1
|
Bharathy P, Thanikachalam PV, Shoban AN, Himayavendhan HV. Floral Fusion: Unravelling the Potent Blend of Ixora coccinea and Rhododendron arboreum for Health and Safety Benefits. Cureus 2024; 16:e70038. [PMID: 39449919 PMCID: PMC11499314 DOI: 10.7759/cureus.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE Ixora coccinea and Rhododendron arboreum are known for their traditional medicinal uses due to their diverse phytochemicals and pharmacological effects, which have attracted the interest of many researchers. This study aims to evaluate the antioxidant, anti-inflammatory, and cytotoxic effects of their combined extracts. METHODS In vitro antioxidant activity against reactive oxygen species (ROS) was measured using the ferric-reducing ability of plasma (FRAP), nitric oxide (NO), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays, while anti-inflammatory effects were assessed via the membrane stabilization method. Docking studies were performed to evaluate the interaction of phytochemicals - anthocyanins, quercetin, and ursolic acid, which are present in these plants - with nuclear factor kappa B (NF-κB), cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2). Standard protocols were used to evaluate embryotoxicity using the brine shrimp model and cytotoxicity using the zebrafish model, which is crucial for determining safe clinical dosages. RESULTS The analysis revealed diverse bioactive compounds, including anthocyanins, quercetin, and ursolic acid. The formulation effectively inhibited ROS production at lower concentrations (inhibitory concentration 50%, or IC50 value ~2.8 µg/mL), indicating their potential for managing oxidative stress. Quercetin demonstrated the strongest interaction with all tested proteins, particularly NF-kB. Cytotoxicity and embryotoxicity assays revealed a dose-dependent effect (lethal concentration 50%, or LC50 value 82.4 µg/mL), with no adverse effects on developing embryos at the tested doses (5-80 µg/mL), suggesting the extracts are safe for clinical use, even during pregnancy. CONCLUSION The combined extracts of I. coccinea and R. arboreum exhibit potent antioxidant and anti-inflammatory effects without causing cytotoxic or embryotoxic effects, even at higher concentrations. This indicates their potential for safe clinical application in treating oxidative and inflammatory diseases.
Collapse
Affiliation(s)
- Pavithra Bharathy
- Department of Pharmaceutics, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Punniyakoti V Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arundhamizh N Shoban
- Department of Pharmaceutics, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Harish V Himayavendhan
- Department of Pharmaceutics, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Aziz MI, Hasan MM, Ullah R, Bari A, Khan MA, Hasnain SZU, Baloch R, Akram M, Obaid A, Ullah A, Abbas K, Amin A. Potential role of Citrus bergamia flower essential oil against oral pathogens. BMC Complement Med Ther 2024; 24:157. [PMID: 38609946 PMCID: PMC11010433 DOI: 10.1186/s12906-024-04457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Oral bacterial infections are difficult to treat due to emergence of resistance against antibiotic therapy. Essential oils are considered emerging alternate therapy against bacterial infections and biofilms. We investigated Citrus bergemia flower essential oil against oral pathogens. METHODS The essential oil was analsyed using Gas Chromatography(GC-MS), in silico investigations, antioxidant, antimicrobial, antibiofilm and antiquorum sensing assays. RESULTS Gas Chromatography analysis confirmed presence of 17 compounds including 1,6-Octadien-3-ol,3,7-dimethyl, 48.17%), l-limonene (22.03%) and p-menth-1-ol, 8-ol (7.31%) as major components. In silico analysis showed compliance of all tested major components with Lipinski's rule, Bioavailability and antimicrobial activity using PASS (prediction of activity spectrum of substances). Molecular docking with transcriptional regulators 3QP5, 5OE3, 4B2O and 3Q3D revealed strong interaction of all tested compounds except 1,6-Octadien-3-ol,3,7-dimethyl. All tested compounds presented significant inhibition of DPPH (2,2-diphenyl-1-picrylhydrazyl) (IC50 0.65 mg/mL), H2O2 (hydrogen peroxide) (63.5%) and high FRAP (ferrous reducing antioxidant power) value (239.01 µg). In antimicrobial screening a significant activity (MIC 0.125 mg/mL) against Bacillus paramycoides and Bacillus chungangensis was observed. Likewise a strong antibiofilm (52.1 - 69.5%) and anti-QS (quorum sensing) (4-16 mm) activity was recorded in a dose dependent manner. CONCLUSION It was therefore concluded that C. bergemia essential oil posess strong antioxidant, antimicrobial and antibiofilm activities against tested oral pathogens.
