic receptor abundantly expressed in proximal tubular epithelial cells and other calciotropic extrarenal cells expressing vitamin D metabolizing enzymes, such as bone and parathyroid cells. The receptor functions in the uptake of the vitamin D-binding protein (DBP) complexed to 25 hydroxyvitamin D3 (25(OH)D3), facilitating the intracellular conversion of precursor 25(OH)D3 to the active 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). The significance of renal megalin-mediated reabsorption of 25(OH)D3 and 1,25(OH)2D3 has been well established experimentally, and other studies have demonstrated relevant roles of extrarenal megalin in regulating vitamin D homeostasis in mammary cells, fat, muscle, bone, and mesenchymal stem cells. Parathyroid gland megalin may regulate calcium signaling, suggesting intriguing possibilities for megalin-mediated cross-talk between calcium and vitamin D regulation in the parathyroid; however, parathyroid megalin functionality has not been assessed in the context of vitamin D. Within various models of chronic kidney disease (CKD), megalin expression appears to be downregulated; however, contradictory results have been observed between human and rodent models. This review aims to provide an overview of the current knowledge of megalin function in the context of vitamin D metabolism, with an emphasis on extrarenal megalin, an area that clearly requires further investigation.
Collapse
|
13
|
Kawakami R, Matsui M, Konno A, Kaneko R, Shrestha S, Shrestha S, Sunaga H, Hanaoka H, Goto S, Hosojima M, Kabasawa H, Obokata M, Koitabashi N, Matsui H, Sasaki T, Saito A, Yanagita M, Hirai H, Kurabayashi M, Iso T. Urinary FABP1 is a biomarker for impaired proximal tubular protein reabsorption and is synergistically enhanced by concurrent liver injury. J Pathol 2021; 255:362-373. [PMID: 34370295 PMCID: PMC9292749 DOI: 10.1002/path.5775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022]
Abstract
Urinary fatty acid binding protein 1 (FABP1, also known as liver‐type FABP) has been implicated as a biomarker of acute kidney injury (AKI) in humans. However, the precise biological mechanisms underlying its elevation remain elusive. Here, we show that urinary FABP1 primarily reflects impaired protein reabsorption in proximal tubule epithelial cells (PTECs). Bilateral nephrectomy resulted in a marked increase in serum FABP1 levels, suggesting that the kidney is an essential organ for removing serum FABP1. Injected recombinant FABP1 was filtered through the glomeruli and robustly reabsorbed via the apical membrane of PTECs. Urinary FABP1 was significantly elevated in mice devoid of megalin, a giant endocytic receptor for protein reabsorption. Elevation of urinary FABP1 was also observed in patients with Dent disease, a rare genetic disease characterized by defective megalin function in PTECs. Urinary FABP1 levels were exponentially increased following acetaminophen overdose, with both nephrotoxicity and hepatotoxicity observed. FABP1‐deficient mice with liver‐specific overexpression of FABP1 showed a massive increase in urinary FABP1 levels upon acetaminophen injection, indicating that urinary FABP1 is liver‐derived. Lastly, we employed transgenic mice expressing diphtheria toxin receptor (DT‐R) either in a hepatocyte‐ or in a PTEC‐specific manner, or both. Upon administration of diphtheria toxin (DT), massive excretion of urinary FABP1 was induced in mice with both kidney and liver injury, while mice with either injury type showed marginal excretion. Collectively, our data demonstrated that intact PTECs have a considerable capacity to reabsorb liver‐derived FABP1 through a megalin‐mediated mechanism. Thus, urinary FABP1, which is synergistically enhanced by concurrent liver injury, is a biomarker for impaired protein reabsorption in AKI. These findings address the use of urinary FABP1 as a biomarker of histologically injured PTECs that secrete FABP1 into primary urine, and suggest the use of this biomarker to simultaneously monitor impaired tubular reabsorption and liver function. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ryo Kawakami
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Miki Matsui
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan.,Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, Maebashi, Japan.,KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shreya Shrestha
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Suman Shrestha
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Center for Liberal Arts and Sciences, Ashikaga University, Ashikaga, Japan
| | - Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sawako Goto
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideyuki Kabasawa
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Tsutomu Sasaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan.,Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Iso
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Medical Technology and Clinical Engineering, Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi, Japan
| |
Collapse
|
14
|
Rhea EM, Banks WA. A historical perspective on the interactions of insulin at the blood-brain barrier. J Neuroendocrinol 2021; 33:e12929. [PMID: 33433042 PMCID: PMC8052275 DOI: 10.1111/jne.12929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
Subsequent to the discovery of insulin in 1921, the role of insulin in the brain has been investigated throughly. The ability of insulin to act within the brain to regulate peripheral glucose levels helped evolve the research surrounding the ability of insulin to be transported into the brain. Investigations aiming to determine the transport of insulin into the brain from the circulation soon followed. Once it was established that insulin could enter the brain, the ability of insulin to bind brain microvessels and regulators of this process were determined. As technology advanced, quantitative measurements to specify the transport rate of insulin across the blood-brain barrier (BBB) and the impact of physiological conditions and diseases were the logical next steps. Lastly, with the advent of genetic mouse models and high-specificity antagonists, the specific role of the insulin receptor in mediating insulin transport could begin to be explored. In this review, we summarise the main findings throughout the decades regarding the interactions of insulin at the BBB.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA 98159
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, Washington, USA 98108
- Corresponding author: Elizabeth M. Rhea;
| | - William A. Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA 98159
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, Washington, USA 98108
| |
Collapse
|
15
|
Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, Shen S, Madsen M, Morris ME. Immunoglobulin G Is a Novel Substrate for the Endocytic Protein Megalin. AAPS JOURNAL 2021; 23:40. [PMID: 33677748 DOI: 10.1208/s12248-021-00557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
Therapeutic immunoglobulin G (IgG) antibodies comprise the largest class of protein therapeutics. Several factors that influence their overall disposition have been well-characterized, including target-mediated mechanics and convective flow. What remains poorly defined is the potential for non-targeted entry into various tissues or cell types by means of uptake via cell surface receptors at those sites. Megalin and cubilin are large endocytic receptors whose cooperative function plays important physiological roles at the tissues in which they are expressed. One such example is the kidney, where loss of either results in significant declines in proximal tubule protein reabsorption. Due to their diverse ligand profile and broad tissue expression, megalin and cubilin represent potential candidates for receptor-mediated uptake of IgG into various epithelia. Therefore, the objective of the current work was to determine if IgG was a novel ligand of megalin and/or cubilin. Direct binding was measured for human IgG with both megalin and the cubilin/amnionless complex. Additional work focusing on the megalin-IgG interaction was then conducted to build upon these findings. Cell uptake studies using megalin ligands for competitive inhibition or proximal tubule cells stably transduced with megalin-targeted shRNA constructs supported a role for megalin in the endocytosis of human IgG. Furthermore, a pharmacokinetic study using transgenic mice with a kidney-specific mosaic knockout of megalin demonstrated increased urinary excretion of human IgG in megalin knockout mice when compared to wild-type controls. These findings indicate that megalin is capable of binding and internalizing IgG via a high affinity interaction.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Lee D Chaves
