1
|
Kinoshita H, Yamada S, Ogawa T, Nguyen PHA, Harada S, Kawahara M, Ishijima K, Maeda K, Ebihara H, Fukushi S. Development of a vesicular stomatitis virus pseudotyped with herpes B virus glycoproteins and its application in a neutralizing antibody detection assay. mBio 2024; 15:e0109224. [PMID: 38847539 PMCID: PMC11253632 DOI: 10.1128/mbio.01092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 07/18/2024] Open
Abstract
Herpes B virus (BV) is a zoonotic virus and belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). BV typically establishes asymptomatic infection in its natural hosts, macaque monkeys. However, in humans, BV infection causes serious neurological diseases and death. As such, BV research can only be conducted in a high containment level facility (i.e., biosafety level [BSL] 4), and the mechanisms of BV entry have not been fully elucidated. In this study, we generated a pseudotyped vesicular stomatitis virus (VSV) expressing BV glycoproteins using G-complemented VSV∆G system, which we named VSV/BVpv. We found that four BV glycoproteins (i.e., gB, gD, gH, and gL) were required for the production of a high-titer VSV/BVpv. Moreover, VSV/BVpv cell entry was dependent on the binding of gD to its cellular receptor nectin-1. Pretreatment of Vero cells with endosomal acidification inhibitors did not affect the VSV/BVpv infection. The result indicated that VSV/BVpv entry occurred by direct fusion with the plasma membrane of Vero cells and suggested that the entry pathway was similar to that of native HSV. Furthermore, we developed a VSV/BVpv-based chemiluminescence reduction neutralization test (CRNT), which detected the neutralization antibodies against BV in macaque plasma samples with high sensitivity and specificity. Crucially, the VSV/BVpv generated in this study can be used under BSL-2 condition to study the initial entry process through gD-nectin-1 interaction and the direct fusion of BV with the plasma membrane of Vero cells.IMPORTANCEHerpes B virus (BV) is a highly pathogenic zoonotic virus against humans. BV belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). By contrast to HSV, cell entry mechanisms of BV are not fully understood. The research procedures to manipulate infectious BV should be conducted in biosafety level (BSL)-4 facilities. As pseudotyped viruses provide a safe viral entry model because of their inability to produce infectious progeny virus, we tried to generate a pseudotyped vesicular stomatitis virus bearing BV glycoproteins (VSV/BVpv) by modification of expression constructs of BV glycoproteins, and successfully obtained VSV/BVpv with a high titer. This study has provided novel information for constructing VSV/BVpv and its usefulness to study BV infection.
Collapse
Affiliation(s)
- Hitomi Kinoshita
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuma Ogawa
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Phu Hoang Anh Nguyen
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Furusato IN, Figueiredo KB, de Carvalho ACSR, da Silva Ferreira CS, Takahashi JPF, Kimura LM, Aleixo CS, de Brito OP, Luchs A, Cunha MS, de Azevedo Fernandes NCC, de Araújo LJT, Catão-Dias JL, Guerra JM. Detection of herpesviruses in neotropical primates from São Paulo, Brazil. Braz J Microbiol 2023; 54:3201-3209. [PMID: 37688686 PMCID: PMC10689701 DOI: 10.1007/s42770-023-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
Transmission of herpesvirus between humans and non-human primates represents a serious potential threat to human health and endangered species conservation. This study aimed to identify herpesvirus genomes in samples of neotropical primates (NTPs) in the state of São Paulo, Brazil. A total of 242 NTPs, including Callithrix sp., Alouatta sp., Sapajus sp., and Callicebus sp., were evaluated by pan-herpesvirus polymerase chain reaction (PCR) and sequencing. Sixty-two (25.6%) samples containing genome segments representative of members of the family Herpesviridae, including 16.1% for Callitrichine gammaherpesvirus 3, 6.1% for Human alphaherpesvirus 1, 2.1% for Alouatta macconnelli cytomegalovirus, and 0.83% for Cebus albifrons lymphocryptovirus 1. No co-infections were detected. The detection of herpesvirus genomes was significantly higher among adult animals (p = 0.033) and those kept under human care (p = 0.008671). These findings confirm the importance of monitoring the occurrence of herpesviruses in NTP populations in epizootic events.