Collapse
Affiliation(s)
- Muhammad Imran Aziz
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Syed Zia Ul Hasnain
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakaria University, Multan, Pakistan
| | - Rabia Baloch
- Allama Iqbal Teaching Hospital, Dera Ghazi Khan, Pakistan
| | - Muhammad Akram
- Pakistan Council for Scientific and Industrial Research (PCSIR), Peshawar, Pakistan
| | - Aqsa Obaid
- NPRL, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, 29050, D.I. Khan, Pakistan
- Department of Chemistry, Qurtaba University, D.I.Khan Campus, D.I.Khan, Pakistan
| | - Aziz Ullah
- Pukyong National University, Yangso-Ro, 48513, Busan, Republic of Korea
| | - Khizar Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakaria University, Multan, Pakistan
| | - Adnan Amin
- NPRL, Department of Pharmacognosy, Faculty of Pharmacy, Gomal University, 29050, D.I. Khan, Pakistan.
| |
Collapse
|
3
|
Bungau AF, Radu AF, Bungau SG, Vesa CM, Tit DM, Purza AL, Endres LM. Emerging Insights into the Applicability of Essential Oils in the Management of Acne Vulgaris. Molecules 2023; 28:6395. [PMID: 37687224 PMCID: PMC10489792 DOI: 10.3390/molecules28176395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The occurrence of pustules, comedones, nodules, and cysts defines acne vulgaris, a prevalent chronic inflammatory dermatological condition. In the past few decades, essential oils extracted from varied natural sources have acquired recognition due to their potential medicinal applications in acne therapy. However, there is not yet sufficient medical data to fully characterize this interaction. Multiple factors contribute to the development of acne vulgaris, including excessive sebaceous production, inflammatory processes, hyperkeratinization, and infection with Cutibacterium acnes. Essential oils, including oregano, lavender, lemon grass, myrtle, lemon, thyme, eucalyptus, rosemary, and tea tree, have been found to possess anti-inflammatory, antioxidant, and antimicrobial properties, which may target the multifactorial causes of acne. Analytical methods for determining antioxidant potential (i.e., total phenolic content, diphenyl-1-picrylhydrazyl free radical scavenging assay, reducing power assay, ferrous ion chelating activity, thiobarbituric acid reactive species assay, β-carotene bleaching assay, etc.) are essential for the evaluation of these essential oils, and their method optimization is crucial. Further studies could include the development of novel acne treatments incorporating essential oils and an assessment of their efficacy in large clinical trials. In addition, further research is necessary to ascertain the mechanisms of action of essential oils and their optimal doses and safety profiles for optimal implementation in the management of acne vulgaris.