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.,Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Benjamin M Yee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Mette Madsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C., Denmark
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
16
|
Meijer RI, Barrett EJ. The Insulin Receptor Mediates Insulin's Early Plasma Clearance by Liver, Muscle, and Kidney. Biomedicines 2021; 9:biomedicines9010037. [PMID: 33466380 PMCID: PMC7824884 DOI: 10.3390/biomedicines9010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
The role of the insulin receptor in mediating tissue-specific insulin clearance in vivo has not been reported. Using physiologic insulin doses, we measured the initial clearance rate (first 5 min) of intravenously injected ([125I]TyrA14)-insulin by muscle, liver, and kidney in healthy rats in the presence and absence of the insulin receptor blocker S961. We also tested whether 4 weeks of high-fat diet (HFD) affected the initial rate of insulin clearance. Pre-treatment with S961 for 60 min prior to administering labeled insulin raised plasma ([125I]TyrA14)insulin concentration approximately 5-fold (p < 0.001), demonstrating receptor dependency for plasma insulin clearance. Uptake by muscle (p < 0.01), liver (p < 0.05), and kidney (p < 0.001) were each inhibited by receptor blockade, undoubtedly contributing to the reduced plasma clearance. The initial plasma insulin clearance was not significantly affected by HFD, nor was muscle-specific clearance. However, HFD modestly decreased liver clearance (p = 0.056) while increasing renal clearance by >50% (p < 0.01), suggesting a significant role for renal insulin clearance in limiting the hyperinsulinemia that accompanies HFD. We conclude that the insulin receptor is a major mediator of initial insulin clearance from plasma and for its clearance by liver, kidney, and muscle. HFD feeding increases renal insulin clearance to limit systemic hyperinsulinemia.
Collapse
|
17
|
Alfaifi AA, Heyder RS, Bielski ER, Almuqbil RM, Kavdia M, Gerk PM, da Rocha SRP. Megalin-targeting liposomes for placental drug delivery. J Control Release 2020; 324:366-378. [PMID: 32461116 PMCID: PMC8247794 DOI: 10.1016/j.jconrel.2020.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Every year, complications during pregnancy affect more than 26 million women. Some of those diseases are associated with significant morbidity and mortality, as is the case of preeclampsia, the main cause of maternal deaths globally. The ability to improve the delivery of drugs to the placenta upon administration to the mother may offer new opportunities in the treatment of diseases of pregnancy. The objective of this study was to develop megalin-targeting liposome nanocarriers for placental drug delivery. Megalin is a transmembrane protein involved in clathrin-mediated endocytic processes, and is expressed in the syncytiotrophoblast (SynT), an epithelial layer at maternal-fetal interface. Targeting megalin thus offers an opportunity for the liposomes to hitchhike into the SynT, thus enriching the concentration of any associated therapeutic cargo in the placental tissue. PEGylated (2 KDa) lipids were modified with gentamicin (GM), a substrate to megalin receptors as we have shown in earlier studies, and used to prepare placental-targeting liposomes. The ability of the targeting liposomes to enhance accumulation of a fluorescence probe was assessed in an in vivo placental model - timed-pregnant Balb/c mice at gestational day (GD) 18.5. The targeting liposomes containing 10 mol% GM-modified lipids increased the accumulation of the conjugated fluorescence probe in the placenta with a total accumulation of 2.8% of the initial dose, which corresponds to a 94 fold increase in accumulation compared to the free probe (p < .0001), and 2-4 fold accumulation compared to the non-targeting control liposomes (p < .0001), as measured by both tissue extraction assay and ex vivo imaging. Furthermore, confocal images of placental SynT cross-sections show a 3-fold increase of the targeting liposomes compared with the non-targeting liposomes. The rate and extent of uptake of a fluorescent probe encapsulated within targeting liposomes was also probed in an in vitro model of the human placental barrier (polarized BeWo monolayers) using flow cytometry. Targeting liposomes containing 5 mol% GM-modified lipids enhanced the uptake of the probe by 1.5 fold compared to the non-targeting control. An increase to 10 mol% of the modified lipid resulted in further enhancement in uptake, which was 2 fold greater compared to control. In a competition assay, inhibition of the megalin receptors resulted in a significant reduction in uptake of the fluorescence probe encapsulated in GM-modified liposomes compared to the uptake without free inhibitor (p < .0001), implicating the involvement of megalin receptor in the internalization of the liposomes. Taken together, these results demonstrate that megalin-targeted liposomes may offer an opportunity to enhance the delivery of therapeutics to the placenta for the treatment of diseases of pregnancy.
Collapse
Affiliation(s)
- Ali A Alfaifi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America; Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rodrigo S Heyder
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Elizabeth R Bielski
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rashed M Almuqbil
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | - Phillip M Gerk
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Sandro R P da Rocha
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America.
| |
Collapse
|
18
|
Pereira-Moreira R, Muscelli E. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review. J Diabetes Res 2020; 2020:8492467. [PMID: 32377524 PMCID: PMC7180501 DOI: 10.1155/2020/8492467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Renal proximal tubules reabsorb glucose from the glomerular filtrate and release it back into the circulation. Modulation of glomerular filtration and renal glucose disposal are some of the insulin actions, but little is known about a possible insulin effect on tubular glucose reabsorption. This review is aimed at synthesizing the current knowledge about insulin action on glucose handling by proximal tubules. Method. A systematic article selection from Medline (PubMed) and Embase between 2008 and 2019. 180 selected articles were clustered into topics (renal insulin handling, proximal tubule glucose transport, renal gluconeogenesis, and renal insulin resistance). Summary of Results. Insulin upregulates its renal uptake and degradation, and there is probably a renal site-specific insulin action and resistance; studies in diabetic animal models suggest that insulin increases renal SGLT2 protein content; in vivo human studies on glucose transport are few, and results of glucose transporter protein and mRNA contents are conflicting in human kidney biopsies; maximum renal glucose reabsorptive capacity is higher in diabetic patients than in healthy subjects; glucose stimulates SGLT1, SGLT2, and GLUT2 in renal cell cultures while insulin raises SGLT2 protein availability and activity and seems to directly inhibit the SGLT1 activity despite it activating this transporter indirectly. Besides, insulin regulates SGLT2 inhibitor bioavailability, inhibits renal gluconeogenesis, and interferes with Na+K+ATPase activity impacting on glucose transport. Conclusion. Available data points to an important insulin participation in renal glucose handling, including tubular glucose transport, but human studies with reproducible and comparable method are still needed.
