1
|
Babczyńska A, Górka M, Lis A, Tarnawska M, Łozowski B, Brożek J, Rozpędek K, Augustyniak M, Skowronek M, Kafel A. Joint cadmium and polypropylene microparticle action in cadmium tolerant model insect. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104209. [PMID: 37399851 DOI: 10.1016/j.etap.2023.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Microplastic enlisted as a contaminant of emerging concerns in polluted environments interact with "traditional" contaminants such as metals, causing, among others, their increased accumulation in the body. Harmful effects depend on the exposed animals' possible preadaptation and/or cross-tolerance. The project aimed to assess the role of this phenomenon in the limited toxicity of polypropylene fibers (PPf) in 0%, 0.02%, 0.06, 0.18%, 0.54%, and 1.6% of Cd-supplemented food of larvae of Spodoptera exigua multigenerationally selected to cadmium tolerance. The activity of 20 digestive enzymes (API-ZYM test), defensins, and heat shock proteins, HSP70 levels in the exposed groups were used as biomarkers. PPfs caused the increase of Cd accumulation in the body, while intake of polypropylene microfibers did not change the biomarker levels. Moreover, multigenerational Cd pre-exposure, due to increased tolerance of Cd and, possibly, cross-tolerance, prepares the insects for an additional stressor (PPf) alone and in interaction with cadmium.
Collapse
Affiliation(s)
- Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Mikołaj Górka
- Center for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Artur Lis
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Bartosz Łozowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Jolanta Brożek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Alina Kafel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
2
|
Li H, Xu X, Zhang M, Zhang Y, Zhao Y, Jiang X, Xin X, Zhang Z, Zhang R, Gui Z. Accelerated degradation of cellulose in silkworm excrement by the interaction of housefly larvae and cellulose-degrading bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116295. [PMID: 36150354 DOI: 10.1016/j.jenvman.2022.116295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The environmental pollution caused by silkworm (Bombyx mori) excrement is prominent, and rich in refractory cellulose is the bottleneck restricting the efficient recycling of silkworm excrement. This study was performed to investigate the effects of housefly larvae vermicomposting on the biodegradation of cellulose in silkworm excrement. After six days, a 58.90% reduction of cellulose content in treatment groups was observed, which was significantly higher than 11.5% of the control groups without housefly larvae. Three cellulose-degrading bacterial strains were isolated from silkworm excrement, which were identified as Bacillus licheniformis, Bacillus amyloliquefaciens, and Bacillus subtilis based on 16S rRNA gene sequence analysis. These three bacterial stains had a high cellulose degradation index (HC value ranged to between 1.86 and 5.97 and FPase ranged from 5.07 U/mL to 7.31 U/mL). It was found that housefly larvae increased the abundance of cellulose-degrading bacterial genus (Bacillus and Pseudomonas) by regulating the external environmental conditions (temperature and pH). Carbohydrate metabolism was the bacterial communities' primary function during vermicomposting based on the PICRUSt. The results of Tax4Fun indicated that the abundance of endo-β-1,4-glucanase and exo-β-1,4-glucanase increased rapidly and maintained at a higher level in silkworm excrement due to the addition of housefly larvae, which contributed to the accelerated degradation of cellulose in silkworm excrement. The finding of this investigation showed that housefly larvae can significantly accelerate the degradation of cellulose in silkworm excrement by increasing the abundance of cellulose-degrading bacterial genera and cellulase.
Collapse
Affiliation(s)
- Hao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Xueming Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Minqi Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Yuanhao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Ying Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Xueping Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China.
| |
Collapse
|
3
|
Ramirez-Olea H, Reyes-Ballesteros B, Chavez-Santoscoy RA. Potential application of the probiotic Bacillus licheniformis as an adjuvant in the treatment of diseases in humans and animals: A systematic review. Front Microbiol 2022; 13:993451. [PMID: 36225361 PMCID: PMC9549136 DOI: 10.3389/fmicb.2022.993451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The use of Bacillus licheniformis as a probiotic has increased significantly in recent years. Published reports demonstrate that it provides multiple benefits for health. Although there are already studies in humans and is marketed, it is mostly used in the veterinary industry still. However, its benefits could be extrapolated to humans in future. This review addresses the application of B. licheniformis, its sporulation, mechanisms of action, and its role in the resolution, treatment, and prevention of different conditions and diseases. It focuses on scientific advances from 2016 to mid-2022 and emphasizes the most common diseases in the general population. Most of the 70% of published studies about the health benefits of B. licheniformis have been published from 2016 until now. The intake of B. licheniformis has been related to the effects of modulation of the intestinal microbiota, antimicrobial activity, growth promotion, anti-inflammatory and immunostimulatory effects, promotion of the regulation of the lipid profile, increase of neurotransmitters, and stress reduction, among others. These results provide novel possible applications of this and other probiotics in general. Although many benefits can be reported on a microorganism, the combination with others could provide a better effect. Further studies like this need to be done to understand the specific advantages of each probiotic and its strains and therefore achieve a better selection of them for a specific disease or disorder.
Collapse
Affiliation(s)
- Hugo Ramirez-Olea
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Monterrey, NL, Mexico
| | - Bernardo Reyes-Ballesteros
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Estado de México, Ciudad López Mateos, MX, Mexico
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Monterrey, NL, Mexico
- *Correspondence: Rocio Alejandra Chavez-Santoscoy,
| |
Collapse
|