1
|
Manda‐Hakki K, Hassanpour H. Changes in Postharvest Quality and Physiological Attributes of Strawberry Fruits Influenced by l-Phenylalanine. Food Sci Nutr 2024; 12:10262-10274. [PMID: 39723087 PMCID: PMC11666917 DOI: 10.1002/fsn3.4564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 12/28/2024] Open
Abstract
Strawberry (Fragaria × ananassa) is a popular fruit with rich nutrients and a delicious taste. But this fruit is very vulnerable to diseases and decay. Therefore, l-phenylalanine (Phe) (0, 4, 8 mM) was considered to improve biochemical characteristics and activity of antioxidant enzymes in strawberry fruit cv. Sabrina under cold storage (5, 10, 15 days). After treatment and storage, traits including weight loss, total phenol (TP), antioxidant capacity, ascorbic acid, total anthocyanin (TA), total flavonoid (TF), malondialdehyde (MDA), soluble protein content and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) and phenylalanine ammonialyase (PAL) were evaluated at 5-day intervals. Our findings showed that the treatment of l-phenylalanine in different concentrations prevented the weight loss of the fruit compared to the control and maintained and increased TP, antioxidant capacity, ascorbic acid, TA, TF, soluble protein and SOD, CAT, APX, POD, and PAL enzymes activity. Also, Phe decreased the MDA content and peroxidation of lipid. The results showed that 4 mM Phe is the best treatment for improving phytochemical characteristics and maintaining fruit quality. The findings indicated that Phe treatment may be useful to improve quality and increase postharvest shelf life in strawberry fruits.
Collapse
Affiliation(s)
- Karim Manda‐Hakki
- Department of Horticultural Sciences, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Hamid Hassanpour
- Department of Horticultural Sciences, Faculty of AgricultureUrmia UniversityUrmiaIran
| |
Collapse
|
2
|
Ofori-Agyemang F, Waterlot C, Manu J, Laloge R, Francin R, Papazoglou EG, Alexopoulou E, Sahraoui ALH, Tisserant B, Mench M, Burges A, Oustrière N. Plant testing with hemp and miscanthus to assess phytomanagement options including biostimulants and mycorrhizae on a metal-contaminated soil to provide biomass for sustainable biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169527. [PMID: 38135075 DOI: 10.1016/j.scitotenv.2023.169527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The need of biofuels from biomass, including sustainable aviation fuel, without using agricultural land dedicated to food crops, is in constant demand. Strategies to intensify biomass production using mycorrhizal fungi, biostimulants and their combinations could be solutions for improving the cultivation of lignocellulosic plants but still lack well-established validation on metal-contaminated soils. This study aimed to assess the yield of Miscanthus x giganteus J.M. Greef & Deuter and Cannabis sativa L. grown on a metal-contaminated agricultural soil (11 mg Cd, 536 mg Pb and 955 mg Zn kg-1) amended with biostimulants and/or arbuscular mycorrhizal fungi, and the shoot Cd, Pb and Zn uptake. A pot trial was carried out with soil collected from a field near a former Pb/Zn smelter in France and six treatments: control (C), protein hydrolysate (a mixture of peptides and amino acids, PH), humic/fulvic acids (HFA), arbuscular mycorrhizae fungi (AMF), PH combined with AMF (PHxAMF), and HFA combined with AMF (HFAxAMF). Metal concentrations in the soil pore water (SPW), pH and electrical conductivity were measured over time. Miscanthus and hemp shoots were harvested on day 90. Both PH and PHxAMF treatments increased SPW Cd, Pb, and Zn concentrations (e.g. by 26, 1.9, and 22.9 times for miscanthus and 9.7, 4.7, and 19.3 times for hemp in the PH and PHxAMF treatments as compared to the control one, respectively). This led to phytotoxicity and reduced shoot yield for miscanthus. Conversely, HFA and HFAxAMF treatments decreased SPW Cd and Zn concentrations, increasing shoot yields for hemp and miscanthus. Shoot Cd, Pb, and Zn uptakes peaked for PH and PHxAMF hemp plants (in μg plant-1, Cd: 310-334, Pb: 34-38, and Zn: 232-309 for PHxAMF and PH, respectively), while lowest values occurred for PH miscanthus plants mainly due to low shoot yield. Overall, this study suggested that humic/fulvic acids can be an effective biostimulant for increasing shoot biomass production in a metal-contaminated soil. These results warrant further investigations of the HFAxAMF in field trials.