Collapse
Affiliation(s)
- Ricardo Pereira-Moreira
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| | - Elza Muscelli
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| |
Collapse
|
19
|
Cabezas F, Farfán P, Marzolo MP. Participation of the SMAD2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ß1). PLoS One 2019; 14:e0213127. [PMID: 31120873 PMCID: PMC6532859 DOI: 10.1371/journal.pone.0213127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Megalin/LRP2 is a receptor that plays important roles in the physiology of several organs, such as kidney, lung, intestine, and gallbladder and also in the physiology of the nervous system. Megalin expression is reduced in diseases associated with fibrosis, including diabetic nephropathy, hepatic fibrosis and cholelithiasis, as well as in some breast and prostate cancers. One of the hallmarks of these conditions is the presence of the cytokine transforming growth factor beta (TGF-ß). Although TGF-ß has been implicated in the reduction of megalin levels, the molecular mechanism underlying this regulation is not well understood. Here, we show that treatment of two epithelial cell lines (from kidney and gallbladder) with TGF-ß1 is associated with decreased megalin mRNA and protein levels, and that these effects are reversed by inhibiting the TGF-ß1 type I receptor (TGF-ßRI). Based on in silico analyses, the two SMAD-binding elements (SBEs) in the megalin promoter are located at positions -57 and -605. Site-directed mutagenesis of the SBEs and chromatin immunoprecipitation (ChIP) experiments revealed that SMAD2/3 transcription factors interact with SBEs. Both the presence of SMAD2/3 and intact SBEs were associated with repression of the megalin promoter, in the absence as well in the presence of TGF-ß1. Also, reduced megalin expression and promoter activation triggered by high concentration of albumin are dependent on the expression of SMAD2/3. Interestingly, the histone deacetylase inhibitor Trichostatin A (TSA), which induces megalin expression, reduced the effects of TGF-ß1 on megalin mRNA levels. These data show the significance of TGF-ß and the SMAD2/3 signalling pathway in the regulation of megalin and explain the decreased megalin levels observed under conditions in which TGF-ß is upregulated, including fibrosis-associated diseases and cancer.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
20
|
Renal miR-148b is associated with megalin down-regulation in IgA nephropathy. Biosci Rep 2018; 38:BSR20181578. [PMID: 30355654 PMCID: PMC6239259 DOI: 10.1042/bsr20181578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/06/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Megalin is essential for proximal tubule reabsorption of filtered proteins, hormones, and vitamins, and its dysfunction has been reported in IgA nephropathy (IgAN). miR-148b has been shown to regulate renal megalin expression in vitro and in animal models of kidney disease. We examined a potential role of miR-148b and other miRNAs in regulating megalin expression in IgAN by analyzing the association between megalin and miR-148b, miR-21, miR-146a, and miR-192 expression. Quantitative PCR (qPCR) analysis identified a marked increase in renal levels of several miRNAs, including miR-148b, miR-21, miR-146a, and a significant decrease in megalin mRNA levels in IgAN patients when compared with normal controls. By multiple linear regression analysis, however, only renal miR-148b was independently associated with megalin mRNA levels in IgAN. Proximal tubule megalin expression was further evaluated by immunofluorescence labeling of biopsies from the patients. The megalin expression was significantly lower in patients with highest levels of renal miR-148b compared with patients with lowest levels. To examine the direct effects of the miRNAs on megalin and other membrane proteins expression, proximal tubule LLC-PK1 cells were transfected with miR-148b, miR-21, miR-146a, or miR-192 mimics. Transfection with miR-148b mimic, but not the other three miRNA mimics inhibited endogenous megalin mRNA expression. No significant effect of any of the four miRNA mimics was observed on cubilin or aquaporin 1 (AQP1) mRNA expression. The findings suggest that miR-148b negatively regulates megalin expression in IgAN, which may affect renal uptake and metabolism of essential substances.
Collapse
|
21
|
Asare-Bediako I, Paszkiewicz RL, Kim SP, Woolcott OO, Kolka CM, Burch M, Kabir M, Piccinini F, Bergman RN. Assessment of hepatic insulin extraction from in vivo surrogate methods of insulin clearance measurement. Am J Physiol Endocrinol Metab 2018; 315:E605-E612. [PMID: 29509434 PMCID: PMC6230713 DOI: 10.1152/ajpendo.00344.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hyperinsulinemia, accompanied by reduced first-pass hepatic insulin extraction (FPE) and increased secretion, is a primary response to insulin resistance. Different in vivo methods are used to estimate the clearance of insulin, which is assumed to reflect FPE. We compared two methodologically different but commonly used indirect estimates with directly measured FPE in healthy dogs ( n = 9). The indirect methods were 1) metabolic clearance rate of insulin (MCR) during the hyperinsulinemic-euglycemic clamp (EGC), a steady-state method, and 2) fractional clearance rate of insulin (FCR) during the frequently sampled intravenous glucose tolerance test (FSIGT), a dynamic method. MCR was calculated as the ratio of insulin infusion rate to steady-state plasma insulin. FCR was calculated as the exponential decay rate constant of the injected insulin. Directly measured FPE is based on the difference in insulin measurements during intraportal vs. peripheral vein insulin infusions. We found a strong correlation between indirect FCR (min-1) and FPE (%). In contrast, we observed a poor association between MCR (ml·min-1·kg-1) and FPE (%). Our findings in canines suggest that FCR measured during FSIGT can be used to estimate FPE. However, MCR calculated during EGC appears to be a poor surrogate for FPE.
