1
|
Joshi D, Patel H, Suthar S, Patel DH, Kikani BA. Evaluation of the efficiency of thermostable L-asparaginase from B. licheniformis UDS-5 for acrylamide mitigation during preparation of French fries. World J Microbiol Biotechnol 2024; 40:92. [PMID: 38345704 DOI: 10.1007/s11274-024-03907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
A thermostable L-asparaginase was produced from Bacillus licheniformis UDS-5 (GenBank accession number, OP117154). The production conditions were optimized by the Plackett Burman method, followed by the Box Behnken method, where the enzyme production was enhanced up to fourfold. It secreted L-asparaginase optimally in the medium, pH 7, containing 0.5% (w/v) peptone, 1% (w/v) sodium chloride, 0.15% (w/v) beef extract, 0.15% (w/v) yeast extract, 3% (w/v) L-asparagine at 50 °C for 96 h. The enzyme, with a molecular weight of 85 kDa, was purified by ion exchange chromatography and size exclusion chromatography with better purification fold and percent yield. It displayed optimal catalysis at 70 °C in 20 mM Tris-Cl buffer, pH 8. The purified enzyme also exhibited significant salt tolerance too, making it a suitable candidate for the food application. The L-asparaginase was employed at different doses to evaluate its ability to mitigate acrylamide, while preparing French fries without any prior treatment. The salient attributes of B. licheniformis UDS-5 L-asparaginase, such as greater thermal stability, salt stability and acrylamide reduction in starchy foods, highlights its possible application in the food industry.
Collapse
Affiliation(s)
- Disha Joshi
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Harsh Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Sadikhusain Suthar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Darshan H Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| |
Collapse
|
2
|
Abhini KN, Rajan AB, Fathimathu Zuhara K, Sebastian D. Response surface methodological optimization of L-asparaginase production from the medicinal plant endophyte Acinetobacter baumannii ZAS1. J Genet Eng Biotechnol 2022; 20:22. [PMID: 35138483 PMCID: PMC8828825 DOI: 10.1186/s43141-022-00309-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/23/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND This study targets the enhanced production of L-asparaginase, an antitumor enzyme by Acinetobacter baumannii ZAS1. This organism is an endophyte isolated from the medicinal plant Annona muricata. Plackett-Burman design (PBD) and central composite design (CCD) were used for statistical optimization of media components. RESULTS The organism exhibited 18.85 ± 0.2 U/mL enzyme activities in unoptimized media. Eight variables: L-asparagine, peptone, glucose, lactose, yeast extract, NaCl, MgSO4, and Na2HPO4 were screened by PBD. Among them, only four factors-L-asparagine, peptone, glucose, and Na2HPO4-were found to affect enzyme production significantly (p < 0.05). Furthermore, the best possible concentrations and interactive effects of the components that enhance this enzyme's output were chosen by using CCD on these selected variables. The results revealed that an optimized medium produces a higher concentration of enzymes than the unoptimized medium. After optimizing media components, the maximum L-asparaginase activity was 45.59 ± 0.36 U/mL, around the anticipated value of 45.04 ± 0.42 U/mL. After optimization of process parameters, it showed a 2.41-fold increase in the production of L-asparaginase by the endophyte Acinetobacter baumannii ZAS1. CONCLUSION The findings of this study indicated that an endophyte, Acinetobacter baumannii ZAS1 that produces L-asparaginase could be used to increase enzyme output. However, using the statistical methods Plackett-Burman design and central composite design of response surface methodology is a handy tool for optimizing media components for increased L-asparaginase synthesis.
Collapse
Affiliation(s)
- K N Abhini
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India
| | - Akhila B Rajan
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India
| | - K Fathimathu Zuhara
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India
| | - Denoj Sebastian
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India.