Collapse
Affiliation(s)
- Felix Ofori-Agyemang
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Christophe Waterlot
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - James Manu
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Roman Laloge
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Romain Francin
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Eleni G Papazoglou
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Efthymia Alexopoulou
- Center for Renewable Energy Sources and Saving, Biomass Department, Pikermi Attikis, Greece.
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Benoît Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac cedex, France.
| | - Aritz Burges
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Nadège Oustrière
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| |
Collapse
|
3
|
Mamatha BC, Rudresh K, Karthikeyan N, Kumar M, Das R, Taware PB, Khapte PS, Soren KR, Rane J, Gurumurthy S. Vegetal protein hydrolysates reduce the yield losses in off-season crops under combined heat and drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1049-1059. [PMID: 37649884 PMCID: PMC10462596 DOI: 10.1007/s12298-023-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 09/01/2023]
Abstract
To deal with the vagaries of climate change, it is essential to develop climate-resilient agricultural practices, which improve crop productivity, and ensure food security. The impacts of high temperature and water deficit stress conditions pose serious challenges to a sustainable crop production. Several adaptation measures are practiced globally to address these challenges and among these altering the crop's typical growing season is one of the key management practices. Application of biostimulants and other growth hormones helps in compensating yield losses under abiotic stress significantly. Therefore, this study was conducted to evaluate the influence of vegetal protein hydrolysate based biostimulant to reduce the yield losses of off-season crops (soybean and chilli in summer and chickpea in early Kharif) when the temperature was higher than the regular season under water deficit stress conditions. The experiments were carried out with the foliar application of different protein hydrolysates (PHs) concentrations. The study revealed that the application of PHs significantly improved the membrane stability index, relative water content, total chlorophyll and proline content of leaves. Consequently, it led to an increase in the number of pods in soybean and chickpea, and fruits in chilli, leading to improved yields when plants were treated with the appropriate amount of PHs. Compared to untreated plants, PHs helped improve the efficiency of PS-II with significantly high photochemical efficiency (QYmax) even at higher excised leaf water loss or reduction in loss of relative water content. This study concluded that foliar application of PHs at 4, 2, and 6 ml L-1 can be beneficial for soybean, chickpea and chilli, which exhibited 17, 30, and 25% yield improvement respectively, over the untreated plants under water deficit stress. It is suggested that the benefits of PHs can be realized in soybean, chickpea and chilli under high temperature and water deficit stress. Therefore, vegetal PHs may be able to assist farmers in arid regions for boosting their income by raising market value and decreasing production barriers during the off-season. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01334-4.
Collapse
Affiliation(s)
- B. C. Mamatha
- ICAR-National Institute of Abiotic Stress Management, Pune, 413115 India
| | - K. Rudresh
- ICAR-National Institute of Abiotic Stress Management, Pune, 413115 India
| | - N. Karthikeyan
- ICAR-National Institute of Abiotic Stress Management, Pune, 413115 India
| | - M. Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Ranjan Das
- Assam Agricultural University, Jorhat, 785013 India
| | - P. B. Taware
- ICAR-National Institute of Abiotic Stress Management, Pune, 413115 India
| | - P. S. Khapte
- ICAR-National Institute of Abiotic Stress Management, Pune, 413115 India
| | - K. R. Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024 India
| | - J. Rane
- ICAR-National Institute of Abiotic Stress Management, Pune, 413115 India
| | - S. Gurumurthy
- ICAR-National Institute of Abiotic Stress Management, Pune, 413115 India