Collapse
Affiliation(s)
- Isaac Asare-Bediako
- Cedars-Sinai Diabetes and Obesity Research Institute , Los Angeles, California
| | | | - Stella P Kim
- Cedars-Sinai Diabetes and Obesity Research Institute , Los Angeles, California
| | - Orison O Woolcott
- Cedars-Sinai Diabetes and Obesity Research Institute , Los Angeles, California
| | - Cathryn M Kolka
- Cedars-Sinai Diabetes and Obesity Research Institute , Los Angeles, California
| | - Miguel Burch
- Cedars-Sinai Medical Center, Department of Surgery , Los Angeles, California
| | - Morvarid Kabir
- Cedars-Sinai Diabetes and Obesity Research Institute , Los Angeles, California
| | - Francesca Piccinini
- Cedars-Sinai Diabetes and Obesity Research Institute , Los Angeles, California
| | - Richard N Bergman
- Cedars-Sinai Diabetes and Obesity Research Institute , Los Angeles, California
| |
Collapse
|
22
|
Rhea EM, Rask-Madsen C, Banks WA. Insulin transport across the blood-brain barrier can occur independently of the insulin receptor. J Physiol 2018; 596:4753-4765. [PMID: 30044494 DOI: 10.1113/jp276149] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Insulin enters the brain from the blood via a saturable transport system. It is unclear how insulin is transported across the blood-brain barrier (BBB). Using two models of the signalling-related insulin receptor loss or inhibition, we show insulin transport can occur in vivo without the signalling-related insulin receptor. Insulin in the brain has multiple roles including acting as a metabolic regulator and improving memory. Understanding how insulin is transported across the BBB will aid in developing therapeutics to further increase CNS concentrations. ABSTRACT A saturable system transports insulin from blood across the blood-brain barrier (BBB) and into the central nervous system. Whether or not the classic or signalling-related insulin receptor plays a role in mediating this transport in vivo is controversial. Here, we employed kinetics methods that distinguish between transport across the brain endothelial cell and reversible luminal surface receptor binding. Using a previously established line of mice with endothelial-specific loss of the signalling-related insulin receptor (EndoIRKO) or inhibiting the insulin receptor with the selective antagonist S961, we show insulin transport across the BBB is maintained. Rates of insulin transport were similar in all groups and transport was still saturable. Unlike transport, binding of insulin to the brain endothelial cell was decreased with the loss or inhibition of the signalling-related insulin receptor. These findings demonstrate that the signalling-related insulin receptor is not required for insulin transport across the BBB.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Research and Development, VA Puget Sound, Seattle, WA, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - William A Banks
- Research and Development, VA Puget Sound, Seattle, WA, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
23
|
Tsuji S, Sugiura M, Tsutsumi S, Yamada H. Sex differences in the excretion levels of traditional and novel urinary biomarkers of nephrotoxicity in rats. J Toxicol Sci 2018; 42:615-627. [PMID: 28904297 DOI: 10.2131/jts.42.615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Urinary biomarkers have been used widely in preclinical toxicity studies to detect dysfunctions and injuries of the kidney caused by drugs under development. While they have been well studied for evaluating nephrotoxicity, knowledge of sex differences in excretion levels of urinary biomarkers remains inadequate. We conducted experiments focused on effects of endogenous sex hormones on urinary biomarkers using intact and castrated male and female rats. Comparisons of the urinary biomarker excretion levels between intact male and female rats at 5, 7, 9 and 12 weeks of age revealed higher excretion levels of leucine aminopeptidase (LAP), γ-glutamyl transpeptidase (γGTP), total protein, liver-type fatty acid-binding protein (L-FABP), cystatin C (Cys-C) and β2-microglobulin (β2-MG), and lower excretion level of kidney injury molecule 1 (Kim-1), in male rats as compared to female rats. Orchidectomized male rats showed lower urinary excretion levels of alkaline phosphatase (ALP), LAP, γGTP, N-acetyl-β-D-glucosaminidase (NAG), glucose, total protein, L-FABP, Cys-C, β2-MG and neutrophil gelatinase-associated lipocalin (NGAL), and higher urinary excretion levels of clusterin (CLU) and Kim-1, than sham-operated male rats. On the other hand, no significant differences in the urinary biomarker excretion levels excluding ALP were observed between ovariectomized and sham-operated female rats. In the present study, we demonstrated the existence of sex differences in excretion levels of urinary biomarkers that are universally used in preclinical toxicity studies, and also that these differences, especially in relation to the urinary excretions of ALP, LAP, γGTP, total protein, L-FABP, Cys-C, and β2-MG, may closely relate to the endogenous testosterone.
Collapse
Affiliation(s)
- Satoshi Tsuji
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Masayuki Sugiura
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Shunsuke Tsutsumi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Hisaharu Yamada
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| |
Collapse
|
24
|
Highly Stabilized Core-Satellite Gold Nanoassemblies in Vivo: DNA-Directed Self-Assembly, PEG Modification and Cell Imaging. Sci Rep 2017; 7:8553. [PMID: 28819188 PMCID: PMC5561241 DOI: 10.1038/s41598-017-08903-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
Au nanoparticles (NPs) have important applications in bioimaging, clinical diagnosis and even therapy due to its water-solubility, easy modification and drug-loaded capability, however, easy aggregation of Au NPs in normal saline and serum greatly limits its applications. In this work, highly stabilized core-satellite Au nanoassemblies (CSAuNAs) were constructed by a hierarchical DNA-directed self-assembly strategy, in which satellite Au NPs number could be effectively tuned through varying the ratios of core-AuNPs-ssDNA and satellite-AuNPs-ssDNAc. It was especially interesting that PEG-functionalized CSAuNAs (PEG-CSAuNAs) could not only bear saline solution but also resist the enzymatic degradation in fetal calf serum. Moreover, cell targeting and imaging indicated that the PEG-CSAuNAs had promising biotargeting and bioimaging capability. Finally, fluorescence imaging in vivo revealed that PEG-CSAuNAs modified with N-acetylation chitosan (CSNA) could be selectively accumulate in the kidneys with satisfactory renal retention capability. Therefore, the highly stabilized PEG-CSAuNAs open a new avenue for its applications in vivo.
Collapse
|
25
|
Argyropoulos CP, Chen SS, Ng YH, Roumelioti ME, Shaffi K, Singh PP, Tzamaloukas AH. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front Med (Lausanne) 2017; 4:73. [PMID: 28664159 PMCID: PMC5471312 DOI: 10.3389/fmed.2017.00073] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022] Open
Abstract
There is currently an unmet need for better biomarkers across the spectrum of renal diseases. In this paper, we revisit the role of beta-2 microglobulin (β2M) as a biomarker in patients with chronic kidney disease and end-stage renal disease. Prior to reviewing the numerous clinical studies in the area, we describe the basic biology of β2M, focusing in particular on its role in maintaining the serum albumin levels and reclaiming the albumin in tubular fluid through the actions of the neonatal Fc receptor. Disorders of abnormal β2M function arise as a result of altered binding of β2M to its protein cofactors and the clinical manifestations are exemplified by rare human genetic conditions and mice knockouts. We highlight the utility of β2M as a predictor of renal function and clinical outcomes in recent large database studies against predictions made by recently developed whole body population kinetic models. Furthermore, we discuss recent animal data suggesting that contrary to textbook dogma urinary β2M may be a marker for glomerular rather than tubular pathology. We review the existing literature about β2M as a biomarker in patients receiving renal replacement therapy, with particular emphasis on large outcome trials. We note emerging proteomic data suggesting that β2M is a promising marker of chronic allograft nephropathy. Finally, we present data about the role of β2M as a biomarker in a number of non-renal diseases. The goal of this comprehensive review is to direct attention to the multifaceted role of β2M as a biomarker, and its exciting biology in order to propose the next steps required to bring this recently rediscovered biomarker into the twenty-first century.
