1
|
Liu X, Chen J, Liu L. DUSP2 inhibits the progression of lupus nephritis in mice by regulating the STAT3 pathway. Open Life Sci 2023; 18:20220649. [PMID: 37483429 PMCID: PMC10358749 DOI: 10.1515/biol-2022-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
One of the most severe side effects of systemic lupus erythematosus (SLE) is lupus nephritis (LN). To search for potential therapeutic targets in SLE is crucial for the progression of SLE. In this study, we selected C57BL/6J mice as controls and MRL/lpr mice as an LN model and obtained dual specificity phosphatase 2 (DUSP2)-overexpressed mice by injecting AAV-DUSP2 plasmid into the tail vein. Then, proteinuria, urea nitrogen, dsDNA and TNF-α, IL-6, and IL-1β levels were measured in each group of mice. In addition, renal histopathological damage was assessed by hematoxylin-eosin. Finally, STAT3 phosphorylation levels were detected by Western blot assay. The results showed that DUSP2 could reduce proteinuria, urea nitrogen, dsDNA and TNF-α, IL-6, and IL-1β levels and improve renal tissue injury in mice with LN. Mechanistically, DUSP2 inhibited STAT3 phosphorylation. These results demonstrated that DUSP2 played a role in ameliorating LN, which provided potential targets for LN research.
Collapse
Affiliation(s)
- Xingzhong Liu
- Department of Clinical Laboratory, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, Chengdu Province, 611135, China
| | - Jie Chen
- Department of Nephrology, Wuhan Third Hospital, 241 Pengliuyang Road, Wuhan, Hubei Province, 430074, China
| | - Lu Liu
- Pediatric Clinic, Wuhan Third Hospital, Wuhan, Hubei Province, 430074, China
| |
Collapse
|
2
|
Liu N, Gao Y, Liu Y, Liu D. GBP5 Inhibition Ameliorates the Progression of Lupus Nephritis by Suppressing NLRP3 Inflammasome Activation. Immunol Invest 2023; 52:52-66. [PMID: 36175170 DOI: 10.1080/08820139.2022.2122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The inflammatory response and NLRP3 inflammasome activation are typical characteristics of lupus nephritis (LN). Guanylate-binding protein 5 (GBP5) has effects on the release of proinflammatory cytokines and the activation of NLRP3 inflammasome. However, it is largely unknown whether and how GBP5 contributes to the progression of LN. METHODS To detect the role of GBP5 in LN, MRL/lpr mice were administrated with the lentiviral vectors that knockdown GBP5 via tail vein. Proximal tubular epithelial HK-2 cells were treated with LPS and ATP to mimic the inflammatory response of LN in vitro. RESULTS GBP5 expression was increased in the renal cortical tissues of LN mice. The in vivo results showed that GBP5 inhibition prevented the progression of LN, as evidenced by the decreased levels of 24-hour proteinuria, blood urea nitrogen and creatinine, accompanied by the ameliorated renal pathological damages. The increased mRNA and protein levels of proinflammatory factors (IL-6, TNF-α, iNOS and COX-2) in the renal cortex of LN mice were suppressed by GBP5 knockdown. In vitro, we demonstrated that the treatment of LPS combined with ATP induced an increase in GBP5 mRNA and protein expression in HK-2 cells. Mechanically, knockdown of GBP5 inhibited the activation of NLRP3 inflammasome and the secretion of IL-1β and IL-18 both in vivo and in vitro. CONCLUSION Our findings reveal that GBP5 inhibition prevents the progression of LN, most likely by suppressing NLRP3 inflammasome activation. It provides a novel insight into the therapeutic interventions for LN.
Collapse
Affiliation(s)
- Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Gao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Wang D, Yang SK, Zhao MX, Tang YZ, Ou-Yang W, Zhang H, Liao Q. Low dose of flurbiprofen axetil decrease the rate of acute kidney injury after operation: a retrospective clinical data analysis of 9915 cases. BMC Nephrol 2020; 21:52. [PMID: 32059699 PMCID: PMC7023727 DOI: 10.1186/s12882-020-1711-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/05/2020] [Indexed: 11/15/2022] Open
Abstract
Background Flurbiprofen axetil (FA) is a commonly prescribed agent to relieve perioperative pain, but the relationship between FA and postoperative acute kidney injury (AKI) remains unclear. This study attempted to evaluate the effects of different dose of perioperative FA on postoperative AKI. Methods A total of 9915 patients were enrolled for this retrospective study. The clinical characteristics and the prevalence of postoperative AKI among patients non-using, using low dose (50-100 mg), middle dose (100-250 mg) and large dose (≧250 mg) of FA were analyzed respectively. The impact of different dose of FA on postoperative AKI was analyzed using univariable and multivariate logistic regression analysis. Results The prevalence of postoperative AKI was 6.7% in the overall subjects and 5.1% in 2446 cases who used FA. The incidence of AKI in low dose group was significantly less than that of non use group (4.5% vs 7.2%, P < 0.001), but the incidence of AKI in large dose group was significantly higher than that in the non-use group (18.8% vs 7.2%, P < 0.001). However, there was no significant difference between patients without using FA and subjects using middle dose of FA (7.2% vs 5.6%, p = 0.355). Multivariate logistic regression analysis showed that low dose of FA was a protective factor for postoperative AKI (OR = 0.75, p = 0.0188), and large dose of FA was a risk factor for postoperative AKI (OR = 4.8, p < 0.0001). Conclusions The impact of FA on postoperative AKI was dose-dependent, using of low dose FA (50-100 mg) perioperatively may effectively reduce the incidence of postoperative AKI.
Collapse
Affiliation(s)
- Dong Wang
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, 138, Tongzipo Road, Changsha, Hunan, China
| | - Shi-Kun Yang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meng-Xi Zhao
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, 138, Tongzipo Road, Changsha, Hunan, China
| | - Yong-Zhong Tang
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, 138, Tongzipo Road, Changsha, Hunan, China
| | - Wen Ou-Yang
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, 138, Tongzipo Road, Changsha, Hunan, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qin Liao
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, 138, Tongzipo Road, Changsha, Hunan, China.
| |
Collapse
|
4
|
Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med 2019; 7:2050312119876146. [PMID: 35154753 PMCID: PMC8826259 DOI: 10.1177/2050312119876146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis and systemic lupus erythematosus are two highly prevalent autoimmune diseases that generate disability and low quality of life. The innate immune system, a long-forgotten issue in autoimmune diseases, is becoming increasingly important and represents a new focus for the treatment of these entities. This review highlights the role that innate immune system plays in the pathophysiology of rheumatoid arthritis and systemic lupus erythematosus. The role of the innate immune system in rheumatoid arthritis and systemic lupus erythematosus pathophysiology is not only important in early stages but is essential to maintain the immune response and to allow disease progression. In rheumatoid arthritis, genetic and environmental factors are involved in the initial stimulation of the innate immune response in which macrophages are the main participants, as well as fibroblast-like synoviocytes. In systemic lupus erythematosus, all the cells contribute to the inflammatory response, but the complement system is the major effector of the inflammatory process. Detecting alterations in the normal function of these cells, besides its contribution to the understanding of the pathophysiology of autoimmune diseases, could help to establish new treatment strategies for these diseases.
Collapse
Affiliation(s)
| | | | - Jorge Bruce Flórez-Suárez
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia
| | - Paola Ximena Coral-Alvarado
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Paul Méndez-Patarroyo
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Gerardo Quintana-López
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
5
|
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used therapeutic class in clinical medicine. These are sub-divided based on their selectivity for inhibition of cyclooxygenase (COX) isoforms (COX-1 and COX-2) into: (1) non-selective (ns-NSAIDs), and (2) selective NSAIDs (s-NSAIDs) with preferential inhibition of COX-2 isozyme. The safety and pathophysiology of NSAIDs on the renal and cardiovascular systems have continued to evolve over the years following short- and long-term treatment in both preclinical models and humans. This review summarizes major learnings on cardiac and renal complications associated with pharmaceutical inhibition of COX-1 and COX-2 with focus on preclinical to clinical translatability of cardio-renal data.
Collapse
Affiliation(s)
- Zaher A Radi
- Drug Safety Research & Development, Pfizer Research, Development & Medical, Cambridge, USA
| | - K Nasir Khan
- Drug Safety Research & Development, Pfizer Research, Development & Medical, Cambridge, USA
| |
Collapse
|
6
|
El Zein N, Abdallah MS, Daher CF, Mroueh M, Stephan J, Bahous SA, Eid A, Faour WH. Ghrelin modulates intracellular signalling pathways that are critical for podocyte survival. Cell Biochem Funct 2019; 37:245-255. [DOI: 10.1002/cbf.3397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Maya S. Abdallah
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
- Institut Européen des MembranesUniversité de Montpellier Montpellier France
| | - Costantine F. Daher
- School of Arts and Sciences, Natural Sciences DepartmentLebanese American University Byblos Lebanon
| | - Mohammad Mroueh
- Department of Pharmaceutical Sciences, School of PharmacyLebanese American University Byblos Lebanon
| | - Joseph Stephan
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| | - Sola Aoun Bahous
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of MedicineAmerican University of Beirut Beirut Lebanon
| | - Wissam H. Faour
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| |
Collapse
|
7
|
The role of 5-methoxytryptophan in pediatric-onset lupus nephritis: A retrospective cohort study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:797-802. [PMID: 30630711 DOI: 10.1016/j.jmii.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/20/2018] [Accepted: 12/13/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND This clinical study investigates the role of 5-methoxytryptophan (5-MTP) in pediatric systemic lupus erythematosus (SLE), with a particular interest in lupus nephritis (LN). PATIENTS AND METHODS One hundred ten children with SLE were enrolled in the cohort study. Among the patients, seventy-seven (70%) had active LN and thirty-three (30%) were not present with LN during their first visit to the clinic. The diagnoses of LN were biopsy-proven. Serum samples were collected before and after administration of immunosuppressive medications to evaluate 5-MTP levels and regular laboratory data. Data were analyzed longitudinally. RESULTS Before any treatment started, patients with active LN had significantly higher 5-MTP levels as compared to patients with no LN (1.021 ± 0.709 vs. 0.719 ± 0.606, P = 0.0456). Also, in patient with active LN, 5-MTP level was significant decreased after treatment, compared with the levels before treatment (1.021 ± 0.709 vs. 0.802 ± 0.597, P = 0.0484). Patients who reached complete remission also had significantly higher initial serum 5-MTP levels than that in patients with no remission (1.244 ± 0.784 vs. 0.846 ± 0.556, P = 0.0488). There was an overall reduction in 5-MTP levels after six months of immunosuppressive treatment, regardless of the disease outcome. Subgroup analysis further revealed a significantly higher 5-MTP level during the active stage of LN (1.127 ± 0.149 vs. 0.742 ± 0.092, P = 0.0384). CONCLUSION We demonstrated that serum 5-MTP level is positively correlated to the disease activity, prognosis, and remission status of pediatric LN in vivo.