- Department of Agronomy, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
4
|
Ikuyinminu E, Goñi O, Łangowski Ł, O'Connell S. Transcriptome, Biochemical and Phenotypic Analysis of the Effects of a Precision Engineered Biostimulant for Inducing Salinity Stress Tolerance in Tomato. Int J Mol Sci 2023; 24:ijms24086988. [PMID: 37108156 PMCID: PMC10138596 DOI: 10.3390/ijms24086988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Salinity stress is a major problem affecting plant growth and crop productivity. While plant biostimulants have been reported to be an effective solution to tackle salinity stress in different crops, the key genes and metabolic pathways involved in these tolerance processes remain unclear. This study focused on integrating phenotypic, physiological, biochemical and transcriptome data obtained from different tissues of Solanum lycopersicum L. plants (cv. Micro-Tom) subjected to a saline irrigation water program for 61 days (EC: 5.8 dS/m) and treated with a combination of protein hydrolysate and Ascophyllum nodosum-derived biostimulant, namely PSI-475. The biostimulant application was associated with the maintenance of higher K+/Na+ ratios in both young leaf and root tissue and the overexpression of transporter genes related to ion homeostasis (e.g., NHX4, HKT1;2). A more efficient osmotic adjustment was characterized by a significant increase in relative water content (RWC), which most likely was associated with osmolyte accumulation and upregulation of genes related to aquaporins (e.g., PIP2.1, TIP2.1). A higher content of photosynthetic pigments (+19.8% to +27.5%), increased expression of genes involved in photosynthetic efficiency and chlorophyll biosynthesis (e.g., LHC, PORC) and enhanced primary carbon and nitrogen metabolic mechanisms were observed, leading to a higher fruit yield and fruit number (47.5% and 32.5%, respectively). Overall, it can be concluded that the precision engineered PSI-475 biostimulant can provide long-term protective effects on salinity stressed tomato plants through a well-defined mode of action in different plant tissues.
Collapse
Affiliation(s)
- Elomofe Ikuyinminu
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| | | | - Shane O'Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| |
Collapse
|
5
|
Raguraj S, Kasim S, Jaafar NM, Nazli MH. Influence of chicken feather waste derived protein hydrolysate on the growth of tea plants under different application methods and fertilizer rates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37017-37028. [PMID: 36564696 DOI: 10.1007/s11356-022-24758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Modern agriculture prioritizes eco-friendly and sustainable strategies to enhance crop growth and productivity. The utilization of protein hydrolysate extracted from chicken feather waste as a plant biostimulant paves the path to waste recycling. A greenhouse experiment was performed to evaluate the implications of different doses (0, 1, 2, and 3 g L-1) of chicken feather protein hydrolysate (CFPH), application method (soil and foliar), and fertilizer rate (50% and 100%) on the growth performance of tea nursery plants. The highest dose of CFPH (3 g L-1) increased the shoot and root dry weights by 43% and 70%, respectively over control. However, no significant differences were observed between 2 and 3 g L-1 doses in plant dry weight, biometric, and root morphological parameters. Foliar application of CFPH significantly increased all the growth parameters compared to soil drenching except N, P, and K concentrations in leaves and roots. Plants grown under 100% fertilizer rate showed better growth performance than 50% fertilizer rate. Tea nursery plants treated with foliar 2 g L-1 dose and grown under full fertilizer rate recorded the highest plant dry weight, root length, and root surface area. However, tea plants under 50% fertilizer rate and treated with foliar 2 and 3 g L-1 doses sustained the growth similar to untreated plants under 100% fertilizer rate. The significantly higher N, P, and K concentrations in leaves were observed in plants treated with soil drenching of 2 and 3 g L-1 CFPH doses under 100% fertilizer rate. Our results indicate that the application of CFPH as a foliar spray is highly effective in producing vigorous tea nursery plants suitable for field planting, eventually capable of withstanding stress and higher yield.