Collapse
Affiliation(s)
- Christos P Argyropoulos
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Shan Shan Chen
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Yue-Harn Ng
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Maria-Eleni Roumelioti
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kamran Shaffi
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Pooja P Singh
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Antonios H Tzamaloukas
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Raymond G. Murphy VA Medical Center Albuquerque, Albuquerque, NM, United States
| |
Collapse
|
26
|
Jensen D, Kierulf-Lassen C, Kristensen MLV, Nørregaard R, Weyer K, Nielsen R, Christensen EI, Birn H. Megalin dependent urinary cystatin C excretion in ischemic kidney injury in rats. PLoS One 2017; 12:e0178796. [PMID: 28575050 PMCID: PMC5456377 DOI: 10.1371/journal.pone.0178796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Background Cystatin C, a marker of kidney injury, is freely filtered in the glomeruli and reabsorbed by the proximal tubules. Megalin and cubilin are endocytic receptors essential for reabsorption of most filtered proteins. This study examines the role of these receptors for the uptake and excretion of cystatin C and explores the effect of renal ischemia/reperfusion injury on renal cystatin C uptake and excretion in a rat model. Methods Binding of cystatin C to megalin and cubilin was analyzed by surface plasmon resonance analysis. ELISA and/or immunoblotting and immunohistochemistry were used to study the urinary excretion and tubular uptake of endogenous cystatin C in mice. Furthermore, renal uptake and urinary excretion of cystatin C was investigated in rats exposed to ischemia/reperfusion injury. Results A high affinity binding of cystatin C to megalin and cubilin was identified. Megalin deficient mice revealed an increased urinary excretion of cystatin C associated with defective uptake by endocytosis. In rats exposed to ischemia/reperfusion injury urinary cystatin C excretion was increased and associated with a focal decrease in proximal tubule endocytosis with no apparent change in megalin expression. Conclusions Megalin is essential for the normal tubular recovery of endogenous cystatin C. The increase in urinary cystatin C excretion after ischemia/reperfusion injury is associated with decreased tubular uptake but not with reduced megalin expression.
Collapse
Affiliation(s)
- Danny Jensen
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | | | | | - Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
27
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
28
|
Bartolome F, Antequera D, Tavares E, Pascual C, Maldonado R, Camins A, Carro E. Obesity and neuroinflammatory phenotype in mice lacking endothelial megalin. J Neuroinflammation 2017; 14:26. [PMID: 28143489 PMCID: PMC5282716 DOI: 10.1186/s12974-017-0800-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The multiligand receptor megalin controls the brain uptake of a number of ligands, including insulin and leptin. Despite the role of megalin in the transport of these metabolically relevant hormones, the role of megalin at the blood-brain-barrier (BBB) has not yet been explored in the context of metabolic regulation. METHODS Here we investigate the role of brain endothelial megalin in energy metabolism and leptin signaling using an endothelial cell-specific megalin deficient (EMD) mouse model. RESULTS We found megalin is important to protect mice from developing obesity and metabolic syndrome when mice are fed a normal chow diet. EMD mice developed neuroinflammation, by triggering several pro-inflammatory cytokines, displayed reduced neurogenesis and mitochondrial deregulation. CONCLUSIONS These results implicate brain endothelial megalin expression in obesity-related metabolic changes through the leptin signaling pathway proposing a potential link between obesity and neurodegeneration.
Collapse
Affiliation(s)
- Fernando Bartolome
- Neurodegenerative Disorders Group, Instituto de Investigacion Hospital 12 de Octubre (i + 12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Desiree Antequera
- Neurodegenerative Disorders Group, Instituto de Investigacion Hospital 12 de Octubre (i + 12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Eva Tavares
- Clinical and Experimental Pharmacology Research Unit, Valme University Hospital, Seville, Spain
| | - Consuelo Pascual
- Neurodegenerative Disorders Group, Instituto de Investigacion Hospital 12 de Octubre (i + 12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Rosario Maldonado
- Clinical and Experimental Pharmacology Research Unit, Valme University Hospital, Seville, Spain
| | - Antoni Camins
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain.,Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Eva Carro
- Neurodegenerative Disorders Group, Instituto de Investigacion Hospital 12 de Octubre (i + 12), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain.
| |
Collapse
|
29
|
Meijer RI, Gray SM, Aylor KW, Barrett EJ. Pathways for insulin access to the brain: the role of the microvascular endothelial cell. Am J Physiol Heart Circ Physiol 2016; 311:H1132-H1138. [PMID: 27591216 DOI: 10.1152/ajpheart.00081.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/26/2016] [Indexed: 02/08/2023]
Abstract
Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125I-TyrA14-insulin clearance. We further confirmed that 125I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding.
Collapse
Affiliation(s)
- Rick I Meijer
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and
| | - Sarah M Gray
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and
| | - Eugene J Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and .,Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, Virginia
| |
Collapse
|
30
|
Abstract
Recent results suggest that insulin is synthesised by a subpopulation of neurons in the cerebral cortex and neural progenitor cells of the hippocampus. Supplementing the slow supply of insulin to the brain by pancreatic beta cells, the insulin locally released by neurons provides a rapid means of regulating local microcircuits, effectively modulating synaptic transmission and on-demand energy homeostasis of neural networks. Modulation of insulin production by brain neurons via glucagon-like peptide 1 (GLP-1) agonists might be useful in counteracting diabetes, obesity and neurodegenerative diseases. Replacement of lost pancreatic beta cells by autologous transplantation of insulin-producing neural progenitor cells could be a viable therapy for diabetes.
Collapse
Affiliation(s)
- Éva A Csajbók
- Endocrine Unit, 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
31
|
Mittal K, Mani RJ, Katare DP. Type 3 Diabetes: Cross Talk between Differentially Regulated Proteins of Type 2 Diabetes Mellitus and Alzheimer's Disease. Sci Rep 2016; 6:25589. [PMID: 27151376 PMCID: PMC4858691 DOI: 10.1038/srep25589] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/15/2016] [Indexed: 12/31/2022] Open
Abstract
Type 3 Diabetes (T3D) is a neuroendocrine disorder that represents the progression of Type 2 Diabetes Mellitus (T2DM) to Alzheimer’s disease (AD). T3D contributes in the increase of the total load of Alzheimer’s patients worldwide. The protein network based strategies were used for the analysis of protein interactions and hypothesis was derived describing the possible routes of communications among proteins. The hypothesis provides the insight on the probable mechanism of the disease progression for T3D. The current study also suggests that insulin degrading enzyme (IDE) could be the major player which holds the capacity to shift T2DM to T3D by altering metabolic pathways like regulation of beta-cell development, negative regulation of PI3K/AKT pathways and amyloid beta degradation.