Collapse
Affiliation(s)
- Isabella Naomi Furusato
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | | | | | | | - Juliana Possatto Fernandes Takahashi
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
- Programa de Pós-Graduação Em Doenças Infecciosas E Parasitárias - Faculdade de Medicina, Universidade Federal de Mato Grosso Do Sul, Bairro Universitário, Av. Costa E Silva, S/nº, Campo Grande, MS, 79070900, Brazil
| | - Lidia Midori Kimura
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Camila Siqueira Aleixo
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Odília Pereira de Brito
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Adriana Luchs
- Centro de Virologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Mariana Sequetin Cunha
- Centro de Virologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | | | | | - José Luiz Catão-Dias
- Laboratório de Patologia Comparada (LAPCOM), Departamento de Patologia, Faculdade de Veterinária E Zootecnia, Universidade de São Paulo, Avenida Professor Orlando Marques de Paiva, 70, São Paulo, SP, 05508270, Brazil
| | - Juliana Mariotti Guerra
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil.
- Laboratório de Patologia Comparada (LAPCOM), Departamento de Patologia, Faculdade de Veterinária E Zootecnia, Universidade de São Paulo, Avenida Professor Orlando Marques de Paiva, 70, São Paulo, SP, 05508270, Brazil.
| |
Collapse
|
3
|
Dogadov DI, Kyuregyan KK, Alexandra GM, Minosyan AA, Kochkonyan AA, Karlsen AA, Vyshemirsky OI, Karal-Ogly DD, Mikhailov MI. Markers of antroponotic viral infections in vervet monkeys arrived from their natural habitat (Tanzania). Vopr Virusol 2023; 68:394-403. [PMID: 38156576 DOI: 10.36233/0507-4088-188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Various human viruses have been identified in wild monkeys and in captive primates. Cases of transmission of viruses from wild monkeys to humans and vice versa are known. The aim of this study was to identify markers of anthroponotic viral infections in vervet monkeys (Chlorocebus pygerythrus) arrived from their natural habitat (Tanzania). MATERIALS AND METHODS Fecal samples (n = 56) and blood serum samples (n = 75) obtained from 75 animals, respectively, on days 10 and 23 after admission to the primate center, were tested for the markers of anthroponotic viral infections (Ebola virus, Marburg virus, lymphocytic choriomeningitis, hepatitis C virus, herpes simplex virus (HSV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), parainfluenza types 1 and 3, intestinal adenoviruses, rotaviruses) by enzyme immunoassay (ELISA) and polymerase chain reaction (PCR). RESULTS AND DISCUSSION Among the examined animals, markers of 6 out of 11 tested viral infections were identified. Detection rates of IgG antibodies to HSV-1,2 (15.9%) and CMV (15.9%) were two times as low as IgG antibodies to EBV (31.8%). Among the markers of respiratory viral infections, IgG antibodies to parainfluenza virus type 1 were found (6.8%). 14.3% of the animals had rotavirus antigen, and 94% had simian adenovirus DNA. Markers of hemorrhagic fevers Ebola, Marburg, LCM, hepatitis C, and type 3 parainfluenza were not detected. CONCLUSION When importing monkeys from different regions of the world, an expanded screening for viral infections is needed considering the epidemiological situation both in the country of importation and in the country of destination.
Collapse
Affiliation(s)
- D I Dogadov
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - K K Kyuregyan
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- I.I. Mechnikov Research Institute of Vaccines and Sera
| | - G M Alexandra
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - A A Minosyan
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - A A Kochkonyan
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - A A Karlsen
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- I.I. Mechnikov Research Institute of Vaccines and Sera
| | - O I Vyshemirsky
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - D D Karal-Ogly
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia
| | - M I Mikhailov
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- I.I. Mechnikov Research Institute of Vaccines and Sera
| |
Collapse
|
4
|
Zhang TP. Fatal progressive ascending encephalomyelitis caused by herpes B virus infection: first case from China. World J Emerg Med 2022; 13:330-333. [DOI: 10.5847/wjem.j.1920-8642.2022.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/30/2022] [Indexed: 11/19/2022] Open
|
5
|
Shohael AM, Moin AT, Chowdhury MAB, Riana SH, Ullah MA, Araf Y, Sarkar B. An Updated Overview of Herpes Simplex Virus-1 Infection: Insights from Origin to Mitigation Measures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Viral diversity in oral cavity from Sapajus nigritus by metagenomic analyses. Braz J Microbiol 2020; 51:1941-1951. [PMID: 32780265 DOI: 10.1007/s42770-020-00350-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/25/2020] [Indexed: 01/14/2023] Open
Abstract
Sapajus nigritus are non-human primates which are widespread in South America. They are omnivores and live in troops of up to 40 individuals. The oral cavity is one of the main entry routes for microorganisms, including viruses. Our study proposed the identification of viral sequences from oral swabs collected in a group of capuchin monkeys (n = 5) living in a public park in a fragment of Mata Atlantica in South Brazil. Samples were submitted to nucleic acid extraction and enrichment, which was followed by the construction of libraries. After high-throughput sequencing and contig assembly, we used a pipeline to identify 11 viral families, which are Herpesviridae, Parvoviridae, Papillomaviridae, Polyomaviridae, Caulimoviridae, Iridoviridae, Astroviridae, Poxviridae, and Baculoviridae, in addition to two complete viral genomes of Anelloviridae and Genomoviridae. Some of these viruses were closely related to known viruses, while other fragments are more distantly related, with 50% of identity or less to the currently available virus sequences in databases. In addition to host-related viruses, insect and small vertebrate-related viruses were also found, as well as plant-related viruses, bringing insights about their diet. In conclusion, this viral metagenomic analysis reveals, for the first time, the profile of viruses in the oral cavity of wild, free ranging capuchin monkeys.