Collapse
Affiliation(s)
- Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Laura Maria Endres
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
4
|
Jeddi M, El Hachlafi N, Fadil M, Benkhaira N, Jeddi S, Benziane Ouaritini Z, Fikri-Benbrahim K. Combination of Chemically-Characterized Essential Oils from Eucalyptus polybractea, Ormenis mixta, and Lavandula burnatii: Optimization of a New Complete Antibacterial Formulation Using Simplex-Centroid Mixture Design. Adv Pharmacol Pharm Sci 2023; 2023:5593350. [PMID: 37645561 PMCID: PMC10462449 DOI: 10.1155/2023/5593350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
This study aims to identify the volatile profile of three essential oils obtained from Eucalyptus polybractea cryptonifera (EPEO), Ormenis mixta (OMEO), and Lavandula burnatii briquet (LBEO) and to examine their combined antibacterial activity that affords the optimal inhibitory ability against S. aureus and E. coli using simplex-centroid mixture design and checkerboard assay. Essential oils (EOs) were isolated by hydrodistillation and characterized using gas chromatography-mass spectrometry (GC-MS) and gas chromatography coupled with flame-ionization detector (GC-FID). The antibacterial activity was performed using disc diffusion and microdilution assays. The chemical analysis revealed that 1,8-cineole (23.75%), p-cymene (22.47%), and α-pinene (11.20%) and p-menthane-1,8-diol (18.19%), α-pinene (10.81%), and D-germacrene (9.17%) were the main components detected in E. polybractea and O. mixta EOs, respectively. However, L. burnatii EO was mainly represented by linalool (24.40%) and linalyl acetate (18.68%). The EPEO, LBEO, and OMEO had a strong antibacterial effect on S. aureus with minimal inhibitory concentrations (MICs) values ranging from 0.25 to 0.5% (v/v). Furthermore, the combination of 1/2048 MICEPEO + 1/4 MICLBEO showed a synergistic antibacterial effect on S. aureus with a FIC index of 0.25, while the formulation of 1/4 MICEPEO + 1/4 MICOMEO demonstrated an antibacterial synergistic activity on E. coli with a FIC index of 0.5. Moreover, the simplex-centroid mixture design reported that the most effective combinations on E. coli and S. aureus correspond to 32%/28%/40% and 35%/30%/35% of E. polybractea, O. mixta, and L. burnatii, respectively. Presented information highlights the action of antibacterial formulations of these EOs and suggests their potential applications as alternatives to commercialized drugs to contract the development of bacteria causing serious infections and food deterioration.
Collapse
Affiliation(s)
- Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Mouhcine Fadil
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Road of Imouzzer, Fez, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Samir Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Zineb Benziane Ouaritini
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| |
Collapse
|
5
|
Jaramillo V, Díaz E, Muñoz LN, González-Barrios AF, Rodríguez-Cortina J, Cruz JC, Muñoz-Camargo C. Enhancing Wound Healing: A Novel Topical Emulsion Combining CW49 Peptide and Lavender Essential Oil for Accelerated Regeneration and Antibacterial Protection. Pharmaceutics 2023; 15:1739. [PMID: 37376187 DOI: 10.3390/pharmaceutics15061739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Wound healing is a complex process involving blood cells, extracellular matrix, and parenchymal cells. Research on biomimetics in amphibian skin has identified the CW49 peptide from Odorrana grahami, which has been demonstrated to promote wound regeneration. Additionally, lavender essential oil exhibits anti-inflammatory and antibacterial activities. Given these considerations, we propose an innovative emulsion that combines the CW49 peptide with lavender oil. This novel formulation could serve as a potent topical treatment, potentially fostering the regeneration of damaged tissues and providing robust antibacterial protection for skin wounds. This study investigates the physicochemical properties, biocompatibility, and in vitro regenerative capacity of the active components and the emulsion. The results show that the emulsion possesses appropriate rheological characteristics for topical application. Both the CW49 peptide and lavender oil exhibit high viability in human keratinocytes, indicating their biocompatibility. The emulsion induces hemolysis and platelet aggregation, an expected behavior for such topical treatments. Furthermore, the lavender-oil emulsion demonstrates antibacterial activity against both Gram-positive and Gram-negative bacterial strains. Finally, the regenerative potential of the emulsion and its active components is confirmed in a 2D wound model using human keratinocytes. In conclusion, the formulated emulsion, which combines the CW49 peptide and lavender oil, shows great promise as a topical treatment for wound healing. Further research is needed to validate these findings in more advanced in vitro models and in vivo settings, potentially leading to improved wound-care management and novel therapeutic options for patients with skin injuries.
