1
|
Zhu Y, Zhu H, Wu P. Gap junctions in polycystic ovary syndrome: Implications for follicular arrest. Dev Dyn 2024; 253:882-894. [PMID: 38501340 DOI: 10.1002/dvdy.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Gap junctions are specialized intercellular conduits that provide a direct pathway between neighboring cells, which are involved in numerous physiological processes, such as cellular differentiation, cell growth, and metabolic coordination. The effect of gap junctional hemichannels in folliculogenesis is particularly obvious, and the down-regulation of connexins is related to abnormal follicle growth. Polycystic ovary syndrome (PCOS) is a ubiquitous endocrine disorder of the reproductive system, affecting the fertility of adult women due to anovulation. Exciting evidence shows that gap junction is involved in the pathological process related to PCOS and affects the development of follicles in women with PCOS. In this review, we examine the expression of connexins in follicular cells of PCOS and figure out whether such communication could have consequences for PCOS women. While along with results from clinical and related animal studies, we summarize the mechanism of connexins involved in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Gynaecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongqiu Zhu
- Department of Gynaecology, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peijuan Wu
- Department of Gynaecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Rumaling MK, Fong SY, Rao PV, Gisil J, Sani MHM, Wan Saudi WS. Pharmacological properties of Hoya (Apocynaceae): a systematic review. Nat Prod Res 2024:1-17. [PMID: 38389506 DOI: 10.1080/14786419.2024.2319655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
In tropical forests, Hoya, a plant with significant indigenous medicinal applications, has been underexplored in pharmacological studies. This systematic review meticulously investigates the diverse pharmacological effects exhibited by various Hoya species on human health. A comprehensive literature search, encompassing Scopus, ScienceDirect, and SpringerLink databases, employed specific keyword combinations ('Hoya' and 'pharmacological properties' OR 'pharmacology property'). The included studies exclusively focused on Hoya's impact on human health. The findings underscore Hoya's potential as a medicinal plant, demonstrating promising attributes such as anticancer, antibacterial, antioxidant, anti-inflammatory, anti-diabetic, antinociceptive, and parasympatholytic effects. Despite these promising indications, the review underscores the necessity for further in vivo investigations to fully unlock Hoya's therapeutic potential. A comprehensive understanding of its mechanisms of action, efficacy, and safety in living systems is imperative for realising its holistic therapeutic benefits.
Collapse
Affiliation(s)
| | - Siat Yee Fong
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| | | | - Johnny Gisil
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Mohd Hijaz Mohd Sani
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Wan Salman Wan Saudi
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
3
|
Xie J, Xu X, Liu S. Intercellular communication in the cumulus-oocyte complex during folliculogenesis: A review. Front Cell Dev Biol 2023; 11:1087612. [PMID: 36743407 PMCID: PMC9893509 DOI: 10.3389/fcell.2023.1087612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
During folliculogenesis, the oocyte and surrounding cumulus cells form an ensemble called the cumulus-oocyte complex (COC). Due to their interdependence, research on the COC has been a hot issue in the past few decades. A growing body of literature has revealed that intercellular communication is critical in determining oocyte quality and ovulation. This review provides an update on the current knowledge of COC intercellular communication, morphology, and functions. Transzonal projections (TZPs) and gap junctions are the most described structures of the COC. They provide basic metabolic and nutrient support, and abundant molecules for signaling pathways and regulations. Oocyte-secreted factors (OSFs) such as growth differentiation factor 9 and bone morphogenetic protein 15 have been linked with follicular homeostasis, suggesting that the communications are bidirectional. Using advanced techniques, new evidence has highlighted the existence of other structures that participate in intercellular communication. Extracellular vesicles can carry transcripts and signaling molecules. Microvilli on the oocyte can induce the formation of TZPs and secrete OSFs. Cell membrane fusion between the oocyte and cumulus cells can lead to sharing of cytoplasm, in a way making the COC a true whole. These findings give us new insights into related reproductive diseases like polycystic ovary syndrome and primary ovarian insufficiency and how to improve the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Jun Xie
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China,*Correspondence: Suying Liu,
| |
Collapse
|
4
|
Sola IM, Serman A, Karin-Kujundzic V, Paic F, Skrtic A, Slatina P, Kakarigi L, Vranic S, Serman L. Dishevelled family proteins (DVL1-3) expression in intrauterine growth restriction (IUGR) placentas. Bosn J Basic Med Sci 2021; 21:447-453. [PMID: 33485290 PMCID: PMC8292871 DOI: 10.17305/bjbms.2020.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 11/26/2022] Open
Abstract
Dishevelled family proteins (DVL1, DVL2, and DVL3) are cytoplasmic proteins that are involved in canonical and non-canonical Wnt signaling pathway during embryonic development. The role of DVL proteins in the placental tissue remains mostly unknown. In the current study, we explored the role of Dishevelled proteins in naturally invasive tissue, trophoblast. Formalin-fixed paraffin-embedded samples of 15 term placentas from physiologic term pregnancies and 15 term placentas from pregnancies complicated with intrauterine growth restrictions (IUGR) were used for the study. Expression levels of mRNA for DVL1, DVL2, and DVL3 in placentas were analyzed by quantitative real-time PCR (qRT-PCR). DVL1, DVL2, and DVL3 protein expression were semi-quantitatively analyzed using immunohistochemistry. The expression of DVL3 protein was significantly higher in trophoblasts and endothelial cells in placental villi from IUGR pregnancies compared with the control group of term placentas, while DVL2 protein expression was significantly higher in trophoblasts in placental villi from IUGR pregnancies compared with normal term placentas. The observed differences at protein levels between normal and IUGR placentas were not confirmed at the mRNA levels of DVL genes. Our data indicate the active involvement of DVL proteins in IUGR-related placentas. No significant changes were observed in DVL mRNA levels between the two groups of placentas. Further studies are required to explore the clinical relevance of these observations.
Collapse
Affiliation(s)
- Ida Marija Sola
- Department of Obstetrics and Gynecology, University Hospital "Sestre Milosrdnice", Zagreb, Croatia
| | - Alan Serman
- Department of Gynecology and Obstetrics, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Frane Paic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia; Department of Pathology, University Hospital "Merkur", Zagreb, Croatia
| | - Paula Slatina
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kakarigi
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Kordowitzki P, Kranc W, Bryl R, Kempisty B, Skowronska A, Skowronski MT. The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals. Cells 2020; 9:cells9122570. [PMID: 33271827 PMCID: PMC7760214 DOI: 10.3390/cells9122570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporins constitute a group of water channel proteins located in numerous cell types. These are pore-forming transmembrane proteins, which mediate the specific passage of water molecules through membranes. It is well-known that water homeostasis plays a crucial role in different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful fertilization, blastocyst formation, pregnancy, and birth. Further, aquaporins are involved in the process of spermatogenesis, and they have been reported to be involved during the storage of spermatozoa. It is noteworthy that aquaporins are relevant for the physiological function of specific parts in the female reproductive system, which will be presented in detail in the first section of this review. Moreover, they are relevant in different pathologies in the female reproductive system. The contribution of aquaporins in selected reproductive disorders and aging will be summarized in the second section of this review, followed by a section dedicated to aquaporin-related proteins. Since the relevance of aquaporins for the male reproductive system has been reviewed several times in the recent past, this review aims to provide an update on the distribution and impact of aquaporins only in the female reproductive system. Therefore, this paper seeks to determine the physiological and patho-physiological relevance of aquaporins on female reproduction, and female reproductive aging.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska Street 30, 10-082 Olsztyn, Poland;
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Correspondence: ; Tel.: +48-56-611-2231
| |
Collapse
|