1
|
Li J, Chen R, Cao L, Liu Y, Zhang Y, Wei X, Liu Z, Yang Z, Liu L, Zhou M, Xu G, Chen L, Ding Y, Lei H, Liu L, Yang Z, Chen S, Zhang X, Tang Y, Fu H, He S, Xiao Q, Xie X, Li Q, Nan Y, Li J, Chen X, Liu Y. Risk factors for COVID-19 pneumonia in patients with hematological malignancies: a multi-center, prospective study in China. Front Immunol 2024; 15:1408969. [PMID: 39575255 PMCID: PMC11578944 DOI: 10.3389/fimmu.2024.1408969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose We aimed to investigate risk factors for COVID-19 pneumonia in patients with hematological malignancies (HM) after Omicron infection. Methods Data from a registered multi-center, prospective, observational study (ChiCTR2300071830) during the latest Omicron BA.5.2 wave in Chongqing, China was used for analysis. Results A total of 475 HM patients enrolled in this study. COVID-19 pneumonia was observed in 15.8% (75/475) of patients, with a median age of 58 years (interquartile range [IQR], 48-69 years) and males accounting for 61.3%. Risk factors associated with COVID-19 pneumonia included: 1) Active disease status of HM at infection, with an odds ratio (OR) of 3.42 (95% confidence interval [CI]: 1.59-7.37, P=0.002) compared to complete remission (CR); 2) Incomplete COVID-19 vaccination, 1-2 doses of the vaccine (OR=2.55, 95% CI: 1.28-5.10, P=0.008) or no vaccination (OR=4.81, 95% CI: 2.45-9.43, P<0.001), as opposed to 3 doses (booster); 3) chemotherapy prior to infection, <6 months (OR=2.58, 95% CI: 1.12-5.96, P=0.027) or ≥ 6 months (OR=2.93, 95% CI: 1.31-6.53, P=0.009) compared to no chemotherapy history; 4) NK-cell reduction (< 150/μL) (OR=2.19, 95% CI: 1.27-3.79, P=0.005) versus a normal range of NK cells. During the 6-week follow-up period, 12 patients (2.5%) died, accounting for 16% of COVID-19 pneumonia patients. Conclusions Our study investigated risk factors for COVID-19 pneumonia in HM patients after Omicron BA.5.2 infection. Highlights that HM patients with these risk factors may be susceptible to lung involvement after Omicron BA.5.2 infection and need to be taken seriously in clinical practice. Clinical Trial Registration https://www.chictr.org.cn/bin/project/edit?pid=195998, identifier ChiCTR2300071830.
Collapse
Affiliation(s)
- Jun Li
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ran Chen
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Cao
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong Zhang
- Department of Hematology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Wei
- Department of Hematology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhanshu Liu
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zailiang Yang
- Department of Hematology and Medical Oncology, Chongqing University Fuling Hospital, Chongqing, China
| | - Ling Liu
- Department of Medical Laboratory, People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Meiyu Zhou
- Department of Hematology and Medical Oncology, Chongqing University Fuling Hospital, Chongqing, China
| | - Guofa Xu
- Department of Hematology and Medical Oncology, Chongqing University Fuling Hospital, Chongqing, China
| | - Lanting Chen
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Ding
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Haike Lei
- Department of Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Lisheng Liu
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuang Chen
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yifeng Tang
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huihui Fu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Qing Xiao
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoqing Xie
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiying Li
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yingyu Nan
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jieping Li
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
2
|
Kavikondala S, Haeussler K, Wang X, Spellman A, Bausch-Jurken MT, Sharma P, Amiri M, Krivelyova A, Vats S, Nassim M, Kumar N, Van de Velde N. Immunogenicity of mRNA-1273 and BNT162b2 in Immunocompromised Patients: Systematic Review and Meta-analysis Using GRADE. Infect Dis Ther 2024; 13:1419-1438. [PMID: 38802704 PMCID: PMC11219657 DOI: 10.1007/s40121-024-00987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Immunocompromised (IC) patients mount poor immune responses to vaccination. Higher-dose coronavirus disease 2019 (COVID-19) vaccines may offer increased immunogenicity. METHODS A pairwise meta-analysis of 98 studies reporting comparisons of mRNA-1273 (50 or 100 mcg/dose) and BNT162b2 (30 mcg/dose) in IC adults was performed. Outcomes were seroconversion, total and neutralizing antibody titers, and cellular immune responses. RESULTS mRNA-1273 was associated with a significantly higher seroconversion likelihood [relative risk, 1.11 (95% CI, 1.08, 1.14); P < 0.0001; I2 = 66.8%] and higher total antibody titers [relative increase, 50.45% (95% CI, 34.63%, 66.28%); P < 0.0001; I2 = 89.5%] versus BNT162b2. mRNA-1273 elicited higher but statistically nonsignificant relative increases in neutralizing antibody titers and cellular immune responses versus BNT162b2. CONCLUSION Higher-dose mRNA-1273 had increased immunogenicity versus BNT162b2 in IC patients.