Collapse
Affiliation(s)
- Valentina Jaramillo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Erika Díaz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Laura N Muñoz
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | | | - Jader Rodríguez-Cortina
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera 250047, Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | | |
Collapse
|
6
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Yuan Y, Ma M, Zhang S, Wang D. Efficient Utilization of Tea Resources through Encapsulation: Dual Perspectives from Core Material to Wall Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1310-1324. [PMID: 36637407 DOI: 10.1021/acs.jafc.2c07346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the high production and consumption of tea around the world, efficient utilization of tea byproducts (tea pruning, tea residues after production, and drinking) is the focus of improving the economy of the tea industry. This review comprehensively discusses the efficient utilization of tea resources by encapsulation from the dual perspectives of core material and wall material. The core material is mainly tea polyphenols, followed by tea oils. The encapsulation system for tea polyphenols includes microcapsules, nanoparticles, emulsions, gels, conjugates, metal-organic frameworks, liposomes, and nanofibers. In addition, it is also diversified for the encapsulation of tea oils. Tea resources as wall materials refer to tea saponins, tea polyphenols, tea proteins, and tea polysaccharides. The application of the tea-based delivery system widely involves functionally fortified food, meat preservation, film, medical treatment, wastewater treatment, and plant protection. In the future, the coencapsulation of tea resources as core materials and other functional ingredients, the precise targeting of these tea resources, and the wide application of tea resources in wall materials need to be focused on. In conclusion, the described technofunctional properties and future research challenges in this review should be followed.
Collapse
Affiliation(s)
- Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Biopolymer-based powders with encapsulated thyme oil: Characterization and comparison with free oil regarding thermal stability and antimicrobial activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
GC-MS Profile, Antioxidant Activity, and In Silico Study of the Essential Oil from Schinus molle L. Leaves in the Presence of Mosquito Juvenile Hormone-Binding Protein (mJHBP) from Aedes aegypti. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5601531. [PMID: 35615009 PMCID: PMC9126701 DOI: 10.1155/2022/5601531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022]
Abstract
Schinus molle is a medicinal plant used as an anti-inflammatory and for rheumatic pain in the traditional medicine of Peru. On the other hand, Aedes aegypti is the main vector of several tropical diseases and the transmitter of yellow fever, chikungunya, malaria, dengue, and Zika virus. In this study, the aim was to investigate the antioxidant activity in vitro and the insecticidal activity in silico, in the presence of the mosquito juvenile hormone-binding protein (mJHBP) from Aedes aegypti, of the essential oil from S. molle leaves. The volatile phytochemicals were analyzed by gas chromatography-mass spectrometry (GC-MS), and the profile antioxidants were examined by DPPH, ABTS, and FRAP assays. The evaluation in silico was carried out on mJHBP (PDB: 5V13) with an insecticidal approach. The results revealed that EO presented as the main volatile components to alpha-phellandrene (32.68%), D-limonene (12.59%), and beta-phellandrene (12.24%). The antioxidant activity showed values for
,
, and
. Regarding the insecticidal approach in silico, alpha-muurolene and gamma-cadinene had the best biding energy on mJHBP (
), followed by beta-cadinene (
). Additionally, the volatile components did not reveal antioxidant activity, and its potential insecticidal effect would be acting on mJHBP from A. aegypti.