Collapse
|
8
|
Chen H. Role of thromboxane A 2 signaling in endothelium-dependent contractions of arteries. Prostaglandins Other Lipid Mediat 2017; 134:32-37. [PMID: 29180071 DOI: 10.1016/j.prostaglandins.2017.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022]
Abstract
Thromboxane A2 (TxA2) plays a very important role in various cardiovascular diseases through its action on platelet aggregation, vasoconstriction, and proliferation. The present article focuses on the role of TxA2 signaling in endothelium-dependent contractions of arteries. Arachidonic acid (AA) is metabolized by cyclooxygenase (COX) to form the unstable prostaglandin H2 which is further converted into TxA2. After being produced by thromboxane synthase (TxAS), TxA2 ultimately stimulates TxA2/prostanoid (TP) receptor to induce vasoconstriction. The calcium ionophore A23187, the prostanoid precursor AA, or the muscarinic receptor agonist acetylcholine (ACh) can evoke endothelium-dependent contractions associated with TxA2. The endothelium-dependent contractions shown in hypertension, diabetes, atherogenesis, and other cardiovascular diseases have been significantly reduced by antagonism of COX, TxAS, or TP receptor. So inhibition of the bioavailability and/or effect of TxA2 may be promising therapeutic targets to prevent these diseases. Especially some bioactive compounds isolated from medicinal plants will provide new pharmacological approaches to promote vascular health.
Collapse
Affiliation(s)
- H Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
9
|
Abdallah MS, Kennedy CRJ, Stephan JS, Khalil PA, Mroueh M, Eid AA, Faour WH. Transforming growth factor-β1 and phosphatases modulate COX-2 protein expression and TAU phosphorylation in cultured immortalized podocytes. Inflamm Res 2017; 67:191-201. [PMID: 29085960 DOI: 10.1007/s00011-017-1110-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study is to elucidate TGF-β1 signaling pathways involved in COX-2 protein induction and modulation of TAU protein phosphorylation in cultured podocytes. MATERIALS, TREATMENT AND METHODS In vitro cultured immortalized podocytes were stimulated with TGF-β1 in presence and absence of pharmacologic inhibitors for various signaling pathways and phosphatases. Then, COX-2 protein expression, as well as P38MAPK, AKT and TAU phosphorylation levels were evaluated by western blot analysis. RESULTS TGF-β1 induction of COX-2 protein levels was completely blocked by pharmacologic inhibitors of phosphatases, P38 MAPK, or NF-қB pathways. Time course experiments showed that TGF-β1 activated p38 MAPK after 5 min of stimulation. Interestingly, podocyte co-incubated with TGF-β1, high glucose and/or PGE2 showed strong increase in p38 MAPK and AKT phosphorylation as well as COX- 2 protein expression levels. Levels of phosphorylated AKT were further reduced and levels of phosphorylated p38 were increased when PGE2 was added to the culture media. Interestingly, selective phosphatases inhibitors completely abrogated PGE2-induced P38 MAPK and TAU phosphorylation. Also, inhibition of phosphatases reversed TGF-β1-induced COX-2 protein expression either alone or when incubated with high glucose or PGE2. CONCLUSION These data suggest TGF-β1 mediates its effect in podocyte through novel signaling mechanisms including phosphatases and TAU protein phosphorylation.
Collapse
Affiliation(s)
- Maya S Abdallah
- Institut Européen des Membranes, Université de Montpellier, Montpellier, France.,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Christopher R J Kennedy
- Division of Nephrology, Department of Medicine, Kidney Research Centre, The Ottawa Hospital, Ottawa, ON, K1H 8M5, Canada
| | - Joseph S Stephan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Pamela Abou Khalil
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Mohammad Mroueh
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Assaad A Eid
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon.
| |
Collapse
|
10
|
Abstract
Due to the incidence of type-2 diabetes and hypertension, chronic kidney disease (CKD) has emerged as a major public health problem worldwide. CKD results in premature death from accelerated cardiovascular disease and various other complications. Early detection, careful monitoring of renal function, and response to therapeutic intervention are critical for prevention of CKD progression and its complications. Unfortunately, traditional biomarkers of renal function are insufficiently sensitive or specific to detect early stages of disease when therapeutic intervention is most effective. Therefore, more sensitive biomarkers of kidney disease are needed for early diagnosis, monitoring, and effective treatment. CKD results in profound changes in lipid and lipoprotein metabolism that, in turn, contribute to progression of CKD and its cardiovascular complications. Lipids and lipid-derived metabolites play diverse and critically important roles in the structure and function of cells, tissues, and biofluids. Lipidomics is a branch of metabolomics, which encompasses the global study of lipids and their biologic function in health and disease including identification of biomarkers for diagnosis, prognosis, prevention, and therapeutic response for various diseases. This review summarizes recent developments in lipidomics and its application to various kidney diseases including chronic glomerulonephritis, IgA nephropathy, chronic renal failure, renal cell carcinoma, diabetic nephropathy, and acute renal failure in clinical and experimental research. Analytical technologies, data analysis, as well as currently known metabolic biomarkers of kidney diseases are addressed. Future perspectives and potential limitations of lipidomics are discussed.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, Shaanxi, PR China; Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, California, USA.
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, California, USA
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China
| |
Collapse
|
11
|
Wöbke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol 2014; 5:244. [PMID: 25071589 PMCID: PMC4078458 DOI: 10.3389/fphys.2014.00244] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Changes in vitamin D serum levels have been associated with inflammatory diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis (MS), atherosclerosis, or asthma. Genome- and transcriptome-wide studies indicate that vitamin D signaling modulates many inflammatory responses on several levels. This includes (i) the regulation of the expression of genes which generate pro-inflammatory mediators, such as cyclooxygenases or 5-lipoxygenase, (ii) the interference with transcription factors, such as NF-κB, which regulate the expression of inflammatory genes and (iii) the activation of signaling cascades, such as MAP kinases which mediate inflammatory responses. Vitamin D targets various tissues and cell types, a number of which belong to the immune system, such as monocytes/macrophages, dendritic cells (DCs) as well as B- and T cells, leading to individual responses of each cell type. One hallmark of these specific vitamin D effects is the cell-type specific regulation of genes involved in the regulation of inflammatory processes and the interplay between vitamin D signaling and other signaling cascades involved in inflammation. An important task in the near future will be the elucidation of the regulatory mechanisms that are involved in the regulation of inflammatory responses by vitamin D on the molecular level by the use of techniques such as chromatin immunoprecipitation (ChIP), ChIP-seq, and FAIRE-seq.
Collapse
Affiliation(s)
- Thea K Wöbke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| | - Bernd L Sorg
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt, Germany
| |
Collapse
|
12
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
13
|
Völzke A, Koch A, Meyer Zu Heringdorf D, Huwiler A, Pfeilschifter J. Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE2 formation via S1P receptor 2 in renal mesangial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:11-21. [PMID: 24064301 DOI: 10.1016/j.bbalip.2013.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/27/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β). Treatment of rat and human mesangial cells with S1P led to concentration-dependent enhanced expression of COX-2. Pharmacological and molecular biology approaches revealed that the S1P-dependent increase of COX-2 mRNA and protein expression was mediated via activation of S1P receptor 2 (S1P2). Further, inhibition of Gi and p42/p44 MAPK signaling, both downstream of S1P2, abolished the S1P-induced COX-2 expression. In addition, S1P/S1P2-dependent upregulation of COX-2 led to significantly elevated PGE2 levels, which were further potentiated in the presence of Ang II and IL-1β. A functional consequence downstream of S1P/S1P2 signaling is mesangial cell migration that is stimulated by S1P. Interestingly, inhibition of COX-2 by celecoxib and SC-236 completely abolished the migratory response. Overall, our results demonstrate that extracellular S1P induces COX-2 expression via activation of S1P2 and subsequent Gi and p42/p44 MAPK-dependent signaling in renal mesangial cells leading to enhanced PGE2 formation and cell migration that essentially requires COX-2. Thus, targeting S1P/S1P2 signaling pathways might be a novel strategy to treat renal inflammatory diseases.