Collapse
Affiliation(s)
- Khyati Mittal
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Ruchi Jakhmola Mani
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Deepshikha Pande Katare
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
32
|
Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population. PLoS One 2015; 10:e0116714. [PMID: 25617895 PMCID: PMC4305305 DOI: 10.1371/journal.pone.0116714] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/13/2014] [Indexed: 01/11/2023] Open
Abstract
Background Elevated serum uric acid concentration is an independent risk factor and predictor of type 2 diabetes (T2D). Whether the uric acid-associated genes have an impact on T2D remains unclear. We aimed to investigate the effects of the uric acid-associated genes on the risk of T2D as well as glucose metabolism and insulin secretion. Method We recruited 2,199 normal glucose tolerance subjects from the Shanghai Diabetes Study I and II and 2,999 T2D patients from the inpatient database of Shanghai Diabetes Institute. Fifteen single nucleotide polymorphisms (SNPs) mapped in or near 11 loci (PDZK1, GCKR, LRP2, SLC2A9, ABCG2, LRRC16A, SLC17A1, SLC17A3, SLC22A11, SLC22A12 and SF1) were genotyped and serum biochemical parameters related to uric acid and T2D were determined. Results SF1 rs606458 showed strong association to T2D in both males and females (p = 0.034 and 0.0008). In the males, LRRC16A was associated with 2-h insulin and insulin secretion (p = 0.009 and 0.009). SLC22A11 was correlated with HOMA-B and insulin secretion (p = 0.048 and 0.029). SLC2A9 rs3775948 was associated with 2-h glucose (p = 0.043). In the females, LRP2 rs2544390 and rs1333049 showed correlations with fasting insulin, HOMA-IR and insulin secretion (p = 0.028, 0.033 and 0.052 and p = 0.034, 0.047 and 0.038, respectively). SLC2A9 rs11722228 was correlated with 2-h glucose, 2-h insulin and insulin secretion (p = 0.024, 0.049 and 0.049, respectively). Conclusions Our results indicated that the uric acid-associated genes have an impact on the risk of T2D, glucose metabolism and insulin secretion in a Chinese population.
Collapse
|
33
|
The involvement of selected membrane transport mechanisms in the cellular uptake of 177Lu-labeled bombesin, somatostatin and gastrin analogues. Nucl Med Biol 2015; 42:1-7. [DOI: 10.1016/j.nucmedbio.2014.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 11/21/2022]
|
34
|
Sasaki T. Age-Associated Weight Gain, Leptin, and SIRT1: A Possible Role for Hypothalamic SIRT1 in the Prevention of Weight Gain and Aging through Modulation of Leptin Sensitivity. Front Endocrinol (Lausanne) 2015; 6:109. [PMID: 26236282 PMCID: PMC4504171 DOI: 10.3389/fendo.2015.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is the principal regulator of body weight and energy balance. It modulates both energy intake and energy expenditure by sensing the energy status of the body through neural inputs from the periphery as well as direct humoral inputs. Leptin, an adipokine, is one of the humoral factors responsible for alerting the hypothalamus that enough energy is stored in the periphery. Plasma leptin levels are positively linked to adiposity; leptin suppress energy intake and stimulates energy expenditure. However, prolonged increases in plasma leptin levels due to obesity cause leptin resistance, affecting both leptin access to hypothalamic neurons and leptin signal transduction within hypothalamic neurons. Decreased sensing of peripheral energy status through leptin may lead to a positive energy balance and gradual gains in weight and adiposity, further worsening leptin resistance. Leptin resistance, increased adiposity, and weight gain are all associated with aging in both humans and animals. Central insulin resistance is associated with similar observations. Therefore, improving the action of humoral factors in the hypothalamus may prevent gradual weight gain, especially during middle age. SIRT1 is a NAD(+)-dependent protein deacetylase with numerous substrates, including histones, transcription factors, co-factors, and various enzymes. SIRT1 improves both leptin sensitivity and insulin sensitivity by decreasing the levels of several molecules that impair leptin and insulin signal transduction. SIRT1 and NAD(+) levels decrease with age in the hypothalamus; increased hypothalamic SIRT1 levels prevent age-associated weight gain and improve leptin sensitivity in mice. Therefore, preventing the age-dependent loss of SIRT1 function in the hypothalamus could improve the action of humoral factors in the hypothalamus as well as central regulation of energy balance.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- *Correspondence: Tsutomu Sasaki, Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan,
| |
Collapse
|
35
|
Abstract
We have learned over the last several decades that the brain is an important target for insulin action. Insulin in the central nervous system (CNS) affects feeding behavior and body energy stores, the metabolism of glucose and fats in the liver and adipose, and various aspects of memory and cognition. Insulin may even influence the development or progression of Alzheimer disease. Yet, a number of seemingly simple questions (e.g., What is the pathway for delivery of insulin to the brain? Is insulin's delivery to the brain mediated by the insulin receptor and is it a regulated process? Is brain insulin delivery affected by insulin resistance?) are unanswered. Here we briefly review accumulated findings affirming the importance of insulin as a CNS regulatory peptide, examine the current understanding of how peripheral insulin is delivered to the brain, and identify key gaps in the current understanding of this process.
Collapse
Affiliation(s)
- Sarah M Gray
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, VA
| | - Rick I Meijer
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, VA
| | - Eugene J Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, VA
| |
Collapse
|
36
|
Qiao H, Sun M, Su Z, Xie Y, Chen M, Zong L, Gao Y, Li H, Qi J, Zhao Q, Gu X, Ping Q. Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan. Biomaterials 2014; 35:7157-71. [DOI: 10.1016/j.biomaterials.2014.04.106] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022]
|
37
|
De S, Kuwahara S, Saito A. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. MEMBRANES 2014; 4:333-55. [PMID: 25019425 PMCID: PMC4194038 DOI: 10.3390/membranes4030333] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Shankhajit De
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
38
|
Antonescu CN, McGraw TE, Klip A. Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol 2014; 6:a016964. [PMID: 24984778 DOI: 10.1101/cshperspect.a016964] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe(3+), K(+)) or efflux (e.g., Na(+)) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
39
|
Nakayama A, Matsuo H, Shimizu T, Takada Y, Nakamura T, Shimizu S, Chiba T, Sakiyama M, Naito M, Morita E, Ichida K, Shinomiya N. Common variants of a urate-associated gene LRP2 are not associated with gout susceptibility. Rheumatol Int 2013; 34:473-6. [PMID: 24366390 PMCID: PMC3953547 DOI: 10.1007/s00296-013-2924-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/14/2013] [Indexed: 11/06/2022]
Abstract
A recent genome-wide association study revealed that there is an association between serum uric acid (SUA) levels and rs2544390, a common variant in low-density lipoprotein-related protein 2 (LRP2/Megalin) gene. Two other variants of LRP2, rs2229268 and rs3755166, are also found to have associations with dyslipidemia and Alzheimer’s disease, respectively, which also could have a relationship with SUA in human. Although no studies report that LRP2 transports urate, LRP2 is a multi-ligand receptor and expresses in many tissues including kidney, suggesting a direct and/or indirect relationship with gout. In the present study, we investigated the association between gout and these variants of LRP2 with 741 clinically diagnosed male gout patients and 1,302 controls. As a result, the three common LRP2 variants, rs2544390, rs2229268 and rs3755166, showed no association with gout (P = 0.76, 0.55, and 0.22, respectively). Our study is the first to reveal that an SUA-related gene LRP2 is not involved in gout susceptibility.