Collapse
|
11
|
Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils. Pharmaceuticals (Basel) 2022; 15:ph15050567. [PMID: 35631393 PMCID: PMC9145560 DOI: 10.3390/ph15050567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The demand for more suitable eco-friendly extraction processes has grown over the last few decades and driven research to develop efficient extraction processes with low energy consumption and low costs, but always assuring the quality of the volatile oils (VOs). The present study estimated the kinetic extraction and energy consumption of simultaneous hydro- and steam-distillation (SHSD), and SHSD assisted by carbon dioxide (SHSDACD), using an adopted modelling approach. The two isolation methods influenced the VOs yield, chemical composition and biological activities, namely, antioxidant, anti-glucosidase, anti-acetylcholinesterase and anti-inflammatory properties. SHSDACD provided higher VOs yields than the SHSD at a shorter extraction time: 2.8% at 30 min vs. 2.0% at 120 min, respectively, for Rosmarinus officinalis, 1.5% at 28 min vs. 1.2% at 100 min, respectively, for Lavandula angustifolia, and 1.7% at 20 min vs. 1.6% at 60 min, respectively, for Origanum compactum. The first order and sigmoid model fitted to SHSD and SHSDACD, respectively, with R2 value at 96% and with mean square error (MSE) < 5%, where the k distillation rate constant of SHSDACD was fivefold higher and the energy consumption 10 times lower than the SHSD. The rosemary SHSD and SHSDACD VOs chemical composition were similar and dominated by 1,8-cineole (50% and 48%, respectively), and camphor (15% and 12%, respectively). However, the lavender and oregano SHSDACD VOs were richer in linalyl acetate and carvacrol, respectively, than the SHSD VOs. The SHSDACD VOs generally showed better capacity for scavenging the nitric oxide and superoxide anions free radicals as well as for inhibiting α-glucosidase, acetylcholinesterase, and lipoxygenase.
Collapse
|
12
|
Encapsulation of volatile compounds in liquid media: Fragrances, flavors, and essential oils in commercial formulations. Adv Colloid Interface Sci 2021; 298:102544. [PMID: 34717207 DOI: 10.1016/j.cis.2021.102544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
The first marketed example of the application of microcapsules dates back to 1957. Since then, microencapsulation techniques and knowledge have progressed in a plethora of technological fields, and efforts have been directed toward the design of progressively more efficient carriers. The protection of payloads from the exposure to unfavorable environments indeed grants enhanced efficacy, safety, and stability of encapsulated species while allowing for a fine tuning of their release profile and longer lasting beneficial effects. Perfumes or, more generally, active-loaded microcapsules are nowadays present in a very large number of consumer products. Commercial products currently make use of rigid, stable polymer-based microcapsules with excellent release properties. However, this type of microcapsules does not meet certain sustainability requirements such as biocompatibility and biodegradability: the leaking via wastewater contributes to the alarming phenomenon of microplastic pollution with about 4% of total microplastic in the environment. Therefore, there is a need to address new issues which have been emerging in relation to the poor environmental profile of such materials. The progresses in some of the main application fields of microencapsulation, such as household care, toiletries, cosmetics, food, and pesticides are reviewed herein. The main technologies employed in microcapsules production and the mechanisms underlying the release of actives are also discussed. Both the advantages and disadvantages of every technique have been considered to allow a careful choice of the most suitable technique for a specific target application and prepare the ground for novel ideas and approaches for encapsulation strategies that we expect to be proposed within the next years.
Collapse
|
13
|
Ensandoost R, Izadi-Vasafi H, Adelnia H. Anti-Bacterial Activity of Chitosan-Alginate-Poly (Vinyl Alcohol) Hydrogel Containing Entrapped Peppermint Essential Oil. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1999043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Reza Ensandoost
- Department of Polymer Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Hossein Izadi-Vasafi
- Department of Polymer Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Hossein Adelnia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, Australia
| |
Collapse
|
14
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
15
|
Extending the Shelf-Life of Fresh-Cut Green Bean Pods by Ethanol, Ascorbic Acid, and Essential Oils. Foods 2021; 10:foods10051103. [PMID: 34067518 PMCID: PMC8156079 DOI: 10.3390/foods10051103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 01/20/2023] Open
Abstract
Green beans are a perishable crop, which deteriorate rapidly after harvest, particularly when minimally processed into ready-to-eat fresh-cut green beans. This study investigated the effectiveness of ethanol, ascorbic acid (AsA), tea tree essential oil (TTO), and peppermint essential oil (PMO) on the quality and storability of fresh-cut green bean pods samples stored at 5 °C for 15 days. Our results indicated that samples treated with ethanol, AsA, TTO, and PMO preserved appearance, firmness (except ethanol), chlorophyll content, and moisture compared with the samples without any treatment (control). Additionally, higher vitamin C, total soluble solids (TSS), total sugars, and total phenolic compounds (TPC) were observed in samples treated with ethanol, AsA, TTO, and PMO compared with the control. The most effective treatments for controlling microbial growth were ethanol followed by either TTO or PMO. All the treatments had positive effects on shelf life, maintained quality, and reducing microbial growth during 15 days of cold storage. A particular treatment can be selected based on the economic feasibility and critical control point in the value chain.