Collapse
Affiliation(s)
- Anja Völzke
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
14
|
Snider AJ, Ruiz P, Obeid LM, Oates JC. Inhibition of sphingosine kinase-2 in a murine model of lupus nephritis. PLoS One 2013; 8:e53521. [PMID: 23301082 PMCID: PMC3536755 DOI: 10.1371/journal.pone.0053521] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/03/2012] [Indexed: 01/13/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a potent bioactive lipid, is emerging as a central mediator in inflammation and immune responses. We have previously implicated S1P and its synthetic enzyme sphingosine kinase (SK) in inflammatory and autoimmune disorders, including inflammatory bowel disease and rheumatoid arthritis. Generation of S1P requires phosphorylation of sphingosine by SK, of which there are two isoforms. Numerous studies have implicated SK1 in immune cell trafficking, inflammation and autoimmune disorders. In this study, we set out to determine the role of SK and S1P in lupus nephritis (LN). To this end, we examined S1P and dihydro-S1P (dh-S1P) levels in serum and kidney tissues from a mouse model of LN. Interestingly dh-S1P was significantly elevated in serum and kidney tissue from LN mice, which is more readily phosphorylated by SK2. Therefore, we employed the use of the specific SK2 inhibitor, ABC294640 in our murine model of LN. Treatment with ABC294640 did not improve vascular or interstitial pathology associated with LN. However, mice treated with the SK2 inhibitor did demonstrate decreases in glomerular pathology and accumulation of B and T cells in the spleen these were not statistically different from lpr mice treated with vehicle. LN mice treated with ABC294640 did not have improved urine thromboxane levels or urine proteinuria measurements. Both S1P and dh-S1P levels in circulation were significantly reduced with ABC294640 treatment; however, dh-S1P was actually elevated in kidneys from LN mice treated with ABC294640. Together these data demonstrate a role for SKs in LN; however, they suggest that inhibition of SK1 or perhaps both SK isoforms would better prevent elevations in S1P and dh-S1P and potentially better protect against LN.
Collapse
Affiliation(s)
- Ashley J. Snider
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Phillip Ruiz
- Division of Immunopathology, Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Lina M. Obeid
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, South Carolina, United States of America
| | - Jim C. Oates
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
15
|
The beneficial role of vitamin D in systemic lupus erythematosus (SLE). Clin Rheumatol 2012; 31:1423-35. [DOI: 10.1007/s10067-012-2033-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/04/2012] [Indexed: 02/06/2023]
|
16
|
Schnermann J, Briggs JP. Tubular control of renin synthesis and secretion. Pflugers Arch 2012; 465:39-51. [PMID: 22665048 DOI: 10.1007/s00424-012-1115-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/11/2023]
Abstract
The intratubular composition of fluid at the tubulovascular contact site of the juxtaglomerular apparatus serves as regulatory input for secretion and synthesis of renin. Experimental evidence, mostly from in vitro perfused preparations, indicates an inverse relation between luminal NaCl concentration and renin secretion. The cellular transduction mechanism is initiated by concentration-dependent NaCl uptake through the Na-K-2Cl cotransporter (NKCC2) with activation of NKCC2 causing inhibition and deactivation of NKCC2 causing stimulation of renin release. Changes in NKCC2 activity are coupled to alterations in the generation of paracrine factors that interact with granular cells. Among these factors, generation of PGE2 in a COX-2-dependent fashion appears to play a dominant role in the stimulatory arm of tubular control of renin release. [NaCl] is a determinant of local PG release over an appropriate concentration range, and blockade of COX-2 activity interferes with the NaCl dependency of renin secretion. The complex array of local paracrine controls also includes nNOS-mediated synthesis of nitric oxide, with NO playing the role of a modifier of the intracellular signaling pathway. A role of adenosine may be particularly important when [NaCl] is increased, and at least some of the available evidence is consistent with an important suppressive effect of adenosine at higher salt concentrations.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Rm 4D50, NIDDK, NIH, 10 Center Drive MSC 1370, Bethesda, MD 20892, USA.
| | | |
Collapse
|
17
|
Yabuki A, Mitani S, Sawa M, Mizukami K, Fujiki M, Yamato O. A comparative study of chronic kidney disease in dogs and cats: induction of cyclooxygenases. Res Vet Sci 2012; 93:892-7. [PMID: 22244709 DOI: 10.1016/j.rvsc.2011.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/03/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023]
Abstract
The present study investigated whether renal cyclooxygenase (COX) induction is associated with the severity of chronic kidney disease (CKD) in dogs and cats. The collected kidneys were examined histopathologically and immunohistochemically. The immunoreactivities of COX-1 and COX-2 were evaluated quantitatively, and the correlations to the plasma creatinine concentrations, glomerular size, glomerulosclerosis, interstitial fibrosis, and interstitial cell infiltration were evaluated statistically. Immunoreactivities for COX-1 were heterogeneously observed in the medullary distal tubules and collecting ducts; no correlations with the severity of renal damage were detected. Immunoreactivities for COX-2 were heterogeneously observed in the macula densa (MD) regions. In dogs, the percentage of COX-2-positive MD was significantly correlated with the glomerular size. In cats, glomeruli with COX-2-positive MD had significantly higher sclerosis scores than those with COX-2-negative MD. In conclusion, renal COX-2 is induced in canine and feline CKD, especially in relation to the glomerular changes.
Collapse
Affiliation(s)
- Akira Yabuki
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Yang C, Sorokin A. Upregulation of fibronectin expression by COX-2 is mediated by interaction with ELMO1. Cell Signal 2010; 23:99-104. [PMID: 20732417 DOI: 10.1016/j.cellsig.2010.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/09/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Engulfment and cell motility 1 (ELMO1), a bipartite guanine nucleotide exchange factor (GEF) for the small GTPase Rac 1, was identified as a susceptibility gene for glomerular disease. Here, we reported that ELMO1 interacted with COX-2 in human mesangial cells. Furthermore, we identified ELMO1 as a posttranslational regulator of COX-2 activity. We demonstrated that COX-2 cyclooxygenase activity increased fibronectin promoter activity. The protein-protein interaction between ELMO1 and COX-2 increased the cyclooxygenase activity of COX-2 and, correspondingly, fibronectin expression. We also found that ET625, the dominant negative form of ELMO1 lacking Rac1 activity, interacted with COX-2, increased cyclooxygenase activity of COX-2 and enhanced COX-2-mediated fibronectin upregulation. To further rule out Rac1 as an ELMO1-mediated regulator of COX-2 activity, we employed the constitutive active Rac1, Rac1(Q63E), and demonstrated that Rac1 signaling has no effect on COX-2-mediated fibronectin promoter activity. These results suggest that ELMO1 contributes to the development of glomerular injury through serving as a regulator of COX-2 activity. The interaction of ELMO1 with COX-2 could play an important role in the development and progression of renal glomerular injury.
Collapse
Affiliation(s)
- Chen Yang
- Division of Nephrology and Kidney Disease Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
19
|
Hörl WH. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals (Basel) 2010; 3:2291-2321. [PMID: 27713354 PMCID: PMC4036662 DOI: 10.3390/ph3072291] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 12/20/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX). Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion) vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease) and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs) may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result.
Collapse
Affiliation(s)
- Walter H Hörl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
20
|
Eilertsen GØ, Fismen S, Hanssen TA, Nossent JC. Decreased incidence of lupus nephritis in northern Norway is linked to increased use of antihypertensive and anticoagulant therapy. Nephrol Dial Transplant 2010; 26:620-7. [PMID: 20647194 DOI: 10.1093/ndt/gfq435] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lupus nephritis (LN) remains a severe complication in systemic lupus erythematosus (SLE). Over the last decade, antiphospholipid antibodies have become a part of SLE classification criteria, and awareness of cardiovascular morbidity and its risk factors in SLE has increased. This study investigated the potential effect of these alterations on the presentation and severity of LN. METHODS This is an observational study of two subsequent SLE inception cohorts based on 1982 American College of Rheumatology (acr) classification criteria (82acr; n=87, enrolled 1978-95) and the updated version in 1997 (97acr: n=62, enrolled 1996-2006). Annual incidence rates (AIR), point prevalence, clinical and histological features, and outcome of LN (defined as proteinuria with urinary casts and/or haematuria) were compared between both cohorts. RESULTS Between 1978 and 2006, the AIR for LN decreased from 0.7 to 0.45/100 000, while LN prevalence rose from 7 to 14/100 000. The relative risk reduction in the 97acr for early- and late-onset LN (> 3 months after SLE diagnosis) was 39% and 42%, respectively. Patients developing LN in the 97acr cohort (97LN+; n=11) had similar demographics, more often low avidity anti-dsDNA antibodies (Ab) and/or anti-cardiolipin Ab at SLE diagnosis, lower proteinuria and diastolic blood pressure, and similar histological findings to those in the 83acr cohort (82LN +; n=28). Following LN diagnosis, more 97LN + patients received pulse corticosteroids (55% vs. 7%), anticoagulants (46% vs. 4%) and antihypertensive drugs (46% vs. 11%). Three 82LN+ patients (11%) developed end-stage renal disease versus none in 97LN + during a 10-year follow-up. CONCLUSIONS Early detection of low avidity anti-dsDNA and antiphospholipid antibodies, probably in combination with early use of protective cardiovascular measures from SLE diagnosis onwards may contribute to reduced incidence and improved renal survival in LN.