Collapse
|
3
|
Harandi H, Fallahtafti P, Karimi A, Hashemi SM, Mahalleh M, Ashouri M, Salehi MA, Hoveidaei A. Examining the immunological responses to COVID-19 vaccination in multiple myeloma patients: a systematic review and meta-analysis. BMC Geriatr 2024; 24:411. [PMID: 38720296 PMCID: PMC11080142 DOI: 10.1186/s12877-024-05006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Impaired immune response in multiple myeloma renders the patients vulnerable to infections, such as COVID-19, and may cause worse response to vaccines. Researchers should analyze this issue to enable the planning for special preventive measures, such as increased booster doses. Therefore, this meta-analysis aimed to evaluate the response and efficacy of COVID-19 vaccines in patients with multiple myeloma. METHODS This meta-analysis followed PRISMA 2020 guidelines, conducting a comprehensive database search using specified keywords. Study selection involved a two-phase title/abstract and full-text screening process. Data extraction was performed by two researchers, and statistical analysis involved meta-analysis, subgroup analysis based on vaccine dosage and study time, random effects meta-regression, and heterogeneity testing using the Q test. RESULTS The meta-analysis revealed that patients with multiple myeloma (MM) had a lower likelihood of developing detectable antibodies after COVID-19 vaccination compared to healthy controls (Log odds ratio with 95% CI: -3.34 [-4.08, -2.60]). The analysis of antibody response after different doses showed consistent lower seropositivity in MM patients (after first dose: -2.09, [-3.49, -0.69], second: -3.80, 95%CI [-4.71, -3.01], a booster dose: -3.03, [-5.91, -0.15]). However, there was no significant difference in the mean level of anti-S antibodies between MM patients and controls (Cohen's d -0.72, [-1.86, 0.43]). Evaluation of T-cell responses indicated diminished T-cell-mediated immunity in MM patients compared to controls. Seven studies reported clinical response, with breakthrough infections observed in vaccinated MM patients. CONCLUSIONS These findings highlight the impaired humoral and cellular immune responses in MM patients after COVID-19 vaccination, suggesting the need for further investigation and potential interventions.