| |
Collapse
|
3
|
Lailaja VP, Sumithra TG, Reshma KJ, Anusree VN, Amala PV, Kishor TG, Sanil NK. Characterization of novel L-asparaginases having clinically safe profiles from bacteria inhabiting the hemolymph of the crab, Scylla serrata (Forskål, 1775). Folia Microbiol (Praha) 2022; 67:491-505. [PMID: 35138564 DOI: 10.1007/s12223-022-00952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
L-asparaginase (ASNase) is the principal chemotherapeutic agent against different blood cancers. The risks associated with current clinical preparations demand screening for novel ASNases. Accordingly, the study was conducted to shortlist ASNases having clinically safer profiles from a novel niche, namely, microbes in the gut and hemolymph of apparently healthy Scylla serrata. A four-step strategic approach incorporating the essential requirements for clinically safer profiles was followed. The initial step through plate assay showed five (9.61%) potential ASNase producers. The relative prevalence of ASNase producers was higher in hemolymph (13.33%) than gut (4.5%). The positive isolates were identified as Priestia aryabhattai, Priestia megaterium, Bacillus altitudinis, Shewanella decolorationis, and Chryseomicrobium amylolyticum. Quantitative profiles revealed high ASNase production (114.29 to 287.36 U/mL) without any optimization, with an added advantage of the extracellular production. The second step for substrate specificity studies revealed the absence of L-glutaminase and urease activities in ASNases from C. amylolyticum and P. megaterium, the most desirable properties for safe clinical applications. This is the first report of glutaminase and urease-free ASNase from these two bacteria. The third step ensured type II nature of selected ASNases, the targeted form in clinical applications. The fourth step confirmed the activity and stability in human physiological conditions. Altogether, the results revealed two potential ASNases with clinically compatible profiles.
Collapse
Affiliation(s)
- V P Lailaja
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - T G Sumithra
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India.
| | - K J Reshma
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - V N Anusree
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - P V Amala
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - T G Kishor
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| | - N K Sanil
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O, Post Box No. 1603, Kochi, 682 018, India
| |
Collapse
|
4
|
Patel P, Gosai H, Panseriya H, Dave B. Development of Process and Data Centric Inference System for Enhanced Production of L-Asparaginase from Halotolerant Bacillus licheniformis PPD37. Appl Biochem Biotechnol 2021; 194:1659-1681. [PMID: 34845588 DOI: 10.1007/s12010-021-03707-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
The present study aims at bioengineering of medium components using data and process centric approaches for enhanced production of L-asparaginase, an important biological molecule, by halotolerant Bacillus licheniformis PPD37 strain. To achieve this, first significant medium components were screened followed by optimisation of a combination of media components and culture conditions such as L-asparagine, MgSO4, NaCl, pH, and temperature. Optimisation study was carried out using statistical models such as response surface methodology (RSM) - process centric and artificial neural network (ANN) - data centric approaches. The production improved from 2.86 U/mL to 17.089 U/mL, an increase of approximately 6-times of the unoptimised L-asparaginase production. On comparing RSM and ANN models for optimised L-asparaginase production based on R2 value, mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute deviation (MAD) values, the ANN model emerged as the superior one. As this is the first report to the authors best knowledge on development of inference system using RSM and ANN models for enhanced L-asparaginase production using a halotolerant bacteria, this study could lead to more in-depth and large-scale L-asparaginase production.
Collapse
Affiliation(s)
- Payal Patel
- Department of Bioscience, School of Science, Indrashil University, Dist. Mehsana, Rajpur-Kadi, Gujarat, India, 382740
| | - Haren Gosai
- Department of Bioscience, School of Science, Indrashil University, Dist. Mehsana, Rajpur-Kadi, Gujarat, India, 382740.