Collapse
Affiliation(s)
- Gro Østli Eilertsen
- Department of Rheumatology, Institute of Clinical Medicine, Medical School, University of Tromsø, and Department of Pathology, University Hospital of Northern Norway, Tromsø, Norway.
| | | | | | | |
Collapse
|
21
|
Katsiari CG, Liossis SNC, Sfikakis PP. The Pathophysiologic Role of Monocytes and Macrophages in Systemic Lupus Erythematosus: A Reappraisal. Semin Arthritis Rheum 2010; 39:491-503. [DOI: 10.1016/j.semarthrit.2008.11.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/09/2008] [Accepted: 11/08/2008] [Indexed: 01/20/2023]
|
22
|
Faour WH, Thibodeau JF, Kennedy CRJ. Mechanical stretch and prostaglandin E2 modulate critical signaling pathways in mouse podocytes. Cell Signal 2010; 22:1222-30. [PMID: 20362052 DOI: 10.1016/j.cellsig.2010.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/27/2022]
Abstract
Elevated glomerular capillary pressure (Pgc) and hyperglycemia contribute to glomerular filtration barrier injury observed in diabetic nephropathy (DN). Previous studies showed that hypertensive conditions alone or in combination with a diabetic milieu impact podocyte cellular function which results in podocyte death, detachment or hypertrophy. The present study was aimed at uncovering the initial signaling profile activated by Pgc (mimicked by in vitro mechanical stretch), hyperglycemia (high glucose (HG), 25mM d-glucose) and prostaglandin E(2) (PGE(2)) in conditionally-immortalized mouse podocytes. PGE(2) significantly reduced the active form of AKT by selectively blunting its phosphorylation on S473, but not on T308. AKT inhibition by PGE(2) was reversed following either siRNA-mediated EP(4) knockdown, PKA inhibition (H89), or phosphatase inhibition (orthovanadate). Podocytes treated for 20min with H(2)O(2) (10(-4)M), which mimics reactive oxygen species generation by cells challenged by hyperglycemic or enhanced Pgc conditions, significantly increased the levels of active p38 MAPK, AKT, JNK and ERK1/2. Interestingly, stretch and PGE(2) each significantly reduced H(2)O(2)-mediated AKT phosphorylation and was reversed by pretreatment with orthovanadate while stretch alone reduced GSK-3beta inhibitory phosphorylation at ser-9. Finally, mechanical stretch alone or in combination with HG, induced ERK1/2 and JNK activation, via the EGF receptor since AG1478, a specific EGF receptor kinase inhibitor, blocked this activation. These results show that cellular signaling in podocytes is significantly altered under diabetic conditions (i.e., hyperglycemia and increased Pgc). These changes in MAPKs and AKT activities might impact cellular integrity required for a functional glomerular filtration barrier thereby contributing to the onset of proteinuria in DN.
Collapse
Affiliation(s)
- Wissam H Faour
- School of Medicine, Lebanese American University, Byblos, Lebanon.
| | | | | |
Collapse
|
23
|
Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation. Biochem J 2009; 422:563-70. [PMID: 19570035 DOI: 10.1042/bj20090420] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pro-inflammatory chemokine CCL2 [chemokine (Cys-Cys motif) ligand 2; also known as MCP-1 (monocyte chemotactic protein-1)] is up-regulated in the glomerular compartment during the early phase of LPS (lipopolysaccharide)-induced nephritis. This up-regulation also occurs in cultured MCs (mesangial cells) and is more pronounced in MCs lacking the PGE2 (prostaglandin E2) receptor EP2 or in MCs treated with a prostaglandin EP4 receptor antagonist. To examine a possible feedback mechanism of EP receptor stimulation on CCL2 expression, we used an in vitro model of MCs with down-regulated EP receptor expression. Selectively overexpressing the various EP receptors in these cells then allows the effects on the LPS-induced CCL2 expression to be examined. Cells were stimulated with LPS and CCL2 gene expression was examined and compared with LPS-stimulated, mock-transfected PTGS2 [prostaglandin-endoperoxide synthase 2, also known as COX-2 (cyclo-oxygenase-2)]-positive cells. Overexpression of EP1, as well as EP3, had no effect on LPS-induced Ccl2 mRNA expression. In contrast, overexpression of EP2, as well as EP4, significantly decreased LPS-induced CCL2 expression. These results support the hypothesis that PTGS2-derived prostaglandins, when strongly induced, counter-balance inflammatory processes through the EP2 and EP4 receptors in MCs.
Collapse
|
24
|
Peairs A, Radjavi A, Davis S, Li L, Ahmed A, Giri S, Reilly CM. Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clin Exp Immunol 2009; 156:542-51. [PMID: 19438609 DOI: 10.1111/j.1365-2249.2009.03924.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent reports show that 5-amino-4-imidazole carboxamide riboside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK), inhibits the lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. MRL/MPJ-Fas(lpr) (MRL/lpr) mice show an intrinsic decreased threshold for the production of inflammatory mediators when stimulated. In our current studies, we sought to determine if AMPK activation would inhibit inflammatory mediator production in stimulated kidney mesangial cells. Cultured mesangial cells from MRL/lpr mice were treated with AICAR and stimulated with LPS/interferon (IFN)-gamma. AICAR decreased dose-dependently inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and interleukin-6 production in LPS/IFN-gamma-stimulated mesangial cells. Mechanistically, AICAR inhibited the LPS/IFN-gamma-stimulated PI3K/Akt signalling inflammatory cascade but did not affect LPS/IFN-gamma-mediated inhibitory kappa B phosphorylation or nuclear factor (NF)-kappaB (p65) nuclear translocation. Treatment with the adenosine kinase inhibitor 5'-iodotubercidin blocked the ability of AICAR to activate AMPK and prevented AICAR from inhibiting the LPS/IFN-gamma-stimulated PI3K/Akt pathway and attenuating iNOS expression. Taken together, these observations suggest that AICAR inhibits LPS/IFN-gamma-induced Akt phosphorylation through AMPK activation and may serve as a potential therapeutic target in inflammatory diseases.
Collapse
Affiliation(s)
- A Peairs
- Virginia College of Osteopathic Medicine, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ménesi D, Kitajka K, Molnár E, Kis Z, Belleger J, Narce M, Kang JX, Puskás LG, Das UN. Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukot Essent Fatty Acids 2009; 80:33-42. [PMID: 19138887 DOI: 10.1016/j.plefa.2008.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 01/07/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential structural components of all cell membranes and, more so, of the central nervous system. Several studies revealed that n-3 PUFAs possess anti-inflammatory actions and are useful in the treatment of dyslipidemia. These actions explain the beneficial actions of n-3 PUFAs in the management of cardiovascular diseases, inflammatory conditions, neuronal dysfunction, and cancer. But, the exact molecular targets of these beneficial actions of n-3 PUFAs are not known. Mice engineered to carry a fat-1 gene from Caenorhabditis elegans add a double bond into an unsaturated fatty acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 eicosapentaenoic acid and docosapentaenoic acid specifically in the brain and a reduction in n-6 fatty acids of these mice that can be used to evaluate the actions of n-3 PUFAs. Gene expression profile, RT-PCR and protein microarray studies in the hippocampus and whole brain of wild-type and fat-1 transgenic mice revealed that genes and proteins concerned with inflammation, apoptosis, neurotransmission, and neuronal growth and synapse formation are specifically modulated in fat-1 mice. These results may explain as to why n-3 PUFAs are of benefit in the prevention and treatment of diseases such as Alzheimer's disease, schizophrenia and other diseases associated with neuronal dysfunction, low-grade systemic inflammatory conditions, and bronchial asthma. Based on these data, it is evident that n-3 PUFAs act to modulate specific genes and formation of their protein products and thus, bring about their various beneficial actions.
Collapse
Affiliation(s)
- Dalma Ménesi
- Functional Genomics Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Faour WH, Gomi K, Kennedy CRJ. PGE(2) induces COX-2 expression in podocytes via the EP(4) receptor through a PKA-independent mechanism. Cell Signal 2008; 20:2156-64. [PMID: 18762248 DOI: 10.1016/j.cellsig.2008.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/23/2008] [Accepted: 08/11/2008] [Indexed: 01/11/2023]
Abstract
Cyclooxygenase-2 (COX-2)-dependent prostaglandin E(2) (PGE(2)) synthesis correlates with the onset of proteinuria and increased glomerular capillary pressure (P(gc)) glomerular disease models. We previously showed that an in vitro surrogate for P(gc) (cyclical mechanical stretch) upregulates the expression of both COX-2 and the PGE(2) responsive E-Prostanoid receptor, EP(4) in cultured mouse podocytes. In the present study we further delineate the signaling pathways regulating podocyte COX-2 induction. Time course experiments carried out in conditionally-immortalized mouse podocytes revealed that PGE(2) transiently increased phosphorylated p38 MAPK levels at 10 min, and induced COX-2 protein expression at 4 h. siRNA-mediated knockdown of EP(4) receptor expression, unlike treatment with the EP(1) receptor antagonist SC 19220, completely abrogated PGE(2)-induced p38 phosphorylation and COX-2 upregulation suggesting the involvement of the EP(4) receptor subtype. PGE(2)-induced COX-2 induction was abrogated by inhibition of either p38 MAPK or AMP activated protein kinase (AMPK), and was mimicked by AICAR, a selective AMPK activator, and by the cAMP-elevating agents, forskolin (FSK) and IBMX. Surprisingly, neither PGE(2) nor FSK/IBMX-dependent p38 activation and COX-2 expression were blocked by PKA inhibitors or mimicked by 8-cPT-cAMP a selective EPAC activator, but were instead abrogated by Compound C, suggesting the involvement of AMPK. These results indicate that in addition to mechanical stretch, PGE(2) initiates a positive feedback loop in podocytes that drives p38 MAPK activity and COX-2 expression through a cAMP/AMPK-dependent, but PKA-independent signaling cascade. This PGE(2)-induced signaling network activated by increased P(gc) could be detrimental to podocyte health and glomerular filtration barrier integrity.
Collapse
Affiliation(s)
- Wissam H Faour
- Kidney Research Centre, Division of Nephrology, Department of Medicine, the Ottawa Hospital, Ottawa, Ontario, Canada K1H 8M5.
| | | | | |
Collapse
|
27
|
Adiguzel U, Karabacak T, Sari A, Oz O, Cinel L. Cyclooxygenase-2 expression in primary and recurrent pterygium. Eur J Ophthalmol 2008; 17:879-84. [PMID: 18050111 DOI: 10.1177/112067210701700602] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Pterygium is a proliferative, inflammatory, and invasive ocular surface disease associated with excessive ultraviolet radiation exposure and has several tumor-like characteristics. Cyclooxygenase-2 (COX-2) is an inducible enzyme and recently increased expression of the enzyme was found in many cancers and premalign lesions. This study was conducted to identify the COX-2 expression in pterygium tissues. METHODS Immunohistochemical staining using a primary antibody for COX-2 was performed on 30 specimens with primary pterygium (20 pterygium without recurrence and 10 pterygium which recurred during a 12-month follow-up), 11 specimens with recurrent pterygium, and 8 specimens of conjunctival tumor. As a control we used 10 specimens of normal conjunctiva. Extent and intensity of cytoplasmic and membranous staining in epithelial cells were evaluated. RESULTS Higher expression of COX-2 was detected in conjunctival tumor (87.5%) specimens and recurrent pterygium specimens (72.7%) compared to the both normal conjunctiva (30%) and primary pterygium without recurrence (30%). COX-2 expression in primary pterygium tissues with recurrence (60%) was not different from primary pterygium without recurrence (p=0.114) and recurrent pterygium (p=0.537). However, recurrent pterygium tissues were found to express higher COX-2 than primary pterygium without recurrence (p=0.022). CONCLUSIONS COX-2 expression is increased in recurrent pterygium tissues and COX-2 expression may be a marker for the prediction of recurrence.