Collapse
Affiliation(s)
- Hamid Harandi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Fallahtafti
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Mehrdad Mahalleh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ashouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Armin Hoveidaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Huang CT, Lee CP, Chen TY, Liu YC, Cho SF, Du JS, Yu ML, Huang CF, Wang SF, Hsiao HH. Serological Responses and Predictive Factors of Booster COVID-19 Vaccines in Patients with Hematologic Malignancies. J Clin Med 2023; 12:5647. [PMID: 37685720 PMCID: PMC10488979 DOI: 10.3390/jcm12175647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Patients with hematologic malignancies are reported to have a more severe course of coronavirus disease 2019 (COVID-19) and be less responsive to vaccination. In this prospective study, we aimed to evaluate the serological responses to booster COVID-19 vaccines of Taiwanese patients with hematologic malignancies and identify potential predictive markers for effective neutralizing immunity. This study enrolled 68 patients with hematologic malignancies and 68 age- and gender-matched healthy control subjects who received three doses of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from 1 January 2022 to 31 October 2022. The SARS-CoV-2 immunoglobulin G (IgG) spike antibody level was measured with the Abbott assay. The effective neutralization capacity was defined as an anti-spike IgG level of ≥4160 AU/mL. Among the 68 patients with hematologic malignancies, 89.7% achieved seroconversion after booster doses. Seven patients with actively treated lymphoma remained seronegative and had the lowest humoral responses among patients with different types of hematologic malignancies. Despite comparable antibody titers between patients and healthy individuals, rates of effective neutralization (66.2% vs. 86.8%, respectively; p = 0.005) were significantly reduced in patients with hematologic malignancies. In a multivariate analysis, the independent predictors for effective neutralization were a lack of B-cell-targeted agents within six months of vaccination (odds ratio, 15.2; 95% confidence interval, 2.7-84.2; p = 0.002) and higher immunoglobulin levels (odds ratio, 4.4; 95% confidence interval, 1.3-14.7; p = 0.017). In conclusion, the majority of patients with hematologic malignancies achieved seroconversion after booster vaccination. Patients with ongoing B-cell depletion and hypogammaglobinemia were identified as having negative predictive markers for effective neutralization.
Collapse
Affiliation(s)
- Chien-Tzu Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Ping Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
| | - Tzu-Yin Chen
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.Y.); (C.-F.H.)
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chung-Feng Huang
- Division of Hepatobiliary, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.Y.); (C.-F.H.)
- Ph.D. Program in Translational Medicine, College of Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung 807, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Terpos E, Musto P, Engelhardt M, Delforge M, Cook G, Gay F, van de Donk NWCJ, Ntanasis-Stathopoulos I, Vangsted AJ, Driessen C, Schjesvold F, Cerchione C, Zweegman S, Hajek R, Moreau P, Einsele H, San-Miguel J, Boccadoro M, Dimopoulos MA, Sonneveld P, Ludwig H. Management of patients with multiple myeloma and COVID-19 in the post pandemic era: a consensus paper from the European Myeloma Network (EMN). Leukemia 2023:10.1038/s41375-023-01920-1. [PMID: 37142661 PMCID: PMC10157596 DOI: 10.1038/s41375-023-01920-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
In the post-pandemic COVID-19 period, human activities have returned to normal and COVID-19 cases are usually mild. However, patients with multiple myeloma (MM) present an increased risk for breakthrough infections and severe COVID-19 outcomes, including hospitalization and death. The European Myeloma Network has provided an expert consensus to guide patient management in this era. Vaccination with variant-specific booster vaccines, such as the bivalent vaccine for the ancestral Wuhan strain and the Omicron BA.4/5 strains, is essential as novel strains emerge and become dominant in the community. Boosters should be administered every 6-12 months after the last vaccine shot or documented COVID-19 infection (hybrid immunity). Booster shots seem to overcome the negative effect of anti-CD38 monoclonal antibodies on humoral responses; however, anti-BCMA treatment remains an adverse predictive factor for humoral immune response. Evaluation of the immune response after vaccination may identify a particularly vulnerable subset of patients who may need additional boosters, prophylactic therapies and prevention measures. Pre-exposure prophylaxis with tixagevimab/cilgavimab is not effective against the new dominant variants and thus is no longer recommended. Oral antivirals (nirmatrelvir/ritonavir and molnupiravir) and remdesivir are effective against Omicron subvariants BA.2.12.1, BA.4, BA.5, BQ.1.1 and/or XBB.1.5 and should be administered in MM patients at the time of a positive COVID-19 test or within 5 days post symptoms onset. Convalescent plasma seems to have low value in the post-pandemic era. Prevention measures during SARS-CoV-2 outbreaks, including mask wearing and avoiding crowded places, seem prudent to continue for MM patients.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Pellegrino Musto
- Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University School of Medicine, Bari, Italy
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, Bari, Italy
| | - Monika Engelhardt
- Department of Hematology and Oncology, Interdisciplinary Cancer Center and Comprehensive Cancer Center Freiburg, University of Freiburg, Faculty of Freiburg, Freiburg, Germany