| | - Haresh Panseriya
- Gujarat Ecology Society, Synergy house, Subhanpura, Vadodara, Gujarat, India, 390003
| | - Bharti Dave
- Department of Bioscience, School of Science, Indrashil University, Dist. Mehsana, Rajpur-Kadi, Gujarat, India, 382740
| |
Collapse
|
5
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
6
|
Mostafa YS, Alamri SA, Alfaifi MY, Alrumman SA, Elbehairi SEI, Taha TH, Hashem M. L-Glutaminase Synthesis by Marine Halomonas meridiana Isolated from the Red Sea and Its Efficiency against Colorectal Cancer Cell Lines. Molecules 2021; 26:molecules26071963. [PMID: 33807313 PMCID: PMC8037810 DOI: 10.3390/molecules26071963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/14/2022] Open
Abstract
L-glutaminase is an important anticancer agent that is used extensively worldwide by depriving cancer cells of L-glutamine. The marine bacterium, Halomonas meridian was isolated from the Red Sea and selected as the more active L-glutaminase-producing bacteria. L-glutaminase fermentation was optimized at 36 h, pH 8.0, 37 °C, and 3.0% NaCl, using glucose at 1.5% and soybean meal at 2%. The purified enzyme showed a specific activity of 36.08 U/mg, and the molecular weight was found to be 57 kDa by the SDS-PAGE analysis. The enzyme was highly active at pH 8.0 and 37 °C. The kinetics’ parameters of Km and Vmax were 12.2 × 10−6 M and 121.95 μmol/mL/min, respectively, which reflects a higher affinity for its substrate. The anticancer efficiency of the enzyme showed significant toxic activity toward colorectal adenocarcinoma cells; LS 174 T (IC50 7.0 μg/mL) and HCT 116 (IC50 13.2 μg/mL). A higher incidence of cell death was observed with early apoptosis in HCT 116 than in LS 174 T, whereas late apoptosis was observed in LS 174 T more than in HCT 116. Also, the L-glutaminase induction nuclear fragmentation in HCT 116 was more than that in the LS 174T cells. This is the first report on Halomonas meridiana as an L-glutaminase producer that is used as an anti-colorectal cancer agent.
Collapse
Affiliation(s)
- Yasser S. Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (M.Y.A.); (S.A.A.); (S.E.I.E.); (M.H.)
- Correspondence:
| | - Saad A. Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (M.Y.A.); (S.A.A.); (S.E.I.E.); (M.H.)
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (M.Y.A.); (S.A.A.); (S.E.I.E.); (M.H.)
| | - Sulaiman A. Alrumman
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (M.Y.A.); (S.A.A.); (S.E.I.E.); (M.H.)
| | - Serag Eldin I. Elbehairi
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (M.Y.A.); (S.A.A.); (S.E.I.E.); (M.H.)
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines, P.O. Box 12311, Giza, Egypt
| | - Tarek H. Taha
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technological Applications, P.O. Box 21934, Alexandria, Egypt;
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (M.Y.A.); (S.A.A.); (S.E.I.E.); (M.H.)
- Department of Botany and Microbiology, Faculty of Science, Assiut University, P.O. Box 61413, Assiut, Egypt
| |
Collapse
|
7
|
Sobat M, Asad S, Kabiri M, Mehrshad M. Metagenomic discovery and functional validation of L-asparaginases with anti-leukemic effect from the Caspian Sea. iScience 2021; 24:101973. [PMID: 33458619 PMCID: PMC7797908 DOI: 10.1016/j.isci.2020.101973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
By screening 27,000 publicly available prokaryotic genomes, we recovered ca. 6300 type I and ca. 5200 type II putative L-asparaginase highlighting the vast potential of prokaryotes. Caspian water with similar salt composition to the human serum was targeted for in silico L-asparaginase screening. We screened ca. three million predicted genes of its assembled metagenomes that resulted in annotation of 87 putative L-asparaginase genes. The L-asparagine hydrolysis was experimentally confirmed by synthesizing and cloning three selected genes in E. coli. Catalytic parameters of the purified enzymes were determined to be among the most desirable reported values. Two recombinant enzymes represented remarkable anti-proliferative activity (IC50 <1IU/ml) against leukemia cell line Jurkat while no cytotoxic effect on human erythrocytes or human umbilical vein endothelial cells was detected. Similar salinity and ionic concentration of the Caspian water to the human serum highlights the potential of secretory L-asparaginases recovered from these metagenomes as potential treatment agents.
Collapse
Affiliation(s)
- Motahareh Sobat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Fongaro G, Maia GA, Rogovski P, Cadamuro RD, Lopes JC, Moreira RS, Camargo AF, Scapini T, Stefanski FS, Bonatto C, Marques Souza DS, Stoco PH, Duarte RTD, Cabral da Cruz AC, Wagner G, Treichel H. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools. Curr Genomics 2020; 21:240-252. [PMID: 33071618 PMCID: PMC7521039 DOI: 10.2174/1389202921999200601144137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 04/20/2020] [Indexed: 12/03/2022] Open
Abstract
Abstract: Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.