Collapse
Affiliation(s)
- U Adiguzel
- Department of Ophthalmology, Mersin University School of Medicine, Mersin, Turkey.
| | | | | | | | | |
Collapse
|
28
|
Zhang L, Bertucci AM, Smith KA, Xu L, Datta SK. Hyperexpression of cyclooxygenase 2 in the lupus immune system and effect of cyclooxygenase 2 inhibitor diet therapy in a murine model of systemic lupus erythematosus. ACTA ACUST UNITED AC 2008; 56:4132-41. [PMID: 18050205 DOI: 10.1002/art.23054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the role of cyclooxygenase 2 (COX-2) in the functioning of different cell types involved in the lupus autoimmune response, and to examine the therapeutic effect of COX-2 inhibitors in mice prone to spontaneously develop systemic lupus erythematosus (SLE). METHODS Lupus-prone (SWR x NZB)F(1) mice were fed with a diet containing different doses of the COX-2-specific inhibitor celecoxib or the nonspecific inhibitor aspirin, or a combination of both, and the effects of the therapy on autoantibody production, development of lupus nephritis, and mortality were determined. Expression of COX-2 by different cells of the lupus immune system and the effect of COX-2 inhibitors on the function of these cells in vitro and in vivo were assessed. RESULTS The immune cells of mice with SLE spontaneously hyperexpressed COX-2, and COX-2 inhibitors could cause cell apoptosis. Treatment with COX-2 inhibitors resulted in decreased autoantibody production and inhibition of the T cell response to the major lupus autoantigen, nucleosome, and its presentation by antigen-presenting cells. Surprisingly, a significant increase in survival occurred only in mice receiving intermittent therapy with the lowest dose of celecoxib (500 parts per million), approximating <100 mg of celecoxib/day in humans. A continuous diet, but not intermittent feeding, with the combination of celecoxib and aspirin delayed development of nephritis temporarily, but failed to prolong survival. Indeed, treatment with aspirin alone increased mortality. CONCLUSION The contributions of the major players in the pathogenic autoimmune response, namely, T cells, B cells, dendritic cells, and macrophages that are abnormally hyperactive in lupus, depend on the increased expression and activity of COX-2, similar to inflammatory cells in target organs. Intermittent pulse therapy with low doses of select COX-2 inhibitors would be of value in the treatment of lupus.
Collapse
Affiliation(s)
- Li Zhang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, 240 East Huron Street, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Small lipids such as eicosanoids exert diverse and complex functions. In addition to their role in regulating normal kidney function, these lipids also play important roles in the pathogenesis of kidney diseases. Increased glomerular cyclooxygenase (COX)1 or COX2 expression has been reported in patients with nephritis and in animal models of nephritis. COX inhibitors have shown beneficial effects on lupus nephritis and passive Heymann nephritis, but not anti-Thy1.1-induced nephritis. 5-Lipoxygenase-derived leukotrienes are involved in inflammatory glomerular injury. Lipoxygenase product 12-hydroxyeicosatetraenoic acid may mediate angiotensin II and transforming growth factor beta-induced mesangial cell abnormality in diabetic nephropathy. P450 arachidonic acid mono-oxygenase-derived 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids are involved in several forms of kidney injury, including renal injury in metabolic syndrome. Ceramide also has been shown to be an important signaling molecule that is involved in the pathogenesis of acute kidney injury caused by ischemia/reperfusion and toxic insults. Those pathways should provide fruitful targets for intervention in the pharmacologic treatment of renal disease.
Collapse
Affiliation(s)
- Chuan-Ming Hao
- Division of Nephrology, Department of Medicine, Vanderbilt University, and Veterans Affairs Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
30
|
Alique M, Lucio-Cazaña FJ, Moreno V, Xu Q, Konta T, Nakayama K, Furusu A, Sepulveda JC, Kitamura M. Upregulation of cyclooxygenases by retinoic acid in rat mesangial cells. Pharmacology 2006; 79:57-64. [PMID: 17159378 DOI: 10.1159/000097785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 10/05/2006] [Indexed: 01/08/2023]
Abstract
All-trans retinoic acid (ATRA) increases the expression of COX-1 and COX-2 and the production of PGE2, a prostaglandin with anti-inflammatory effects in human mesangial cells (MC). COX-2 increased through a transcriptional mechanism independent of retinoic acid receptors (RAR) and retinoid X receptors (RXR) and dependent on extracellular regulated kinase-1/2 (ERK1/2), that became phosphorylated 5 min after ATRA addition. Here, in rat MC, ATRA also upregulated COX isoenzymes and PGE2 production, but not in the same way as in human MC: (1) PGE2 production increased only slightly; (2) RAR and RXR were involved in the transcriptional upregulation of COX-2 by ATRA since the RAR-pan-antagonist AGN193109 or the RXR-pan-antagonist HX531 abolished the induction of COX-2 mRNA whereas the RAR-pan-agonist TTNPB or the RXR-pan-agonist AGN194204 induced expression of COX-2, and (3) ERK1/2 phosphorylation, though important for COX-2 upregulation, took more than 1 h. Therefore the regulation of COX by ATRA exhibits striking differences between human and rat MC.
Collapse
Affiliation(s)
- Matilde Alique
- Department of Physiology, University of Alcala, Alcala de Henares, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rodríguez-Barbero A, Dorado F, Velasco S, Pandiella A, Banas B, López-Novoa JM. TGF-β1 induces COX-2 expression and PGE2 synthesis through MAPK and PI3K pathways in human mesangial cells. Kidney Int 2006; 70:901-9. [PMID: 16820791 DOI: 10.1038/sj.ki.5001626] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) plays a fundamental role in the progression of renal diseases. Accumulating evidence has suggested that eicosanoids derived from cyclooxygenase-2 (COX-2) participate in a number of pathological processes in immune-mediated renal diseases. Mesangial cells (MC) play a major role in physiological and pathophysiological renal processes. MC express receptors for TGF-beta1, and COX-2 expression can be induced in MC. However, to date, there are no published data on the possible role of TGF-beta1 in COX-2 expression in human mesangial cells (HMC). We designed studies to determine (1) whether TGF-beta1 stimulates COX-2 expression in primary HMC, (2) whether mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) cascades are involved in TGF-beta1-induced COX-2 expression, and (3) whether prostaglandin (PG)E2 synthesis is affected by TGF-beta1 and MAP kinases and PI3K activation. Studies were performed in primary cultures of HMC and in an immortalized line of HMC. TGF-beta1 induces COX-2 promoter activity and COX-2 mRNA and protein expression in HMC. COX-2 induction is accompanied by increased PGE2 synthesis. Extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and PI3K pathway inhibition blunted TGF-beta1-induced COX-2 overexpression. We demonstrate that TGF-beta1 regulates COX-2 expression in HMC through the activation of ERK1/2, p38 MAPK, and PI3K. These results can help to elucidate the molecular mechanisms underlying the regulation of COX-2 and open up specific strategies for the treatment of glomerular disease.
Collapse
Affiliation(s)
- A Rodríguez-Barbero
- Departamento de Fisiología y Farmacología, Instituto Reina Sofía de Investigación Nefrológica, Universidad de Salamanca, Campus Miguel de Unamuno, Edificio Departamental, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Her MY, El-Sohemy A, Cornelis MC, Kim TH, Bae SC. Cyclooxygenase-2 polymorphisms and risk of systemic lupus erythematosus in Koreans. Rheumatol Int 2006; 27:1-5. [PMID: 16871410 DOI: 10.1007/s00296-006-0162-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Cyclooxygenase-2 (COX-2) is a key regulatory enzyme in the synthesis of prostanoids associated with trauma and inflammation. Upregulation of COX-2 in human lupus T cells resists anergy and apotosis. We investigated the COX-2 gene for functional variants that may influence susceptibility, clinical outcomes and severity of systemic lupus erythematosus (SLE) in a Korean population. The study included 345 patients with SLE and 400 unrelated healthy controls. Genotyping for the -765G --> C polymorphism of COX-2 was performed by PCR-RFLP analysis. No difference in the distribution of the genotype frequencies between patients and controls was found. COX-2 genotypes were not associated with clinical features except hematologic abnormalities and anti-RNP antibody. We did not detect any association between COX-2 genotype and disease severity in SLE patients. These results suggest that the -765G --> C polymorphism of COX-2 does not play a significant role in the development of SLE in a Korean population. A possible protective effect of the low activity C allele against the production of anti-RNP antibodies merits further investigation.