| | - Michel Delforge
- Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Gordon Cook
- CRUK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds, Leeds, UK
| | - Francesca Gay
- Division of Hematology, University of Turin, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Annette Juul Vangsted
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christoph Driessen
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-Cell Malignancies, University of Oslo, Oslo, Norway
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roman Hajek
- Department of Hemato-Oncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Philippe Moreau
- Department of Hematology, University Hospital Hotel-Dieu, Nantes, France
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Jesus San-Miguel
- Cancer Center Clínica Universidad de Navarra, CCUN, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Mario Boccadoro
- Division of Hematology, University of Turin, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, First Department of Medicine, Center for Oncology, Hematology, and Palliative Care, Clinic Ottakring, Vienna, Austria
| |
Collapse
|
6
|
Liatsou E, Ntanasis-Stathopoulos I, Lykos S, Ntanasis-Stathopoulos A, Gavriatopoulou M, Psaltopoulou T, Sergentanis TN, Terpos E. Adult Patients with Cancer Have Impaired Humoral Responses to Complete and Booster COVID-19 Vaccination, Especially Those with Hematologic Cancer on Active Treatment: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15082266. [PMID: 37190194 DOI: 10.3390/cancers15082266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The exclusion of patients with cancer in clinical trials evaluating COVID-19 vaccine efficacy and safety, in combination with the high rate of severe infections, highlights the need for optimizing vaccination strategies. The aim of this study was to perform a systematic review and meta-analysis of the published available data from prospective and retrospective cohort studies that included patients with either solid or hematological malignancies according to the PRISMA Guidelines. A literature search was performed in the following databases: Medline (Pubmed), Scopus, Clinicaltrials.gov, EMBASE, CENTRAL and Google Scholar. Overall, 70 studies were included for the first and second vaccine dose and 60 studies for the third dose. The Effect Size (ES) of the seroconversion rate after the first dose was 0.41 (95%CI: 0.33-0.50) for hematological malignancies and 0.56 (95%CI: 0.47-0.64) for solid tumors. The seroconversion rates after the second dose were 0.62 (95%CI: 0.57-0.67) for hematological malignancies and 0.88 (95%CI: 0.82-0.93) for solid tumors. After the third dose, the ES for seroconversion was estimated at 0.63 (95%CI: 0.54-0.72) for hematological cancer and 0.88 (95%CI: 0.75-0.97) for solid tumors. A subgroup analysis was performed to evaluate potential factors affecting immune response. Production of anti-SARS-CoV-2 antibodies was found to be more affected in patients with hematological malignancies, which was attributed to the type of malignancy and treatment with monoclonal antibodies according to the subgroup analyses. Overall, this study highlights that patients with cancer present suboptimal humoral responses after COVID-19 vaccination. Several factors including timing of vaccination in relevance with active therapy, type of therapy, and type of cancer should be considered throughout the immunization process.
Collapse
Affiliation(s)
- Efstathia Liatsou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Stavros Lykos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Theodora Psaltopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Theodoros N Sergentanis
- Department of Public Health Policy, School of Public Health, University of West Attica, 12243 Aigaleo, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
7
|
Hallmeyer S, Thompson MA, Fitzpatrick V, Liao Y, Mullane MP, Medlin SC, Copeland K, Weese JL. Characteristics of patients with hematologic malignancies without seroconversion post-COVID-19 third vaccine dosing. Biol Methods Protoc 2023; 8:bpad002. [PMID: 36873569 PMCID: PMC9982360 DOI: 10.1093/biomethods/bpad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Objectives The objective of this study is to explore the characteristics of the subset of patients with hematologic malignancies (HMs) who had little to no change in SARS-CoV-2 spike antibody index value levels after a third mRNA vaccine dose (3V) and to compare the cohort of patients who did and did not seroconvert post-3V to get a better understanding of the demographics and potential drivers of serostatus. Study design This retrospective cohort study analyzed SARS-CoV-2 spike IgG antibody index values pre and post the 3V data on 625 patients diagnosed with HM across a large Midwestern United States healthcare system between 31 October 2019 and 31 January 2022. Methods To assess the association between individual characteristics and seroconversion status, patients were placed into two groups based on IgG antibody status pre and post the 3V dose, (-/+) and (-/-). Odds ratios were used as measures of association for all categorical variables. Logistic regressions were used to measure the association between HM condition and seroconversion. Results HM diagnosis was significantly associated with seroconversion status (P = 0.0003) with patients non-Hodgkin lymphoma six times the odds of not seroconverting compared with multiple myeloma patients (P = 0.0010). Among the participants who were seronegative prior to 3V, 149 (55.6%) seroconverted after the 3V dose and 119 (44.4%) did not. Conclusion This study focuses on an important subset of patients with HM who are not seroconverting after the COVID mRNA 3V. This gain in scientific knowledge is needed for clinicians to target and counsel these vulnerable patients.