Collapse
|
7
|
Mozzi A, Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. Intrinsically disordered regions are abundant in simplexvirus proteomes and display signatures of positive selection. Virus Evol 2020; 6:veaa028. [PMID: 32411391 PMCID: PMC7211401 DOI: 10.1093/ve/veaa028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whereas the majority of herpesviruses co-speciated with their mammalian hosts, human herpes simplex virus 2 (HSV-2, genus Simplexvirus) most likely originated from the cross-species transmission of chimpanzee herpesvirus 1 to an ancestor of modern humans. We exploited the peculiar evolutionary history of HSV-2 to investigate the selective events that drove herpesvirus adaptation to a new host. We show that HSV-2 intrinsically disordered regions (IDRs)-that is, protein domains that do not adopt compact three-dimensional structures-are strongly enriched in positive selection signals. Analysis of viral proteomes indicated that a significantly higher portion of simplexvirus proteins is disordered compared with the proteins of other human herpesviruses. IDR abundance in simplexvirus proteomes was not a consequence of the base composition of their genomes (high G + C content). Conversely, protein function determines the IDR fraction, which is significantly higher in viral proteins that interact with human factors. We also found that the average extent of disorder in herpesvirus proteins tends to parallel that of their human interactors. These data suggest that viruses that interact with fast-evolving, disordered human proteins, in turn, evolve disordered viral interactors poised for innovation. We propose that the high IDR fraction present in simplexvirus proteomes contributes to their wider host range compared with other herpesviruses.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan 20090, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan 20148, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| |
Collapse
|
8
|
Sawaswong V, Fahsbender E, Altan E, Kemthong T, Deng X, Malaivijitnond S, Payungporn S, Delwart E. High Diversity and Novel Enteric Viruses in Fecal Viromes of Healthy Wild and Captive Thai Cynomolgus Macaques ( Macaca fascicularis). Viruses 2019; 11:E971. [PMID: 31652508 PMCID: PMC6832579 DOI: 10.3390/v11100971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cynomolgus macaques are common across South East Asian countries including Thailand. The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) captures wild-borne cynomolgus macaque for research use. Limited information is available on the enteric viruses and possible zoonotic infections into or from cynomolgus macaques. We characterized and compare the fecal virome of two populations; healthy wild-originated captive cynomolgus macaques (n = 43) reared in NPRCT-CU and healthy wild cynomolgus macaques (n = 35). Over 90% of recognized viral sequence reads amplified from feces were from bacterial viruses. Viruses from seven families of mammalian viruses were also detected (Parvoviridae, Anelloviridae, Picornaviridae, Adenoviridae, Papillomaviridae, Herpesviridae, and Caliciviridae). The genomes of a member of a new picornavirus genus we named Mafapivirus, a primate chapparvovirus, and a circular Rep-encoding single-strand (CRESS) DNA virus were also characterized. Higher abundance of CRESS DNA viruses of unknown tropism and invertebrate-tropic ambidensovirus were detected in wild versus captive macaques likely reflecting dietary differences. Short term rearing in captivity did not have a pronounced effect on the diversity of mammalian viruses of wild cynomolgus macaques. This study is the first report of the fecal virome of cynomolgus macaques, non-human primates frequently used in biomedical research and vaccination studies.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Elizabeth Fahsbender
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 9413, USA.
| | - Eda Altan
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 9413, USA.
| | - Taratorn Kemthong
- National Primate Research Center-Chulalongkorn University, Saraburi 18110, Thailand.
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA 94118, USA.
| | | | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence in Systems Biology, Chulalongkorn University (CUSB), Bangkok 10330, Thailand.