Collapse
Affiliation(s)
- Gislaine Fongaro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Augusto Maia
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Paula Rogovski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Dorighello Cadamuro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Joana Camila Lopes
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Renato Simões Moreira
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline Frumi Camargo
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Thamarys Scapini
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fábio Spitza Stefanski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charline Bonatto
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Doris Sobral Marques Souza
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Patrícia Hermes Stoco
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Tadeu Delgado Duarte
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
9
|
Corral P, Amoozegar MA, Ventosa A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar Drugs 2019; 18:md18010033. [PMID: 31906001 PMCID: PMC7024382 DOI: 10.3390/md18010033] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022] Open
Abstract
The organisms thriving under extreme conditions better than any other organism living on Earth, fascinate by their hostile growing parameters, physiological features, and their production of valuable bioactive metabolites. This is the case of microorganisms (bacteria, archaea, and fungi) that grow optimally at high salinities and are able to produce biomolecules of pharmaceutical interest for therapeutic applications. As along as the microbiota is being approached by massive sequencing, novel insights are revealing the environmental conditions on which the compounds are produced in the microbial community without more stress than sharing the same substratum with their peers, the salt. In this review are reported the molecules described and produced by halophilic microorganisms with a spectrum of action in vitro: antimicrobial and anticancer. The action mechanisms of these molecules, the urgent need to introduce alternative lead compounds and the current aspects on the exploitation and its limitations are discussed.
Collapse
Affiliation(s)
- Paulina Corral
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Mohammad A. Amoozegar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6955, Iran;
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
- Correspondence: ; Tel.: +34-954556765
| |
Collapse
|
10
|
Rodela ML, Sabet S, Peterson A, Dillon JG. Broad Environmental Tolerance for a Salicola Host-Phage Pair Isolated from the Cargill Solar Saltworks, Newark, CA, USA. Microorganisms 2019; 7:E106. [PMID: 31010175 PMCID: PMC6518143 DOI: 10.3390/microorganisms7040106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022] Open
Abstract
Phages greatly influence the ecology and evolution of their bacterial hosts; however, compared to hosts, a relatively low number of phages, especially halophilic phages, have been studied. This study describes a comparative investigation of physicochemical tolerance between a strain of the halophilic bacterium, Salicola, isolated from the Cargill Saltworks (Newark, CA, USA) and its associated phage. The host grew in media between pH 6-8.5, had a salinity growth optimum of 20% total salts (ranging from 10%-30%) and an upper temperature growth limit of 48 °C. The host utilized 61 of 190 substrates tested using BIOLOG Phenotype MicroArrays. The CGφ29 phage, one of only four reported Salicola phages, is a DNA virus of the Siphoviridae family. Overall, the phage tolerated a broader range of environmental conditions than its host (salinity 0-30% total salts; pH 3-9; upper thermal limit 80 °C) and is the most thermotolerant halophilic phage ever reported. This study is the most comprehensive investigation to date of a Salicola host-phage pair and provides novel insights into extreme environmental tolerances among bacteriophages.
Collapse
Affiliation(s)
- Meghan L Rodela
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA.
| | - Shereen Sabet
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA.
| | - Allison Peterson
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA.
| | - Jesse G Dillon
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA.
| |
Collapse
|
11
|
Zolfaghar M, Amoozegar MA, Khajeh K, Babavalian H, Tebyanian H. Isolation and screening of extracellular anticancer enzymes from halophilic and halotolerant bacteria from different saline environments in Iran. Mol Biol Rep 2019; 46:3275-3286. [PMID: 30993582 DOI: 10.1007/s11033-019-04787-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
It was confirmed that several enzymes have anti-cancer activity. The enzymes L-asparaginase, L-glutaminase, and L-arginase were chosen according to amino acids starvation in cancer cells and screened in halophilic and halotolerant bacteria, given probably less immunological reactions of halophilic or halotolerant enzymes in patients. Out of 110 halophilic and halotolerant strains, isolated from different saline environments in Iran and screened, some could produce a variety of anticancer enzymes. A total of 29, 4, and 2 strains produced L-asparaginase, L-glutaminase, and L-arginase, respectively. According to the phenotypic characteristics and partial 16S rRNA gene sequence analysis, the positive strains-strains with the ability to produce these anticancer enzymes-were identified as the members of the genera: Bacillus, Dietzia, Halobacillus, Rhodococcus, Paenibacillus and Planococcus as Gram-positive bacteria and Pseudomonas, Marinobacter, Halomonas, Idiomarina, Vibrio and Stappia as Gram-negative bacteria. The production of anticancer enzymes was mostly observed in the rod-shaped Gram-negative isolates, particularly in the members of the genera Halomonas and Marinobacter. Most of the enzymes were produced in the stationary phase of growth and the maximum enzyme activity was experienced in strain GBPx3 (Vibrio sp.) for L-asparaginase at 1.0 IU/ml, strain R2S25 (Rhodococcus sp.) for L-glutaminase at 0.6 IU/ml and strain GAAy3 (Planococcus sp.) for L-arginase at 3.1 IU/ml. The optimum temperature and pH for L-asparaginase and L-glutaminase activities in selected strains were similar to the physiological conditions of human body and the enzymes could tolerate NaCl up to 7.5% concentration.