Collapse
Affiliation(s)
- Min-Young Her
- Department of Internal Medicine, Hanyang University Medical Center, Seoul, 133-792, South Korea
| | | | | | | | | |
Collapse
|
33
|
Hoffmann U, Banas B, Krüger B, Pietrzyk M, Obed A, Segerer S, Kammerl M, Rümmele P, Riegger GAJ, Krämer BK. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human renal allograft rejection - a prospective study. Transpl Int 2006; 19:203-12. [PMID: 16441769 DOI: 10.1111/j.1432-2277.2005.00261.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclooxygenases (COX) are known to be involved in inflammatory kidney diseases. However, there are no data available about the expression of COX-1 and only preliminary reports about the expression of COX-2 in biopsies of patients undergoing acute renal allograft rejection. We conducted this prospective study to analyze the expression, distribution, and cellular localization of COX-1 and -2 and thus to elucidate the role of COX in human kidney transplantation. One hundred forty-four biopsies were included from patients without rejection and unaltered morphology (n = 60), with acute interstitial rejection (n = 7), with acute vascular rejection (n = 21), with chronic allograft nephropathy (n = 16), without rejection but with various other lesions (n = 40). COX-1 and -2 expression was localized in each biopsy by immunohistochemistry. We found a highly significant up-regulation of COX-1 in vessels and in infiltrating interstitial cells of patients with acute allograft rejection compared with biopsies with well-preserved tissue. Also, COX-2 expression was significantly elevated in infiltrating interstitial cells of biopsies with acute rejection. This is the first prospective study demonstrating a significant induction of both COX-1 and -2 in human allograft biopsies with acute rejection after renal transplantation.
Collapse
Affiliation(s)
- Ute Hoffmann
- Klinik und Poliklinik für Innere Medizin II, University of Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Warford-Woolgar L, Peng CYC, Shuhyta J, Wakefield A, Sankaran D, Ogborn M, Aukema HM. Selectivity of cyclooxygenase isoform activity and prostanoid production in normal and diseased Han:SPRD-cy rat kidneys. Am J Physiol Renal Physiol 2005; 290:F897-904. [PMID: 16234308 DOI: 10.1152/ajprenal.00332.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal prostanoids are important regulators of normal renal function and maintenance of renal homeostasis. In diseased kidneys, renal cylooxygenase (COX) expression and prostanoid formation are altered. With the use of the Han:Sprague-Dawley-cy rat, the aim of this study was to determine the relative contribution of renal COX isoforms (protein, gene expression, and activity) on renal prostanoid production [thromboxane B(2) (TXB(2), stable metabolite of TXA(2)), prostaglandin E(2) (PGE(2)), and 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha), stable metabolite of PGI(2))] in normal and diseased kidneys. In diseased kidneys, COX-1-immunoreactive protein and mRNA levels were higher and COX-2 levels were lower compared with normal kidneys. In contrast, COX activities were higher in diseased compared with normal kidneys for both COX-1 [0.05 +/- 0.02 vs. 0.45 +/- 0.11 ng prostanoids x min(-1) x mg protein(-1) (P < 0.001)] and COX-2 [0.64 +/- 0.10 vs. 2.32 +/- 0.22 ng prostanoids x min(-1).mg protein(-1) (P < 0.001)]. As the relative difference in activity was greater for COX-1, the ratio of COX-1/COX-2 was higher in diseased compared with normal kidneys, although the predominant activity was still due to the COX-2 isoform in both genotypes. Endogenous and steady-state in vitro levels of prostanoids were approximately 2-10 times higher in diseased compared with normal kidneys. The differences between normal and diseased kidney prostanoids were in the order of TXB(2) > 6-keto-PGF(1alpha) > PGE(2), as determined by higher renal prostanoid levels and COX activity ratios of TXB(2)/6-keto-PGF(1alpha), TXB(2)/PGE(2), and 6-keto-PGF(1alpha)/PGE(2). This specificity in both the COX isoform type and for the prostanoids produced has implications for normal and diseased kidneys in treatments involving selective inhibition of COX isoforms.
Collapse
Affiliation(s)
- Lori Warford-Woolgar
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Daza L, Kornhauser C, Zamora L, Flores J. Captopril effect on prostaglandin E2, thromboxane B2 and proteinuria in lupus nephritis patients. Prostaglandins Other Lipid Mediat 2005; 78:194-201. [PMID: 16303616 DOI: 10.1016/j.prostaglandins.2005.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/17/2022]
Abstract
OBJECTIVE High urinary Prostaglandin E2 (PGE2) and thromboxane B2 (TxB2) levels have been reported in lupus nephritis (LN). Captopril diminishes proteinuria and improves glomerular filtration rate (GFR), and may have effect on immune function. We evaluate captopril effect on urinary PGE2, and TxB2. METHODS Eighteen LN patients were randomly assigned to two groups. Group 1 received only prednisone plus cyclophosphamide. Group 2 received also captopril. Serum creatinine, GFR, RPF, urinary proteins, PGE2 and TxB2, were assessed. RESULTS There were no differences between the initial and final assessments in Group 1. Group 2 showed a significant decrement in proteinuria (p=0.003) and serum creatinine (p=0.01) at the end of the study. PGE2 decreased significantly when compared with the initial value (p=0.02). CONCLUSION Captopril plus usual treatment, improved serum creatinine and decreased proteinuria in parallel with prostaglandin E2 reduction. This effect is not related to changes in GFR or RPF. Captopril may have an immunomodulatory effect on local inflammatory processes in lupus nephritis.
Collapse
Affiliation(s)
- L Daza
- Rheumatology and Clinical Research Unit, Hospital de Especialidades, IMSS, León Guanajuato, Mexico.
| | | | | | | |
Collapse
|
36
|
Blume C, Heise G, Hess A, Waldner C, Grabensee B, Schroer K, Heering P. Different effect of cyclosporine A and mycophenolate mofetil on passive Heymann nephritis in the rat. Nephron Clin Pract 2005; 100:e104-12. [PMID: 15855806 DOI: 10.1159/000085029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Accepted: 09/29/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND While cyclosporine A (CsA) is an effective therapy for nephrotic syndrome, it has nephrotoxic side effects. We compared the anti-proteinuric effects and nephrotoxicity in rats with passive Heymann nephritis (PHN) of CsA and mycophenolate mofetil (MMF). METHODS PHN was induced in female Wistar rats. Two treatment groups consisting of 8 rats each received either 25 mg of CsA or 25 mg of MMF/kg body weight/day and were compared with untreated controls. Kidney function and proteinuria were monitored over 4 weeks. Western blots were used for densitometric analysis of renal cyclooxygenase-2 (COX-2) protein expression. Thromboxane B2 (TxB2) and 6-keto-PGF(1alpha) were determined by radioimmunoassays (RIAs) in renal tissue and urine. RESULTS Rats with PHN exhibited a marked proteinuria of 12.76 +/- 4.42 vs. 0.73 +/- 0.28 mg/24 h (p < 0.01) and showed increased glomerular concentrations of TxB2 and 6-keto-PGF(1alpha) (992.6 +/- 216.9 and 1,187.0 +/- 54.2 pg/mg protein, respectively) compared with healthy controls (595 +/- 196.17 and 729 +/- 297.84, respectively) and a strongly induced COX-2 protein expression. CsA and MMF treatment reduced PHN-related proteinuria to 2.10 +/- 1.47 and 1.47 +/- 7.2 mg/24 h, respectively. In rats with PHN, CsA induced a significant deterioration of renal function and enhanced urine excretion of thromboxane A2, paralleled by a significant, twofold increase in COX-2 protein expression and renal prostaglandins. By contrast, MMF treatment in rats with PHN was not nephrotoxic and had no effect on prostaglandin production. COX-2 protein expression under MMF was suppressed. CONCLUSION While the antiproteinuric efficacy of MMF and CsA in PHN was comparable, the absence of nephrotoxicity might favor MMF in the treatment of nephrotic syndrome. The CsA-induced increase in COX-2 expression and COX-2-dependent prostacyclin may indicate a mechanism that compensates nephrotoxicity in the diseased and CsA-exposed kidney.
Collapse
Affiliation(s)
- Cornelia Blume
- Klinik fur Nephrologie und Rheumatologie, Dusseldorf, Deutschland.
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Fujihara CK, Antunes GR, Mattar AL, Andreoli N, Malheiros DMAC, Noronha IL, Zatz R. Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression and progressive injury in the remnant kidney. Kidney Int 2004; 64:2172-81. [PMID: 14633140 DOI: 10.1046/j.1523-1755.2003.00319.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The pathogenesis of progressive nephropathies involves hemodynamic and inflammatory factors. In the 5/6 nephrectomy model, a selective increase of cyclooxygenase-2 (COX-2) expression was shown, whereas treatment with a nonsteroidal anti-inflammatory or a specific COX-2 inhibitor was renoprotective. We investigated in the 5/6 nephrectomy model (1) the renal distribution of COX-2; (2) the hemodynamic and cellular mechanisms by which chronic COX-2 inhibition prevents renal injury. METHODS After 5/6 nephrectomy, adult male Munich-Wistar rats were subdivided in two groups: 5/6 nephrectomy (N=20), receiving vehicle, and 5/6 nephrectomy + celecoxib (N=19), treated orally with the COX-2 inhibitor, celecoxib, 10 mg/kg/day. Untreated and treated (celecoxib) sham-operated rats were also studied. Renal hemodynamics were examined at 4 weeks, whereas renal morphologic/immunohistochemical studies were carried at 8 weeks. RESULTS At 4 weeks, 5/6 nephrectomy rats exhibited marked systemic and glomerular hypertension. Celecoxib attenuated both systemic and glomerular hypertension, without affecting glomerular filtration rate (GFR). At 8 weeks, glomerulosclerosis and interstitial expansion were evident in 5/6 nephrectomy rats, and markedly attenuated in 5/6 nephrectomy rats given celecoxib. In both sham-operated and 5/6 nephrectomy rats, COX-2 was expressed at the macula densa. The extent of COX-2 expression at the macula densa was nearly tripled by celecoxib, indicating the existence of a feedback mechanism. In 5/6 nephrectomy rats, COX-2 was also expressed in glomeruli, arterioles, and the cortical interstitium, mostly at inflamed or sclerosing areas. Celecoxib markedly attenuated renal injury, inflammation, and ectopic COX-2 expression in 5/6 nephrectomy rats. CONCLUSION Chronic COX-2 inhibition attenuated progressive nephropathy by reducing glomerular hypertension, renal inflammation, and ectopic COX-2 expression, indicating a complex contribution of COX-2 to progressive renal injury in 5/6 nephrectomy rats.