Collapse
Affiliation(s)
- Sriharan Raguraj
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Malaysia
- Soils and Plant Nutrition Division, Tea Research Institute of Sri Lanka, Talawakelle, 22100, Sri Lanka
| | - Susilawati Kasim
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Noraini Md Jaafar
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Muhamad Hazim Nazli
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
6
|
Gezgincioğlu E, Atici Ö. Chicken feather protein hydrolysate improves cold resistance by upregulating physiologic and biochemical responses of wheat (Triticum aestivum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3593-3605. [PMID: 35947261 DOI: 10.1007/s11356-022-22013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Chicken feather (CF) is one of the largest by-products of the poultry industry and millions of tons of feathers from poultry processing plants have caused a serious waste issue in almost every country. We produced a chicken feather protein hydrolysate (CFPH) by an alkaline process and investigated its effect on the low-temperature response of two wheat cultivars (Triticum aestivum L., cvs. Altındane and Bezostaja). The CFPH contained 19 proteinogenic and 3 non-proteinogenic amino acids, as well as beneficial salts for plant growth. The aqueous solution of CFPH (0.1%, w/v) was applied to seedling leaves before cold stress and then the seedlings (treated and untreated) were transferred to cold conditions (5/2 °C, day/night) for 3 days. The CFPH application increased the expression of Rubisco protein and the contents of photosynthetic pigment, soluble sugar, and free proline while decreasing phenolic content in the leaves of both cultivars under cold stress. The cold application alone increased the levels of reactive oxygen species (ROS) and lipid peroxidation (as malondialdehyde), while CFPH decreased their levels. Compared to cold alone, CFPH stimulated antioxidant enzyme activities in both cultivars. This finding was supported by the changes in isoenzyme profiles of the same enzymes on native PAGE. In addition, CFPH application raised reduced ascorbate and glutathione levels, while decreasing the levels of their oxidized forms. The results showed that the application of waste CF-derived CFPH to leaves as a biostimulant alleviated physiological and antioxidative responses in the wheat seedlings under cold stress, thus having the potential to increase cold-stress tolerance in wheat.
Collapse
Affiliation(s)
- Ebru Gezgincioğlu
- Department of Biology, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Ökkeş Atici
- Department of Biology, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
7
|
Carillo P, Pannico A, Cirillo C, Ciriello M, Colla G, Cardarelli M, De Pascale S, Rouphael Y. Protein Hydrolysates from Animal or Vegetal Sources Affect Morpho-Physiological Traits, Ornamental Quality, Mineral Composition, and Shelf-Life of Chrysanthemum in a Distinctive Manner. PLANTS 2022; 11:plants11172321. [PMID: 36079702 PMCID: PMC9460061 DOI: 10.3390/plants11172321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Protein hydrolysates (PHs) are a prominent category of plant biostimulants, mainly constituted of amino acids, oligopeptides and polypeptides, obtained by partial hydrolysis of animal or plant protein sources. Despite scientific evidence supporting the biostimulant action of PHs on vegetables, the morphological, physiological, and shelf-life performances underlying the PH action on cut flowers are still poorly explored. Accordingly, the aim of this research is to assess the effects of three commercial biostimulants, one animal PH (PH A, Hicure®) and two plant PHs (PH V1, Trainer® and PH V2, Vegamin©), on two chrysanthemum (Chrysanthemum morifolium) cultivars (Pinacolada and Radost). In both cultivars, only the plant-derived PH (V1 and V2) treatments recorded significantly higher fresh plant biomass than the control (on average +18%, in both cultivars). The foliar application of the vegetal-derived PHs but not the animal one, particularly in Pinacolada, improved the status of plants, stimulating stem elongation and the apical flower diameter. In Pinacolada, applications with PH V1 resulted in a significant increase in nitrate and P concentration in leaves and Ca content in flowers compared with the control (+43%, +27%, and +28% for nitrate, P, and Ca, respectively). In Radost, PH A and PH V2 applications caused a significant reduction in nitrate concentration in both leaves and flowers compared with the control. One week after harvest, in both cultivars, PH A applications caused flower stems to wilt faster than the control. In contrast, plants treated with PH V1 revealed significantly slower flower stem senescence compared to the control. Flower wilting during vase life was correlated to a decrease in the K-to-Na ratio in flowers due to an inability to transport K to the flowers from the leaves rather than an increase in Na in the flowers themselves.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Correspondence:
| |
Collapse
|
8
|
Liao R, Zhu J. Amino acid promotes selenium uptake in medicinal plant Plantago asiatica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1005-1012. [PMID: 35722512 PMCID: PMC9203647 DOI: 10.1007/s12298-022-01196-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 05/03/2023]
Abstract
The medicinal plant, Plantago asiatica have high selenium (Se) accumulation ability but is considered lower compared to other Se-hyperaccumulators. In this experiment, we evaluated the effects of different amino acid concentrations (600, 900, 1200, and 1500-fold dilutions) on the growth and Se uptake in P. asiatica for possible improvement of Se accumulation ability and medicinal value of P. asiatica. The 600, 900, and 1200-fold amino acid dilutions increased the root and shoot biomass of P. asiatica. Additionally, the photosynthetic pigments contents (chlorophyll a, chlorophyll b, and total chlorophyll) and antioxidant enzymes activities (superoxide dismutase, peroxidase, and catalase) of P. asiatica were increased by the different amino acid concentrations. However, these amino acid concentrations reduced the soluble protein content of P. asiatica to some extent. The Se content and extraction from P. asiatica were also enhanced and had a quadratic polynomial regression relationship with the Se extraction tissues and their Se contents. In addition, there were significant correlations between the biomass of Se extraction tissues and their Se contents. Our findings indicate that various amino acid concentrations promote growth and Se uptake in P. asiatica, but 900-fold amino acid dilution is the best concentration for enhancing Se accumulation ability in P. asiatica shoots.
