1
|
Seidemann L, Lippold CP, Rohm CM, Eckel JC, Schicht G, Matz-Soja M, Berg T, Seehofer D, Damm G. Sex hormones differently regulate lipid metabolism genes in primary human hepatocytes. BMC Endocr Disord 2024; 24:135. [PMID: 39090659 PMCID: PMC11292922 DOI: 10.1186/s12902-024-01663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is higher in men than in women. Hormonal and genetic causes may account for the sex differences in MASLD. Current human in vitro liver models do not sufficiently take the influence of biological sex and sex hormones into consideration. METHODS Primary human hepatocytes (PHHs) were isolated from liver specimen of female and male donors and cultured with sex hormones (17β-estradiol, testosterone and progesterone) for up to 72 h. mRNA expression levels of 8 hepatic lipid metabolism genes were analyzed by RT-qPCR. Sex hormones and their metabolites were determined in cell culture supernatants by LC-MS analyses. RESULTS A sex-specific expression was observed for LDLR (low density lipoprotein receptor) with higher mRNA levels in male than female PHHs. All three sex hormones were metabolized by PHHs and the effects of hormones on gene expression levels varied depending on hepatocyte sex. Only in female PHHs, 17β-estradiol treatment affected expression levels of PPARA (peroxisome proliferator-activated receptor alpha), LIPC (hepatic lipase) and APOL2 (apolipoprotein L2). Further changes in mRNA levels of female PHHs were observed for ABCA1 (ATP-binding cassette, sub-family A, member 1) after testosterone and for ABCA1, APOA5 (apolipoprotein A-V) and PPARA after progesterone treatment. Only the male PHHs showed changing mRNA levels for LDLR after 17β-estradiol and for APOA5 after testosterone treatment. CONCLUSIONS Male and female PHHs showed differences in their expression levels of hepatic lipid metabolism genes and their responsiveness towards sex hormones. Thus, cellular sex should be considered, especially when investigating the pathophysiological mechanisms of MASLD.
Collapse
Affiliation(s)
- Lena Seidemann
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Clara Paula Lippold
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Carolin Marie Rohm
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Julian Connor Eckel
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Gerda Schicht
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103, Leipzig, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, 04103, Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany.
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Critical Investigation of the Usability of Hepatoma Cell Lines HepG2 and Huh7 as Models for the Metabolic Representation of Resectable Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14174227. [PMID: 36077764 PMCID: PMC9454736 DOI: 10.3390/cancers14174227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic alterations in hepatocellular carcinoma (HCC) are fundamental for the development of diagnostic screening and therapeutic intervention since energy metabolism plays a central role in differentiated hepatocytes. In HCC research, hepatoma cell lines (HCLs) like HepG2 and Huh7 cells are still the gold standard. In this study, we characterized the metabolic profiles of primary human hepatoma cells (PHCs), HCLs and primary human hepatocytes (PHHs) to determine their differentiation states. PHCs and PHHs (HCC-PHHs) were isolated from surgical specimens of HCC patients and their energy metabolism was compared to PHHs from non-HCC patients and the HepG2 and Huh7 cells at different levels (transcript, protein, function). Our analyses showed successful isolation of PHCs with a purity of 50–73% (CK18+). The transcript data revealed that changes in mRNA expression levels had already occurred in HCC-PHHs. While many genes were overexpressed in PHCs and HCC-PHHs, the changes were mostly not translated to the protein level. Downregulated metabolic key players of PHCs revealed a correlation with malign transformation and were predominantly pronounced in multilocular HCC. Therefore, HCLs failed to reflect these expression patterns of PHCs at the transcript and protein levels. The metabolic characteristics of PHCs are closer to those of HCC-PHHs than to HCLs. This should be taken into account for future optimized tumor metabolism research.