Collapse
Affiliation(s)
- Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Waldner C, Schrör K, Heering P. COX-2 dependent PGE(2) downregulates alpha(v) integrin expression via the EP(3) receptor in cultured mesangial cells. J Clin Pathol 2004; 57:553-5. [PMID: 15113870 PMCID: PMC1770300 DOI: 10.1136/jcp.2003.013169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND In experimental glomerulonephritis, inhibition of cyclooxygenase 2 (COX-2) enhances the renocortical expression of pathogenic alpha(v) integrins. AIMS To study whether this effect is mediated by prostaglandin E(2) (PGE(2)) acting through its EP(3) receptor in cultured rat mesangial cells (MCs). METHODS MCs were incubated with lipopolysaccharide (LPS), celecoxib, PGE(2), or the selective EP(3) agonist, MB28767. The expression of COX-2, EP(3), and alpha(v) integrin mRNA was measured by reverse transcriptase polymerase chain reaction. RESULTS LPS upregulated COX-2 expression 2.8-fold and alpha(v) integrin expression twofold. The COX-2 inhibitor celecoxib increased alpha(v) integrin mRNA expression twofold. Both exogenous PGE(2) and the specific EP(3) receptor agonist, MB28767, reduced constitutive alpha(v) integrin mRNA expression to half normal values. COX-2 dependent PGE(2) suppressed the expression of alpha(v) integrin mRNA mediated by the EP(3) receptor in MCs. CONCLUSIONS These results suggest that COX-2 suppresses the expression of alpha(v) integrins by an increased production of PGE(2) activating its EP(3) receptor in glomerulonephritis.
Collapse
Affiliation(s)
- C Waldner
- Nephrologie und allgemeine Innere Medizin, Städtisches Klinikum Solingen, Gotenstrasse 1, D-42653 Solingen, Germany
| | | | | |
Collapse
|
40
|
Gonçalves ARR, Fujihara CK, Mattar AL, Malheiros DMAC, Noronha IDL, de Nucci G, Zatz R. Renal expression of COX-2, ANG II, and AT1 receptor in remnant kidney: strong renoprotection by therapy with losartan and a nonsteroidal anti-inflammatory. Am J Physiol Renal Physiol 2003; 286:F945-54. [PMID: 15075190 DOI: 10.1152/ajprenal.00238.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic renal injury can be mediated by angiotensin II (ANG II) and prostanoids through hemodynamic and inflammatory mechanisms and attenuated by individual suppression of these mediators. In rats with (5/6) renal ablation (Nx), we investigated 1) the intrarenal distribution of COX-2, ANG II, and the AT(1) receptor (AT(1)R); 2) the renoprotective and antiinflammatory effects of an association between the AT(1)R blocker, losartan (Los), and the gastric sparing anti-inflammatory nitroflurbiprofen (NOF). Adult male Munich-Wistar rats underwent Nx or sham operation (S), remaining untreated for 30 days, after which renal structure was examined in 12 Nx rats (Nx(pre)). The remaining rats were followed during an additional 90 days, distributed among 4 treatment groups: Nx(V) (vehicle), Nx(Los) (Los), Nx(NOF) (NOF), and Nx(Los/NOF) (Los/NOF). Nx(pre) rats exhibited marked albuminuria, hypertension, glomerulosclerosis, interstitial expansion, and macrophage infiltration, accompanied by abnormal glomerular, vascular, and interstitial COX-2 expression. ANG II appeared in interstitial cells, in contrast to S, in which ANG II was virtually confined to afferent arterioles. Intrarenal AT(1)R distribution shifted from mostly tubular in S to predominantly interstitial in Nx(pre). All these changes were aggravated at 120 days and attenuated by Los and NOF monotherapies. Los/NOF treatment arrested renal structural injury and ANG II expression and reversed hypertension, albuminuria, and renal inflammation. In conclusion, abnormal expression of COX-2, ANG II, and AT(1)R may be key to development of renal injury in Nx. Concomitant COX-2 inhibition and AT(1)R blockade arrested renal injury and may represent a useful strategy in the treatment of chronic nephropathies.
Collapse
|
41
|
Hausknecht B, Voelkl S, Riess R, Gauer S, Goppelt-Struebe M. Expression of cyclooxygenase-2 in biopsies obtained from human transplanted kidneys undergoing rejection. Transplantation 2003; 76:109-14. [PMID: 12865795 DOI: 10.1097/01.tp.0000069235.95557.93] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The inducible cyclooxygenase (COX)-2 is a target of immunosuppressive drugs routinely administered to patients after transplantation. This study investigates a potential involvement of COX-2 in transplant rejection. Therefore, we examined the expression of COX-2 in biopsies obtained for diagnostic purposes. METHODS COX-2 was detected by immunohistochemistry and in situ hybridization. Congruent staining was obtained by both methods: in specimens of a kidney explanted as the result of vascular rejection, tubular epithelial cells and endothelial cells stained positively for COX-2. Furthermore, in appendiceal specimens obtained at surgery, epithelial cells of the crypts, interstitial cells, and mesothelial cells were positive by both methods, affirming the specificity of the antibody. RESULTS Compared with healthy control subjects, intensive staining of COX-2 was observed in most of the 28 biopsies obtained from patients diagnosed with vascular rejection combined with cellular interstitial rejection and tubulitis. Glomeruli and the macula densa area were essentially negative compared with prominent staining in cortical and medullary epithelial cells of the tubuli. Staining was distinct with individual positive cells in the tubular cross sections. Few arteries expressed COX-2 in intimal cells. Less prominent expression of COX-2 was detected in the biopsies of six kidneys obtained from patients diagnosed with acute tubular necrosis. CONCLUSION This is the first report to show the up-regulation of COX-2 in human transplanted kidneys, despite ongoing immunosuppressive treatment. It remains to be established whether the up-regulation of COX-2 is part of the rejection process or has to be considered implicated in renal preservative mechanisms.
Collapse
Affiliation(s)
- Birgit Hausknecht
- 1 Medizinische Klinik IV, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
42
|
Litherland SA, She JX, Schatz D, Fuller K, Hutson AD, Peng RH, Li Y, Grebe KM, Whittaker DS, Bahjat K, Hopkins D, Fang Q, Spies PD, North K, Wasserfall C, Cook R, Dennis MA, Crockett S, Sleasman J, Kocher J, Muir A, Silverstein J, Atkinson M, Clare-Salzler MJ. Aberrant monocyte prostaglandin synthase 2 (PGS2) expression in type 1 diabetes before and after disease onset. Pediatr Diabetes 2003; 4:10-8. [PMID: 14655518 DOI: 10.1034/j.1399-5448.2003.00042.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
METHODS We examined monocyte prostaglandin synthase 2 (PGS2/COX2) expression in individuals at risk for or with type 1 diabetes including: (i) 58 established type 1 and 2 diabetic patients; (ii) 34 autoantibody positive (AA+) children and adults; (iii) 164 infants and young children with insulin-dependent diabetes mellitus (IDDM) susceptibility human leukocyte antigen (HLA) alleles; and (iv) 37 healthy control individuals, over a 5-yr period. RESULTS Established type 1 diabetic patients (1 month to 30+ yr post-disease onset) had significantly higher PGS2 expression than healthy controls; by contrast, insulin-treated type 2 diabetic patients had significantly lower PGS2 expression than healthy controls. Longitudinal studies of AA+ subjects at risk for type 1 diabetes indicated that 73% (11/15) of individuals who developed this disease during the study period expressed high levels of PGS2 prior to or after onset. We also found high level PGS2 expression in genetically at-risk infants and young children that correlated with having a first-degree relative with type 1 diabetes, but not with age, gender, or HLA genotype. In this population, high level PGS2 expression coincided with or preceded autoantibody detection in 30% (3/10) of subjects. CONCLUSIONS These findings suggest that high level monocyte PGS2 expression, although subject to fluctuation, is present in at-risk subjects at an early age and is maintained during progression to and after type 1 diabetes onset.
Collapse
Affiliation(s)
- S A Litherland
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Box 100275, JHMHC, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aukema HM, Adolphe J, Mishra S, Jiang J, Cuozzo FP, Ogborn MR. Alterations in renal cytosolic phospholipase A2 and cyclooxygenases in polycystic kidney disease. FASEB J 2003; 17:298-300. [PMID: 12490538 DOI: 10.1096/fj.02-0460fje] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2), cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2) regulate the formation of physiologically active prostaglandins, the production of which is known to be elevated in several renal disorders. We studied the relevance of these enzymes in polycystic kidney disease (PKD) by using two models of the disease: a model in which decline in renal function begins in adulthood (CD1-pcy/pcy mouse) and one in which it occurs early, during growth (Han:SPRD-cy rat). Immunoblotting analyses of cytosolic and particulate kidney fractions revealed that cPLA2 levels are significantly higher (by 34-131%) in the latter stages of the disease in both models. Renal COX enzymes were found only in the particulate fractions, with COX-1 87% higher in 6-month-old CD1-pcy/pcy mice compared with normal controls, and 110% higher in male 70-day-old Han:SPRD-cy rats with cystic kidneys compared with controls. Renal COX-2 was detected only in the rats and was 58% lower in diseased kidneys of 70-day-old male Han:SPRD-cy rats, indicating that cPLA2 is coupled to COX-1 in the kidney. The altered levels of these eicosanoid-regulating enzymes has implications for the use of NSAIDS and specific COX inhibitors in individuals with this disorder.