Collapse
|
16
|
Chiriac AP, Rusu AG, Nita LE, Chiriac VM, Neamtu I, Sandu A. Polymeric Carriers Designed for Encapsulation of Essential Oils with Biological Activity. Pharmaceutics 2021; 13:pharmaceutics13050631. [PMID: 33925127 PMCID: PMC8146382 DOI: 10.3390/pharmaceutics13050631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
The article reviews the possibilities of encapsulating essential oils EOs, due to their multiple benefits, controlled release, and in order to protect them from environmental conditions. Thus, we present the natural polymers and the synthetic macromolecular chains that are commonly used as networks for embedding EOs, owing to their biodegradability and biocompatibility, interdependent encapsulation methods, and potential applicability of bioactive blend structures. The possibilities of using artificial intelligence to evaluate the bioactivity of EOs—in direct correlation with their chemical constitutions and structures, in order to avoid complex laboratory analyses, to save money and time, and to enhance the final consistency of the products—are also presented.
Collapse
Affiliation(s)
- Aurica P. Chiriac
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
- Correspondence:
| | - Alina G. Rusu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Loredana E. Nita
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Vlad M. Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, 700050 Iași, Romania;
| | - Iordana Neamtu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| | - Alina Sandu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (A.G.R.); (L.E.N.); (I.N.); (A.S.)
| |
Collapse
|
17
|
Díaz-Montes E, Castro-Muñoz R. Trends in Chitosan as a Primary Biopolymer for Functional Films and Coatings Manufacture for Food and Natural Products. Polymers (Basel) 2021; 13:767. [PMID: 33804445 PMCID: PMC7957772 DOI: 10.3390/polym13050767] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Some of the current challenges faced by the food industry deal with the natural ripening process and the short shelf-life of fresh and minimally processed products. The loss of vitamins and minerals, lipid oxidation, enzymatic browning, and growth of microorganisms have been the main issues for many years within the innovation and improvement of food packaging, which seeks to preserve and protect the product until its consumption. Most of the conventional packaging are petroleum-derived plastics, which after product consumption becomes a major concern due to environmental damage provoked by their difficult degradation. In this sense, many researchers have shown interest in edible films and coatings, which represent an environmentally friendly alternative for food packaging. To date, chitosan (CS) is among the most common materials in the formulation of these biodegradable packaging together with polysaccharides, proteins, and lipids. The good film-forming and biological properties (i.e., antimicrobial, antifungal, and antiviral) of CS have fostered its usage in food packaging. Therefore, the goal of this paper is to collect and discuss the latest development works (over the last five years) aimed at using CS in the manufacture of edible films and coatings for food preservation. Particular attention has been devoted to relevant findings in the field, together with the novel preparation protocols of such biodegradable packaging. Finally, recent trends in new concepts of composite films and coatings are also addressed.