Collapse
Affiliation(s)
- Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Membranous nephropathy is characterized by immune complex deposits on the outer side of the glomerular basement membrane. Activation of complement and of oxidation lead to basement membrane lesions. The most frequent form is idiopathic. At 5 and 10 years, renal survival is around 90 and 65% respectively. A prognostic model based on proteinuria, level and duration, progression of renal failure in a few months can refine prognosis. The urinary excretion of C5b-9, β2 and α1 microglobuline and IgG are strong predictors of outcome. Symptomatic treatment is based on anticoagulation in case of nephrotic syndrome, angiotensin conversion enzyme inhibitors, angiotensin II receptor blockers and statins. Immunosuppressive therapy should be discussed for patients having a high risk of progression. Corticoids alone has no indication. Treatment should include a simultaneous association or more often alternating corticoids and alkylant agent for a minimum of 6 months. Adrenocorticoid stimulating hormone and steroids plus mycophenolate mofetil may be equally effective. Steroids plus alkylant decrease the risk of end stage renal failure. Cyclosporine and tacrolimus decrease proteinuria but are associated with a high risk of recurrence at time of withdrawal and are nephrotoxic. Rituximab evaluated on open studies needs further evaluations to define its use.
Collapse
Affiliation(s)
- Lucile Mercadal
- Service de néphrologie, groupe hospitalier Pitié-Salpêtrière, 83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
41
|
Mahadevappa R, Nielsen R, Christensen EI, Birn H. Megalin in acute kidney injury: foe and friend. Am J Physiol Renal Physiol 2013; 306:F147-54. [PMID: 24197071 DOI: 10.1152/ajprenal.00378.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney proximal tubule is a key target in many forms of acute kidney injury (AKI). The multiligand receptor megalin is responsible for the normal proximal tubule uptake of filtered molecules, including nephrotoxins, cytokines, and markers of AKI. By mediating the uptake of nephrotoxins, megalin plays an essential role in the development of some types of AKI. However, megalin also mediates the tubular uptake of molecules implicated in the protection against AKI, and changes in megalin expression have been demonstrated in AKI in animal models. Thus, modulation of megalin expression in response to AKI may be an important part of the tubule cell adaption to cellular protection and regeneration and should be further investigated as a potential target of intervention. This review explores current evidence linking megalin expression and function to the development, diagnosis, and progression of AKI as well as renal protection against AKI.
Collapse
Affiliation(s)
- Ravikiran Mahadevappa
- Dept. of Biomedicine, Aarhus Univ., Wilhelm Meyers Allé 3, Bldg. 1234, Aarhus DK-8000, Denmark.
| | | | | | | |
Collapse
|
42
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
43
|
Marques F, Sousa JC, Sousa N, Palha JA. Blood-brain-barriers in aging and in Alzheimer's disease. Mol Neurodegener 2013; 8:38. [PMID: 24148264 PMCID: PMC4015275 DOI: 10.1186/1750-1326-8-38] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/23/2013] [Indexed: 12/26/2022] Open
Abstract
The aging process correlates with a progressive failure in the normal cellular and organ functioning; these alterations are aggravated in Alzheimer's disease (AD). In both aging and AD there is a general decrease in the capacity of the body to eliminate toxic compounds and, simultaneously, to supply the brain with relevant growth and nutritional factors. The barriers of the brain are targets of this age related dysfunction; both the endothelial cells of the blood-brain barrier and the choroid plexus epithelial cells of the blood-cerebrospinal fluid barrier decrease their secretory capacity towards the brain and their ability to remove toxic compounds from the brain. Additionally, during normal aging and in AD, the permeability of the brain barriers increase. As such, a greater contact of the brain parenchyma with the blood content alters the highly controlled neural environment, which impacts on neural function. Of interest, the brain barriers are more than mere obstacles to the passage of molecules and cells, and therefore active players in brain homeostasis, which is still to be further recognized and investigated in the context of health and disease. Herein, we provide a review on how the brain barriers change during aging and in AD and how these processes impact on brain function.
Collapse
Affiliation(s)
- Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Joana Almeida Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| |
Collapse
|
44
|
Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother 2013; 57:6319-24. [PMID: 24100504 DOI: 10.1128/aac.00254-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interest has recently been shown again in colistin because of the increased prevalence of infections caused by multidrug-resistant Gram-negative bacteria. Although the potential for nephrotoxicity is a major dose-limiting factor in colistin use, little is known about the mechanisms that underlie colistin-induced nephrotoxicity. In this study, we focused on an endocytosis receptor, megalin, that is expressed in renal proximal tubules, with the aim of clarifying the role of megalin in the kidney accumulation and nephrotoxicity of colistin. We examined the binding of colistin to megalin by using a vesicle assay. The kidney accumulation, urinary excretion, and concentrations in plasma of colistin in megalin-shedding rats were also evaluated. Furthermore, we examined the effect of megalin ligands and a microtubule-depolymerizing agent on colistin-induced nephrotoxicity. We found that cytochrome c, a typical megalin ligand, inhibited the binding of colistin to megalin competitively. In megalin-shedding rats, renal proximal tubule colistin accumulation was decreased (13.5 ± 1.6 and 21.3 ± 2.6 μg in megalin-shedding and control rats, respectively). Coadministration of colistin and cytochrome c or albumin fragments resulted in a significant decrease in urinary N-acetyl-β-d-glucosaminidase (NAG) excretion, a marker of renal tubular damage (717.1 ± 183.9 mU/day for colistin alone, 500.8 ± 102.4 mU/day for cytochrome c with colistin, and 406.7 ± 156.7 mU/day for albumin fragments with colistin). Moreover, coadministration of colistin and colchicine, a microtubule-depolymerizing agent, resulted in a significant decrease in urinary NAG excretion. In conclusion, our results indicate that colistin acts as a megalin ligand and that megalin plays a key role in the accumulation in the kidney and nephrotoxicity of colistin. Megalin ligands may be new targets for the prevention of colistin-induced nephrotoxicity.