Collapse
|
3
|
Scheffschick A, Babel J, Sperling S, Nerusch J, Herzog N, Seehofer D, Damm G. Primary-like Human Hepatocytes Genetically Engineered to Obtain Proliferation Competence as a Capable Application for Energy Metabolism Experiments in In Vitro Oncologic Liver Models. BIOLOGY 2022; 11:biology11081195. [PMID: 36009822 PMCID: PMC9405410 DOI: 10.3390/biology11081195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Fatty liver disease is an increasing health concern in Westernized countries. A fatty liver can lead to hepatocellular carcinoma (HCC), a type of liver cancer arising from hepatocytes, the major cells of the liver. How HCC may develop from the fatty liver is not known, and good cellular systems to investigate this are lacking. Recently, hepatocytes that can multiply continuously have been generated and suggested for hepatocyte research. In this study, we compared these continuously multiplying human hepatocytes to normal human hepatocytes and liver cancer cells, both within the state of fatty liver or not. We identified that these multiplying hepatocytes displayed many similarities to the liver cancer cells in terms of energy metabolism and concluded that these hepatocytes could be a pre-cancer model for liver cancer research and would be a valuable tool for HCC research. Abstract Non-alcoholic fatty liver disease (NAFLD), characterized by lipid accumulation in the liver, is the most common cause of liver diseases in Western countries. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC); however, in vitro evaluation of hepatic cancerogenesis fails due to a lack of liver models displaying a proliferation of hepatocytes. Originally designed to overcome primary human hepatocyte (PHH) shortages, upcyte hepatocytes were engineered to obtain continuous proliferation and, therefore, could be a suitable tool for HCC research. We generated upcyte hepatocytes, termed HepaFH3 cells, and compared their metabolic characteristics to HepG2 hepatoma cells and PHHs isolated from resected livers. For displaying NAFLD-related HCCs, we induced steatosis in all liver models. Lipid accumulation, lipotoxicity and energy metabolism were characterized using biochemical assays and Western blot analysis. We showed that proliferating HepaFH3 cells resemble HepG2, both showing a higher glucose uptake rate, lactate levels and metabolic rate compared to PHHs. Confluent HepaFH3 cells displayed some similarities to PHHs, including higher levels of the transaminases AST and ALT compared to proliferating HepaFH3 cells. We recommend proliferating HepaFH3 cells as a pre-malignant cellular model for HCC research, while confluent HepaFH3 cells could serve as PHH surrogates for energy metabolism studies.
Collapse
Affiliation(s)
- Andrea Scheffschick
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Jonas Babel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
| | - Sebastian Sperling
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Julia Nerusch
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Natalie Herzog
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-341-97-39656
| |
Collapse
|
4
|
Rodrigues JS, Faria-Pereira A, Camões SP, Serras AS, Morais VA, Ruas JL, Miranda JP. Improving human mesenchymal stem cell-derived hepatic cell energy metabolism by manipulating glucose homeostasis and glucocorticoid signaling. Front Endocrinol (Lausanne) 2022; 13:1043543. [PMID: 36714559 PMCID: PMC9880320 DOI: 10.3389/fendo.2022.1043543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The development of reliable hepatic in vitro models may provide insights into disease mechanisms, linking hepatocyte dysmetabolism and related pathologies. However, several of the existing models depend on using high concentrations of hepatocyte differentiation-promoting compounds, namely glucose, insulin, and dexamethasone, which is among the reasons that have hampered their use for modeling metabolism-related diseases. This work focused on modulating glucose homeostasis and glucocorticoid concentration to improve the suitability of a mesenchymal stem-cell (MSC)-derived hepatocyte-like cell (HLC) human model for studying hepatic insulin action and disease modeling. METHODS We have investigated the role of insulin, glucose and dexamethasone on mitochondrial function, insulin signaling and carbohydrate metabolism, namely AKT phosphorylation, glycogen storage ability, glycolysis and gluconeogenesis, as well as fatty acid oxidation and bile acid metabolism gene expression in HLCs. In addition, we evaluated cell morphological features, albumin and urea production, the presence of hepatic-specific markers, biotransformation ability and mitochondrial function. RESULTS Using glucose, insulin and dexamethasone levels