Collapse
Affiliation(s)
- Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n Col. Barrio La Laguna Ticoman, Mexico City 07340, Mexico;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| |
Collapse
|
18
|
Characterization of Rosewood and Cinnamon Cassia essential oil polymeric capsules: Stability, loading efficiency, release rate and antimicrobial properties. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
|
20
|
Natural Preparations Based on Orange, Bergamot and Clove Essential Oils and Their Chemical Compounds as Antimicrobial Agents. Molecules 2020; 25:molecules25235502. [PMID: 33255327 PMCID: PMC7727698 DOI: 10.3390/molecules25235502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Since ancient times complementary therapies have been based on the use of medicinal plants, natural preparations and essential oils in the treatment of various diseases. Their use in medical practice is recommended in view of their low toxicity, pharmacological properties and economic impact. This paper aims to test the antimicrobial effect of natural preparation based on clove, orange and bergamot essential oils on a wide range of microorganisms that cause infections in humans including: Streptococcus pyogenes, Staphylococcus aureus, Shigella flexneri, Candida parapsilosis, Candida albicans, Pseudomonas aeruginosa, Escherichia coli, Salmonella typhimurium and Haemophilus influenza. Three natural preparations such as one-component emulsions: clove (ECEO), bergamote (EBEO), and orange (EOEO), three binary: E(BEO/CEO), E(BEO/OEO), E(CEO/OEO) and a tertiary emulsion E(OEO/BEO/CEO) were obtained, characterized and tested for antimicrobial effects. Also, the synergistic/antagonistic effects, generated by the presence of the main chemical compounds, were studied in order to recommend a preparation with optimal antimicrobial activity. The obtained results underline the fact that the monocomponent emulsion ECEO shows antimicrobial activity, while EOEO and EBEO do not inhibit the development of the analyzed strains. In binary or tertiary emulsions E(BEO/CEO), E(CEO/OEO) and E(OEO/ BEO/CEO) the antimicrobial effect of clove oil is potentiated due to the synergism exerted by the chemical compounds of essential oils.
Collapse
|
21
|
Tița O, Constantinescu MA, Tița MA, Georgescu C. Use of Yoghurt Enhanced with Volatile Plant Oils Encapsulated in Sodium Alginate to Increase the Human Body's Immunity in the Present Fight Against Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207588. [PMID: 33086508 PMCID: PMC7589738 DOI: 10.3390/ijerph17207588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023]
Abstract
(1) Background: The COVID–19 pandemic and the imposition of strict but necessary measures to prevent the spread of the new coronavirus have been, and still are, major stress factors for adults, children, and adolescents. Stress harms human health as it creates free radicals in the human body. According to various recent studies, volatile oils from various aromatic plants have a high content of antioxidants and antimicrobial compounds. An external supply of antioxidants is required to destroy these free radicals. The main purpose of this paper is to create a yoghurt with high antioxidant capacity, using only raw materials from Romania; (2) Methods: The bioactive components used to enrich the cow milk yoghurt were extracted as volatile oils out of four aromatic plants: basil, mint, lavender and fennel. Initially, the compounds were extracted to determine the antioxidant capacity, and subsequently, the antioxidant activity of the yoghurt was determined. The 2,2-diphenyl-1-picrylhy-drazyl (DPPH) method was used to determine the antioxidant activity; (3) Results: The results show that cow milk yoghurt enhanced with volatile oils of basil, lavender, mint and fennel, encapsulated in sodium alginate has an antioxidant and antimicrobial effect as a staple food with multiple effects in increasing the body’s immunity. The antioxidant activity proved to be considerably higher than the control sample. The highest antioxidant activity was obtained on the first day of the analysis, decreasing onwards to measurements taken on days 10 and 20. The cow milk yoghurt enriched with volatile basil oil obtained the best results; (4) Conclusions: The paper shows that yoghurts with a high antioxidant capacity were obtained, using only raw materials from Romania. A healthy diet, compliance with safety conditions and finding appropriate and safe methods to increase the body’s immunity is a good alternative to a major transition through harder times, such as pandemics. The creation of food products that include natural antioxidant compounds combines both the current great possibility of developing food production in Romania and the prevention and reduction of the effects caused by pandemic stress in the human body.
Collapse
|
22
|
Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101074] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|