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 9413, USA.
| |
Collapse
|
9
|
Hotop SK, Abd El Wahed A, Beutling U, Czerny F, Sievers C, Diederichsen U, Frank R, Stahl-Hennig C, Brönstrup M, Fritz HJ. Serological Analysis of Herpes B Virus at Individual Epitope Resolution: From Two-Dimensional Peptide Arrays to Multiplex Bead Flow Assays. Anal Chem 2019; 91:11030-11037. [PMID: 31365232 DOI: 10.1021/acs.analchem.9b01291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macacine herpesvirus or B Virus (BV) is a zoonotic agent that leads to high mortality rates in humans if transmitted and untreated. Here, BV is used as a test case to establish a two-step procedure for developing high throughput serological assays based on synthetic peptides. In step 1, peptide microarray analysis of 42 monkey sera (30 of them tested BV positive by ELISA) revealed 1148 responses against 369 different peptides. The latter could be grouped into 142 different antibody target regions (ATRs) in six different glycoproteins (gB, gC, gD, gG, gH, and gL) of BV. The high number of newly detected ATRs was made possible inter alia by a new preanalytical protocol that reduced unspecific binding of serum components to the cellulose-based matrix of the microarray. In step 2, soluble peptides corresponding to eight ATRs of particularly high antigenicity were synthesized and coupled to fluorescently labeled beads, which were subsequently employed in immunochemical bead flow assays. Their outcome mirrored the ELISA results used as reference. Hence, convenient, fast, and economical screening of arbitrarily large macaque colonies for BV infection is now possible. The study demonstrates that a technology platform switch from two-dimensional high-resolution peptide arrays used for epitope discovery to a readily available bead array platform for serology applications is feasible.
Collapse
Affiliation(s)
- Sven-Kevin Hotop
- Department of Chemical Biology , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , 38124 Braunschweig , Germany
| | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene , Georg-August-University , 37077 Göttingen , Germany
| | - Ulrike Beutling
- Department of Chemical Biology , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , 38124 Braunschweig , Germany
| | - Florian Czerny
- Institute of Organic and Biomolecular Chemistry , Georg-August-University , 37077 Göttingen , Germany
| | - Claudia Sievers
- Department for Epidemiology , Helmholtz Centre for Infection Research , 38124 Braunschweig , Germany
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry , Georg-August-University , 37077 Göttingen , Germany
| | - Ronald Frank
- AIMS Scientific Products GmbH , 13187 Berlin , Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , 38124 Braunschweig , Germany
| | - Hans-Joachim Fritz
- Akademie der Wissenschaften zu Göttingen , Theaterstr. 7 , 37073 Göttingen , Germany
| |
Collapse
|
10
|
Kaul A, Schönmann U, Pöhlmann S. Seroprevalence of viral infections in captive rhesus and cynomolgus macaques. Primate Biol 2019; 6:1-6. [PMID: 32110713 PMCID: PMC7041514 DOI: 10.5194/pb-6-1-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/16/2019] [Indexed: 11/11/2022] Open
Abstract
Macaques serve as important animal models for biomedical research. Viral infection of macaques can compromise animal health as well as the results of biomedical research, and infected animals constitute an occupational health risk. Therefore, monitoring macaque colonies for viral infection is an important task. We used a commercial chip-based assay to analyze sera of 231 macaques for the presence of antibody responses against nine animal and human viruses. We report high seroprevalence of cytomegalovirus (CMV), lymphocryptovirus (LCV), rhesus rhadinovirus (RRV) and simian foamy virus (SFV) antibodies in all age groups. In contrast, antibodies against simian retrovirus type D (SRV/D) and simian T cell leukemia virus (STLV) were detected only in 5 % and 10 % of animals, respectively, and were only found in adult or aged animals. Moreover, none of the animals had antibodies against herpes B virus (BV), in keeping with the results of in-house tests previously used for screening. Finally, an increased seroprevalence of measles virus antibodies in animals with extensive exposure to multiple humans for extended periods of time was observed. However, most of these animals were obtained from external sources, and a lack of information on the measles antibody status of the animals at the time of arrival precluded drawing reliable conclusions from the data. In sum, we show, that in the colony studied, CMV, LCV, RRV and SFV infection was ubiquitous and likely acquired early in life while SRV/D and STLV infection was rare and likely acquired during adulthood.
Collapse
Affiliation(s)
- Artur Kaul
- Infection Biology Unit, German Primate Center – Leibniz Institute for
Primate Research, 37077 Göttingen, Germany
| | - Uwe Schönmann
- Laboratory Animal Sciences Unit, German Primate Center, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center – Leibniz Institute for
Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|