close to physiological concentrations improved insulin responsiveness in HLCs, as demonstrated by AKT phosphorylation, upregulation of glycolysis and downregulation of Irs2 and gluconeogenesis and fatty acid oxidation pathways. Ammonia detoxification, EROD and UGT activities and sensitivity to paracetamol cytotoxicity were also enhanced under more physiologically relevant conditions. CONCLUSION HLCs kept under reduced concentrations of glucose, insulin and dexamethasone presented an improved hepatic phenotype and insulin sensitivity demonstrating superior potential as an in vitro platform for modeling energy metabolism-related disorders, namely for the investigation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Joana Saraiva Rodrigues
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Faria-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Póvoas Camões
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Serras
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Lira Ruas
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Joana Paiva Miranda
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Joana Paiva Miranda,
| |
Collapse
|
5
|
Zimmermann A, Hänsel R, Gemünden K, Kegel-Hübner V, Babel J, Bläker H, Matz-Soja M, Seehofer D, Damm G. In Vivo and In Vitro Characterization of Primary Human Liver Macrophages and Their Inflammatory State. Biomedicines 2021; 9:biomedicines9040406. [PMID: 33918803 PMCID: PMC8070551 DOI: 10.3390/biomedicines9040406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
Liver macrophages (LMs) play a central role in acute and chronic liver pathologies. Investigation of these processes in humans as well as the development of diagnostic tools and new therapeutic strategies require in vitro models that closely resemble the in vivo situation. In our study, we sought to gain further insight into the role of LMs in different liver pathologies and into their characteristics after isolation from liver tissue. For this purpose, LMs were characterized in human liver tissue sections using immunohistochemistry and bioinformatic image analysis. Isolated cells were characterized in suspension using FACS analyses and in culture using immunofluorescence staining and laser scanning microscopy as well as functional assays. The majority of our investigated liver tissues were characterized by anti-inflammatory LMs which showed a homogeneous distribution and increased cell numbers in correlation with chronic liver injuries. In contrast, pro-inflammatory LMs appeared as temporary and locally restricted reactions. Detailed characterization of isolated macrophages revealed a complex disease dependent pattern of LMs consisting of pro- and anti-inflammatory macrophages of different origins, regulatory macrophages and monocytes. Our study showed that in most cases the macrophage pattern can be transferred in adherent cultures. The observed exceptions were restricted to LMs with pro-inflammatory characteristics.
Collapse
Affiliation(s)
- Andrea Zimmermann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - René Hänsel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, 04107 Leipzig, Germany
| | - Kilian Gemünden
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Victoria Kegel-Hübner
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
| | - Jonas Babel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
| | - Hendrik Bläker
- Institute for Pathology, University Hospital, Leipzig University, 04103 Leipzig, Germany;
| | - Madlen Matz-Soja
- Rudolf-Schönheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany;
- Department for Hepatology, University Hospital, Leipzig University, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.Z.); (R.H.); (K.G.); (V.K.-H.); (J.B.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-9739656
| |
Collapse
|
6
|
Gaul S, Leszczynska A, Alegre F, Kaufmann B, Johnson CD, Adams LA, Wree A, Damm G, Seehofer D, Calvente CJ, Povero D, Kisseleva T, Eguchi A, McGeough MD, Hoffman HM, Pelegrin P, Laufs U, Feldstein AE. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol 2021; 74:156-167. [PMID: 32763266 PMCID: PMC7749849 DOI: 10.1016/j.jhep.2020.07.041] [Citation(s) in RCA: 286] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Increased hepatocyte death contributes to the pathology of acute and chronic liver diseases. However, the role of hepatocyte pyroptosis and extracellular inflammasome release in liver disease is unknown. METHODS We used primary mouse and human hepatocytes, hepatocyte-specific leucine 351 to proline Nlrp3KICreA mice, and GsdmdKO mice to investigate pyroptotic cell death in hepatocytes and its impact on liver inflammation and damage. Extracellular NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes were isolated from mutant NLRP3-YFP HEK cells and internalisation was studied in LX2 and primary human hepatic stellate cells. We also examined a cohort of 154 adult patients with biopsy-proven non-alcoholic fatty liver disease (Sir Charles Gairdner Hospital, Nedlands, Western Australia). RESULTS We demonstrated that primary mouse and human hepatocytes can undergo pyroptosis upon NLRP3 inflammasome activation with subsequent release of NLRP3 inflammasome proteins that amplify and perpetuate inflammasome-driven fibrogenesis. Pyroptosis was inhibited by blocking caspase-1 and gasdermin D activation. The activated form of caspase-1 was detected in the livers and in serum from patients with non-alcoholic steatohepatitis and correlated with disease severity. Nlrp3KICreA mice showed spontaneous liver fibrosis under normal chow diet, and increased sensitivity to liver damage and inflammation after treatment with low dose lipopolysaccharide. Mechanistically, hepatic stellate cells engulfed extracellular NLRP3 inflammasome particles leading to increased IL-1β secretion and α-smooth muscle actin expression. This effect was abrogated when cells were pre-treated with the endocytosis inhibitor cytochalasin B. CONCLUSIONS These results identify hepatocyte pyroptosis and release of inflammasome components as a novel mechanism to propagate liver injury and liver fibrosis development. LAY SUMMARY Our findings identify a novel mechanism of inflammation in the liver. Experiments in cell cultures, mice, and human samples show that a specific form of cell death, called pyroptosis, leads to the release of complex inflammatory particles, the NLRP3 inflammasome, from inside hepatocytes into the extracellular space. From there they are taken up by other cells and thereby mediate inflammatory and pro-fibrogenic stress signals. The discovery of this mechanism may lead to novel treatments for chronic liver diseases in the future.
Collapse
Affiliation(s)
- Susanne Gaul
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Universität Leipzig, Klinik und Poliklinik für Kardiologie, Leipzig, Germany
| | | | - Fernando Alegre
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Benedikt Kaufmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Casey D Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; University of California Irvine, Irvine, CA, USA
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité, Campus Virchow Klinikum and Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Carolina J Calvente
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Akiko Eguchi
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Gastroenterology and Hepatology, Mie University, Tsu, Mie, Japan
| | - Matthew D McGeough
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Hal M Hoffman
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia, Clinical University Hospital Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Ulrich Laufs
- Universität Leipzig, Klinik und Poliklinik für Kardiologie, Leipzig, Germany
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Prolonged Lipid Accumulation in Cultured Primary Human Hepatocytes Rather Leads to ER Stress than Oxidative Stress. Int J Mol Sci 2020; 21:ijms21197097. [PMID: 32993055 PMCID: PMC7582586 DOI: 10.3390/ijms21197097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Overweight has become a major health care problem in Western societies and is accompanied by an increasing incidence and prevalence of non-alcoholic fatty liver disease (NAFLD). The progression from NAFLD to non-alcoholic steatohepatitis (NASH) marks a crucial tipping point in the progression of severe and irreversible liver diseases. This study aims to gain further insight into the molecular processes leading to the evolution from steatosis to steatohepatitis. Steatosis was induced in cultures of primary human hepatocytes by continuous five-day exposure to free fatty acids (FFAs). The kinetics of lipid accumulation, lipotoxicity, and oxidative stress were measured. Additionally, ER stress was evaluated by analyzing the protein expression profiles of its key players: PERK, IRE1a, and ATF6a. Our data revealed that hepatocytes are capable of storing enormous amounts of lipids without showing signs of lipotoxicity. Prolonged lipid accumulation did not create an imbalance in hepatocyte redox homeostasis or a reduction in antioxidative capacity. However, we observed an FFA-dependent increase in ER stress, revealing thresholds for triggering the activation of pathways associated with lipid stress, inhibition of protein translation, and apoptosis. Our study clearly showed that even severe lipid accumulation can be attenuated by cellular defenses, but regenerative capacities may be reduced.
Collapse
|