Collapse
Affiliation(s)
- Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.
| | | | | | | | | | | |
Collapse
|
44
|
Yang M, Cook ME. Dietary CLA decreased weight loss and extended survival following the onset of kidney failure in NZB/W F1 mice. Lipids 2003; 38:21-4. [PMID: 12669815 DOI: 10.1007/s11745-003-1026-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In an earlier study, we showed that feeding CLA immediately after weaning prolonged survival of NZB/W F1 mice after onset of proteinuria. In the present study, the feeding of CLA was delayed until mice had developed proteinuria. Thirty NZB/W F1 mice were fed a regular rodent chow after weaning. Urine samples were collected to detect proteinuria. Once a mouse was proteinuria positive, it was then randomly assigned to a 0.5% CLA supplement semipurified diet or a control diet (supplement 0.5% corn oil). The next proteinuria positive mouse was then assigned to the opposite diet to which the first mouse was assigned. Mice fed the control diet lost 25% more body weight (13.0 g) than mice fed the CLA diet (9.7 g). Moreover, CLA-fed mice survived an average 1.7-fold longer (148 d) than mice fed the control diet (89 d) after the onset of proteinuria. This follow-up study confirmed that dietary CLA had a beneficial effect in the autoimmune NZB/W F1 mouse. In summary, the cachectic symptom of systemic lupus erythematosus was decreased by dietary CLA and survival days were increased over control group.
Collapse
Affiliation(s)
- Mingder Yang
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
45
|
Iwata Y, Wada T, Furuichi K, Sakai N, Matsushima K, Yokoyama H, Kobayashi KI. p38 Mitogen-activated protein kinase contributes to autoimmune renal injury in MRL-Fas lpr mice. J Am Soc Nephrol 2003; 14:57-67. [PMID: 12506138 DOI: 10.1097/01.asn.0000037402.83851.5f] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The phosphorylation of p38 mitogen-activated protein kinase (MAPK) is responsible for the production and signal transduction of cytokines and chemokines. This study hypothesized that p38 MAPK activation is required for spontaneous autoimmune renal injury in MRL-Fas(lpr) mice, resembling human lupus erythematosus. FR167653, a specific inhibitor of p38 MAPK, is orally administrated from 3 or 4 mo of age in MRL-Fas(lpr) mice (at doses of 10 or 32mg/kg per day) until 6 mo of age. The phosphorylated p38 MAPK in kidneys of MRL-Fas(lpr) mice was evaluated. The number of phosphorylated p38 MAPK-positive cells was increased in diseased kidneys. The daily oral administration of FR167653 decreased p38 MAPK phosphorylation in kidneys, especially in a group of mice administered FR167653 (32 mg/kg per day) daily from 3 to 6 mo of age. FR167653 reduced the accumulation of macrophages and T cell and prevented kidney pathology, resulting in prolonged survival. In addition, FR167653 reduced expression of MCP-1 and TNF-alpha in the diseased kidneys and cultured tubular epithelial cells. Furthermore, FR167653 decreased IgG levels in the diseased kidneys and circulation. These results suggest that the phosphorylation of p38 MAPK is required for the pathogenesis of renal injury in MRL-Fas(lpr) mice followed by subsequent expression of renal cytokine/chemokine and IgG production. This study provides evidence that the regulation of p38 MAPK is a novel target for the therapy of renal injury in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yasunori Iwata
- Department of Gastroenterology and Nephrology, Division of Blood Purification, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Harding P, Glass WF, Scherer SD. COX-2 inhibition potentiates the antiproteinuric effect of enalapril in uninephrectomized SHR. Prostaglandins Leukot Essent Fatty Acids 2003; 68:17-25. [PMID: 12538086 DOI: 10.1016/s0952-3278(02)00231-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PGE(2) and PGI(2) reduce extracellular matrix deposition and their production is altered after ACE inhibitor (ACEi) treatment. We therefore hypothesized that cyclooxygenase (COX)-2 inhibition would exacerbate renal injury and antagonize the effects of ACEi. To test these hypotheses, WKY and SHR were uninephrectomized (UNX) and treated with either vehicle, enalapril, NS398 or enalapril+NS398. NS398 did not affect systolic blood pressure nor antagonize the antihypertensive effect of enalapril. Urinary protein excretion in UNX WKY was significantly decreased after treatment with either enalapril or NS398. In UNX SHR, enalapril reduced proteinuria, but NS398 alone had no effect. Administration of both drugs, however, further reduced proteinuria. In UNX WKY, treatment with either NS398 alone or both drugs reduced glomerular volume and similar results were observed in SHR. Surprisingly, these results disprove our original hypothesis and suggest that inhibition of COX-2 provides additional renoprotection to that of enalapril alone.
Collapse
Affiliation(s)
- Pamela Harding
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 Olney Road, Norfolk, VA 23501, USA.
| | | | | |
Collapse
|
47
|
Yang M, Cook ME. Dietary conjugated linoleic acid decreased cachexia, macrophage tumor necrosis factor-alpha production, and modifies splenocyte cytokines production. Exp Biol Med (Maywood) 2003; 228:51-8. [PMID: 12524473 DOI: 10.1177/153537020322800107] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of conjugated linoleic acid (CLA) on macrophage functions were studied in vitro, in vivo, and ex vivo. In RAW macrophage cell line, CLA (mixed isomers) was shown to inhibit lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-alpha) production. Two CLA isomers, c9,t11 and t10,c12, were tested on RAW cells and it was found that the c9,t11 was the isomer responsible for the inhibition of LPS-induced TNF-alpha production. BALB/c mice were used to determine the effect of dietary CLA on body weight wasting and feed intake after LPS injection. CLA was protective against LPS-induced body weight wasting and anorexia. Plasma TNF-alpha levels after LPS injection were lower in the CLA group compared with the corn oil-fed control group 2 hr post-LPS injection. In a separate experiment, 30 mice were fed a CLA-supplemented diet or a corn oil-supplemented diet for 6 weeks and peritoneal resident macrophages were obtained for measuring TNF-alpha and nitric oxide production after in vitro exposure to interferon-gamma (IFN-gamma) and/or LPS. TNF-alpha production was not found to be different in peritoneal macrophages from mice fed the dietary treatments, but less nitric oxide was produced in macrophages from CLA-fed mice upon stimulation when compared with macrophages from control-fed mice. Splenocytes were also collected from the mice fed the dietary treatments and stimulated to produce cytokines in culture. Supernatant was used to run cytokine enzyme-linked immunoabsorbant assays. Interleukin-4 (IL-4) was decreased in CLA-fed mice when splenocytes were stimulated with concanavalin A (Con A) for 44 hr; however, IL-2 and the IL-2-to-IL-4 ratio were elevated.
Collapse
Affiliation(s)
- Mingder Yang
- Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
48
|
Abstract
Cyclo-oxygenase (COX) is one of the key enzymes in the biosynthesis of prostaglandins. Two isoforms of this enzyme COX-1 and COX-2 are known to exist. Among other functions, prostaglandins play an important role in the protection of the gastric mucosa and maintenance of renal function in pathophysiological conditions which would otherwise threaten it. Conventional nonsteroidal anti-inflammatory drugs (NSAIDs) block prostaglandin synthesis, resulting in gastric mucosal injury and renal dysfunction in susceptible individuals. The recent introduction of selective COX-2 inhibitors, celecoxib and rofecoxib, appear to induce less gastrointestinal morbidity. Although conclusive data are still lacking, there is evidence to suggest that COX-2 antagonists may be capable of causing some of the same renal syndromes seen in association with the older, less selective NSAIDs.
Collapse
Affiliation(s)
- Gary Noroian
- Department of Medicine, Division of Renal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
49
|
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used. These agents are associated with adverse renal effects caused by the reduction in synthesis of renal prostaglandins through inhibition of cyclooxygenase (COX). Both isoforms of COX, COX-1 and COX-2, are expressed in the kidney in constitutive and inducible forms. It is assumed therefore that the COX-2-selective inhibitors, rofecoxib and celecoxib, would have an effect on renal function similar to that of nonselective NSAIDs. Several studies have evaluated this issue, although they have different study models and some have design flaws that limit their interpretation. Therefore, conclusions should be based on the pattern of observed effects rather than on individual data. These studies suggest that both celecoxib and rofecoxib can cause sodium retention and decrease glomerular filtration rate (GFR) to a similar extent as nonselective NSAIDs in patients at risk for adverse renal effects. Consequently, the same precautions regarding renal risk that are followed for nonselective NSAIDs should be used when selective COX-2 inhibitors are administered.
Collapse
Affiliation(s)
- D Craig Brater
- Departments of Medicine and of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
50
|
Whigham LD, Higbee A, Bjorling DE, Park Y, Pariza MW, Cook ME. Decreased antigen-induced eicosanoid release in conjugated linoleic acid-fed guinea pigs. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1104-12. [PMID: 11893615 DOI: 10.1152/ajpregu.00075.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the capacity of conjugated linoleic acids (CLA) to reduce ex vivo antigen-induced release of eicosanoids in a type I hypersensitivity model. Guinea pigs were fed a diet containing 0.25% safflower oil (control) or 0.25% CLA [43% trans (t)10, cis (c)12; 41% c9, t11/t9, c11 18:2] for 2 wk before and during sensitization to ovalbumin (OVA). Lungs, tracheas, and bladders were incubated in physiological saline solution (PSS) for 1 h (basal mediator release) and challenged with OVA (0.01 g/l PSS) for 1 h (mediator release in response to antigen). Eicosanoids were quantified by HPLC/tandem mass spectrometry or enzyme immunoassay. CLA feeding resulted in no change in basal release but decreased eicosanoid release from sensitized tissues in response to antigen challenge in the following manner: thromboxane B(2), 6-keto-prostaglandin (PG)F(1alpha), PGF(2alpha), PGD(2), PGE(2) by 57-75% in lung, 45-65% in trachea, and 38-60% in bladder; and leukotriene C(4)/D(4)/E(4) by 87, 90, and 50% in lung, trachea, and bladder, respectively. These data indicate that feeding CLA reduces lipid-derived inflammatory mediators produced by this type I hypersensitivity model.
Collapse
Affiliation(s)
- Leah D Whigham
- Department of Nutritional Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|