Collapse
Affiliation(s)
- Sigrun Hallmeyer
- Advocate Aurora Health, 3075 Highland Parkway, Downers Grove, IL 60515, USA
| | - Michael A Thompson
- Advocate Aurora Health, 3075 Highland Parkway, Downers Grove, IL 60515, USA.,Aurora Cancer Care, Advocate Aurora Health, 750 W Virginia Street, Milwaukee, WI 53204, USA
| | - Veronica Fitzpatrick
- Advocate Aurora Health, 3075 Highland Parkway, Downers Grove, IL 60515, USA.,Advocate Aurora Research Institute, 3075 Highland Parkway, Downers Grove, IL 60515, USA
| | - Yunqi Liao
- Advocate Aurora Health, 3075 Highland Parkway, Downers Grove, IL 60515, USA.,Advocate Aurora Research Institute, 3075 Highland Parkway, Downers Grove, IL 60515, USA
| | - Michael P Mullane
- Advocate Aurora Health, 3075 Highland Parkway, Downers Grove, IL 60515, USA.,Aurora Cancer Care, Advocate Aurora Health, 750 W Virginia Street, Milwaukee, WI 53204, USA
| | - Stephen C Medlin
- Advocate Aurora Health, 3075 Highland Parkway, Downers Grove, IL 60515, USA.,Aurora Cancer Care, Advocate Aurora Health, 750 W Virginia Street, Milwaukee, WI 53204, USA
| | - Kenneth Copeland
- Advocate Aurora Health, 3075 Highland Parkway, Downers Grove, IL 60515, USA.,ACL Laboratories, 5400 Pearl St, Rosemont, IL 60018, USA
| | - James L Weese
- Advocate Aurora Health, 3075 Highland Parkway, Downers Grove, IL 60515, USA.,Aurora Cancer Care, Advocate Aurora Health, 750 W Virginia Street, Milwaukee, WI 53204, USA
| |
Collapse
|
8
|
Uaprasert N, Pitakkitnukun P, Tangcheewinsirikul N, Chiasakul T, Rojnuckarin P. Immunogenicity and risks associated with impaired immune responses following SARS-CoV-2 vaccination and booster in hematologic malignancy patients: an updated meta-analysis. Blood Cancer J 2022; 12:173. [PMID: 36550105 PMCID: PMC9780106 DOI: 10.1038/s41408-022-00776-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with hematologic malignancies (HM) have demonstrated impaired immune responses following SARS-CoV-2 vaccination. Factors associated with poor immunogenicity remain largely undetermined. A literature search was conducted using PubMed, EMBASE, Cochrane, and medRxiv databases to identify studies that reported humoral or cellular immune responses (CIR) following complete SARS-CoV-2 vaccination. The primary aim was to estimate the seroconversion rate (SR) following complete SARS-CoV-2 vaccination across various subtypes of HM diseases and treatments. The secondary aims were to determine the rates of development of neutralizing antibodies (NAb) and CIR following complete vaccination and SR following booster doses. A total of 170 studies were included for qualitative and quantitative analysis of primary and secondary outcomes. A meta-analysis of 150 studies including 20,922 HM patients revealed a pooled SR following SARS-CoV-2 vaccination of 67.7% (95% confidence interval [CI], 64.8-70.4%; I2 = 94%). Meta-regression analysis showed that patients with lymphoid malignancies, but not myeloid malignancies, had lower seroconversion rates than those with solid cancers (R2 = 0.52, P < 0.0001). Patients receiving chimeric antigen receptor T-cells (CART), B-cell targeted therapies or JAK inhibitors were associated with poor seroconversion (R2 = 0.39, P < 0.0001). The pooled NAb and CIR rates were 52.8% (95% CI; 45.8-59.7%, I2 = 87%) and 66.6% (95% CI, 57.1-74.9%; I2 = 86%), respectively. Approximately 20.9% (95% CI, 11.4-35.1%, I2 = 90%) of HM patients failed to elicit humoral and cellular immunity. Among non-seroconverted patients after primary vaccination, only 40.5% (95% CI, 33.0-48.4%; I2 = 87%) mounted seroconversion after the booster. In conclusion, HM patients, especially those with lymphoid malignancies and/or receiving CART, B-cell targeted therapies, or JAK inhibitors, showed poor SR after SARS-CoV-2 vaccination. A minority of patients attained seroconversion after booster vaccination. Strategies to improve immune response in these severely immunosuppressed patients are needed.