Collapse
|
45
|
Gatica R, Bertinat R, Silva P, Carpio D, Ramírez MJ, Slebe JC, San Martín R, Nualart F, Campistol JM, Caelles C, Yáñez AJ. Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. J Cell Biochem 2013; 114:639-49. [PMID: 23059533 DOI: 10.1002/jcb.24406] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down-regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3β kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease.
Collapse
Affiliation(s)
- Rodrigo Gatica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Región de los Ríos, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Akour AA, Kennedy MJ, Gerk P. Receptor-Mediated Endocytosis across Human Placenta: Emphasis on Megalin. Mol Pharm 2013; 10:1269-78. [DOI: 10.1021/mp300609c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Amal A. Akour
- Departments
of Pharmacotherapy and Outcomes Science and Pharmaceutics, School
of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Mary Jayne Kennedy
- Departments
of Pharmacotherapy and Outcomes Science and Pharmaceutics, School
of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Phillip Gerk
- Departments
of Pharmacotherapy and Outcomes Science and Pharmaceutics, School
of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
47
|
Damage-associated molecular patterns derived from mitochondria may contribute to the hemodialysis-associated inflammation. Int Urol Nephrol 2013; 46:107-12. [PMID: 23515931 DOI: 10.1007/s11255-013-0417-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/11/2013] [Indexed: 01/08/2023]
Abstract
PURPOSE Inflammation is common in hemodialysis (HD) patients. Mitochondrial damage-associated molecular patterns (DAMPs) are released during cell necrosis or apoptosis and induce inflammation. Cell apoptosis is increased in HD patients. The mitochondrial protein cytochrome c, as a marker of released mitochondrial DAMPs, and interleukin-6 (IL-6), as a marker of inflammation, were evaluated in HD patients. METHODS Thirty-four HD patients and 20 controls were enrolled in the study. Serum cytochrome c and IL-6 were measured by means of enzyme-linked immunosorbent assay. RESULTS Compared to controls, cytochrome c was markedly increased in HD patients (1392.88 ± 905.24 pg/mL vs. 212.95 ± 91.71 pg/mL). IL-6 was also significantly increased in HD patients (50.32 ± 35.89 pg/mL vs. 14.27 ± 6.83 pg/mL). In HD patients serum IL-6 was positively related to serum cytochrome c (r = 0.458). CONCLUSION Both circulating cytochrome c and IL-6 are markedly increased in HD patients. Cytochrome c is positively related to IL-6.
Collapse
|
48
|
Moresco RN, Sangoi MB, De Carvalho JAM, Tatsch E, Bochi GV. Diabetic nephropathy: traditional to proteomic markers. Clin Chim Acta 2013; 421:17-30. [PMID: 23485645 DOI: 10.1016/j.cca.2013.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 01/11/2023]
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes and it is defined as a rise in the urinary albumin excretion (UAE) rate and abnormal renal function. Currently, changes in albuminuria are considered a hallmark of onset or progression of DN. However, some patients with diabetes have advanced renal pathological changes and progressive kidney function decline even if urinary albumin levels are in the normal range, indicating that albuminuria is not the perfect marker for the early detection of DN. The present article provides an overview of the literature reporting some relevant biomarkers that have been found to be associated with DN and that potentially may be used to predict the onset and/or monitor the progression of nephropathy. In particular, biomarkers of renal damage, inflammation, and oxidative stress may be useful tools for detection at an early stage or prediction of DN. Proteomic-based biomarker discovery represents a novel strategy to improve diagnosis, prognosis and treatment of DN; however, proteomics-based approaches are not yet available in most of the clinical chemistry laboratories. The use of a panel with a combination of biomarkers instead of urinary albumin alone seems to be an interesting approach for early detection of DN, including markers of glomerular damage (e.g., albumin), tubular damage (e.g., NAG and KIM-1), inflammation (e.g., TNF-α) and oxidative stress (e.g., 8-OHdG) because these mechanisms contribute to the development and outcomes of this disease.
Collapse
Affiliation(s)
- Rafael N Moresco
- Laboratório de Pesquisa em Bioquímica Clínica, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | |
Collapse
|
49
|
Wehlou CMJ, Speeckaert MM, Fiers T, De Buyzere ML, Delanghe JR. α1-Microglobulin/albumin ratio may improve interpretation of albuminuria in statin-treated patients. Clin Chem Lab Med 2013; 51:1529-34. [PMID: 23314557 DOI: 10.1515/cclm-2012-0798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/13/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Statins can cause tubular proteinuria by inhibiting tubular reabsorption of urinary proteins. To distinguish between microalbuminuria originating from glomerular leakage of albumin and tubular microalbuminuria due to statin therapy, the α1-microglobulin/albumin ratio is evaluated in patients taking statins and compared to untreated patients. METHODS Ten apparently healthy subjects were given 40 mg of simvastatin and tested for urinary α1-microglobulin, albumin, creatinine and cystatin C, up to 24 h after administration. Additionally, urine samples of 76 statin-treated and 456 untreated patients presenting with micro-albuminuria (albuminuria range between 20 and 200 mg/L) were tested for α1-microglobulin and albumin. α1-Microglobulin/albumin ratios were compared. Total cholesterol was measured in 50 patients on statin therapy. RESULTS In the 10 apparently healthy subjects, a significant temporary increase of α1-microglobulin, albumin and α1-microglobulin/albumin ratio was observed after statin intake. In the group of 532 patients showing micro-albuminuria, those treated with statins showed a significantly higher mean urinary α1-microglobulin/albumin ratio then untreated patients. Urinary albumin concentrations were significantly higher in patients taking simvastatin than in patients on rosuvastatin treatment and they were also higher in patients on statin therapy with a total serum cholesterol concentration below 3.88 mmol/L than in patients with a total serum cholesterol concentration above 5.17 mmol/L. CONCLUSIONS Tubular proteinuria, caused by the use of statins, can be distinguished from glomerular proteinuria by a higher urinary α1-microglobulin/albumin ratio.
Collapse
|
50
|
Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic Receptors in the Renal Proximal Tubule. Physiology (Bethesda) 2012; 27:223-36. [DOI: 10.1152/physiol.00022.2012] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein reabsorption is a predominant feature of the renal proximal tubule. Animal studies show that the ability to rescue plasma proteins relies on the endocytic receptors megalin and cubilin. Recently, studies of patients with syndromes caused by dysfunctional receptors have supported the importance of these for protein clearance of human ultrafiltrate. This review focuses on the molecular biology and physiology of the receptors and their involvement in renal pathological conditions.
Collapse
Affiliation(s)
- Erik I. Christensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Tina Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|