Collapse
Affiliation(s)
- Mahdis Zolfaghar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hamid Babavalian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Rahman SS, Siddique R, Tabassum N. Isolation and identification of halotolerant soil bacteria from coastal Patenga area. BMC Res Notes 2017; 10:531. [PMID: 29084602 PMCID: PMC5663095 DOI: 10.1186/s13104-017-2855-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/23/2017] [Indexed: 11/10/2022] Open
Abstract
Objective Halotolerant bacteria have multiple uses viz. fermentation with lesser sterility control and industrial production of bioplastics. Moreover, it may increase the crop productivity of coastal saline lands in Bangladesh by transferring the salt tolerant genes into the plants. The study focused on the isolation and identification of the halotolerant bacteria from three soil samples, collected from coastal Patenga area. The samples were inoculated in nutrient media containing a wide range of salt concentrations. Results All the samples showed 2, 4 and 6% (w/v) salt tolerance. The isolates from Patenga soil (4, 6%) and beach soil (2%) showed catalase activity and all the isolates showed negative results for oxidase activity, indole production, lactose and motility. All the samples provided positive results for dextrose fermentation. Other tests provided mixed results. Based on the morphological characteristics, biochemical tests and ABIS software analysis the isolates fall within the Enterobacteriaceae, Clostridium and Corynebacterium, with a predominance of Vibrios. Overall the isolates can be considered as mild halotolerant, with the best growth observed at lower salinities and no halophilism detected. Among many possibilities, the genes responsible for the salt tolerant trait in these species can be identified, extracted and inserted into the crop plants to form a transgenic plant to result in higher yield for the rest of the year.
Collapse
Affiliation(s)
- Shafkat Shamim Rahman
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, 66, Mohakhali, Dhaka, 1212, Bangladesh. .,United Surgical (BD) Ltd, Plot# 659-661, Islampur, Kadda, Gazipur, 1702, Bangladesh.
| | - Romana Siddique
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, 66, Mohakhali, Dhaka, 1212, Bangladesh
| | - Nafisa Tabassum
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, 66, Mohakhali, Dhaka, 1212, Bangladesh
| |
Collapse
|
13
|
Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Appl Microbiol Biotechnol 2017; 101:7227-7238. [DOI: 10.1007/s00253-017-8456-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
14
|
Borchert E, Knobloch S, Dwyer E, Flynn S, Jackson SA, Jóhannsson R, Marteinsson VT, O'Gara F, Dobson ADW. Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from 'Deep Sea' Sponges. Mar Drugs 2017. [PMID: 28629190 PMCID: PMC5484134 DOI: 10.3390/md15060184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including β-galactosidase, β-glucosidase, and protease activities. A β-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.
Collapse
Affiliation(s)
- Erik Borchert
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| | - Stephen Knobloch
- Department of Research and Innovation, Matís ohf., Reykjavik 113, Iceland.
| | - Emilie Dwyer
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| | - Sinéad Flynn
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| | - Stephen A Jackson
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| | - Ragnar Jóhannsson
- Department of Research and Innovation, Matís ohf., Reykjavik 113, Iceland.
| | | | - Fergal O'Gara
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
- Biomerit Research Centre, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| |
Collapse
|