Collapse
Affiliation(s)
- Noppacharn Uaprasert
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| | - Palada Pitakkitnukun
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nuanrat Tangcheewinsirikul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thita Chiasakul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
9
|
Wang L, Wang W, Xu R, Berger NA. SARS-CoV-2 primary and breakthrough infections in patients with cancer: Implications for patient care. Best Pract Res Clin Haematol 2022; 35:101384. [PMID: 36494154 PMCID: PMC9526006 DOI: 10.1016/j.beha.2022.101384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
Initial reports of SARS-CoV-2 caused COVID-19 suggested that patients with malignant diseases were at increased risk for infection and its severe consequences. In order to provide early United States population-based assessments of SARS-CoV-2 primary infections in unvaccinated patients with hematologic malignancies or cancer, and SARS-CoV-2 breakthrough infections in vaccinated patients with hematologic malignancies or cancer, we conducted retrospective studies using two, unique nationwide electronic health records (EHR) databases. Using these massive databases to provide highly statistically significant data, our studies demonstrated that, compared to patients without malignancies, risk for COVID-19 was increased in patients with all cancers and with all hematologic malignancies. Risks varied with specific types of malignancy. Patients with hematologic malignancies or cancer were at greatest risk for COVID-19 during the first year after diagnosis. Risk for infection was increased for patients 65 years and older, compared to younger patients and among Black patients compared to white patients. When patients with hematologic malignancies or cancer were vaccinated against SARS-CoV-2, their risk for breakthrough infections was decreased relative to primary infections but remained elevated relative to vaccinated patients without malignancies. Compared to vaccinated patients without malignancies, vaccinated patients with hematologic malignancy or cancer showed increased risk for infection at earlier post vaccination time points. As with primary infections, risk for breakthrough infections was greatest in patients during their first year of hematologic malignancy or cancer. There were no signs of racial disparities among vaccinated patients with hematologic malignancies or cancer. These results provide the population basis to understand the significance of subsequent immunologic studies showing relative defective and delayed immunoresponsiveness to SARS-CoV-2 vaccines among patients with hematologic malignancies and cancers. These studies further provide the basis for recommendations regarding COVID-19 vaccination, vigilance and maintaining mitigation strategies in patients with hematologic malignancies and cancers.
Collapse
Affiliation(s)
- Lindsey Wang
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, OH, USA
| | - William Wang
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Nathan A. Berger
- Center for Science, Health & Society, Case Western Reserve University, Cleveland, OH, USA,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA,Corresponding author. Case Western Reserve University School of Medicine 10900 Euclid Avenue Cleveland, Cleveland, OH, 44106-4971, USA
| |
Collapse
|