Collapse
Affiliation(s)
- Renyan Liao
- College of Traditional Chinese Medicine and Rehabilitation, Ya’an Polytechnic College, Ya’an, Sichuan China
| | - Jiying Zhu
- College of Traditional Chinese Medicine and Rehabilitation, Ya’an Polytechnic College, Ya’an, Sichuan China
| |
Collapse
|
9
|
Cristiano G, De Lucia B. Petunia Performance Under Application of Animal-Based Protein Hydrolysates: Effects on Visual Quality, Biomass, Nutrient Content, Root Morphology, and Gas Exchange. FRONTIERS IN PLANT SCIENCE 2021; 12:640608. [PMID: 34194447 PMCID: PMC8236847 DOI: 10.3389/fpls.2021.640608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Sustainable plant production practices have been implemented to reduce the use of synthetic fertilizers and other agrochemicals. One way to reduce fertilizer use without negatively impacting plant nutrition is to enhance crop uptake of nutrients with biostimulants. As the effectiveness of a biostimulant can depend on the origin, species, dose, and application method, the aim of this research was to evaluate the effect of a commercial animal-based protein hydrolysate (PH) biostimulant on the visual quality, biomass, macronutrient content, root morphology, and leaf gas exchange of a petunia (Petunia × hybrida Hort. "red") under preharvest conditions. Two treatments were compared: (a) three doses of an animal-based PH biostimulant: 0 (D0 = control), 0.1 (D0.1 = normal), and 0.2 g L-1 (D0.2 = high); (b) two biostimulant application methods: foliar spray and root drenching. The dose × method interaction effect of PH biostimulant on the plants was significant in terms of quality grade and fresh and dry biomass. The high dose applied as foliar spray produced petunias with extra-grade visual quality (number of flowers per plant 161, number of leaves per plant 450, and leaf area per plant 1,487 cm2) and a total aboveground dry weight of 35 g, shoots (+91%), flowers (+230%), and leaf fresh weight (+71%). P and K contents were higher than in untreated petunias, when plants were grown with D0.2 and foliar spray. With foliar spray at the two doses, SPAD showed a linear increase (+21.6 and +41.0%) with respect to untreated plants. The dose × method interaction effect of biostimulant application was significant for root length, projected and total root surface area, and number of root tips, forks, and crossings. Concerning leaf gas exchange parameters, applying the biostimulant at both doses as foliar spray resulted in a significant improvement in net photosynthesis (D0.1: 22.9 μmol CO2 m-2 s-1 and D0.2: 22.4 μmol CO2 m-2 s-1) and stomatal conductance (D0.1: 0.42 mmol H2O m-2 s-1 and D0.2: 0.39 mmol H2O m-2 s-1) compared to control. These results indicate that application of PH biostimulant at 0.2 g L-1 as foliar spray helped to achieve extra-grade plants and that this practice can be exploited in sustainable greenhouse conditions for commercial production of petunia.
Collapse
|
10
|
Sorrentino M, De Diego N, Ugena L, Spíchal L, Lucini L, Miras-Moreno B, Zhang L, Rouphael Y, Colla G, Panzarová K. Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:626301. [PMID: 34168660 PMCID: PMC8218911 DOI: 10.3389/fpls.2021.626301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/14/2021] [Indexed: 05/11/2023]
Abstract
The use of plant biostimulants contributes to more sustainable and environmentally friendly farming techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative effect of abiotic stresses in different crops. However, limited information is available about their mechanism of action, how plants perceive their application, and which metabolic pathways are activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 μl ml-1). Growth and development-related traits as early seedling establishment, growth response under stress and photosynthetic performance of the plants were dynamically scored throughout and at the end of the growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as highly effective growth regulators and stress alleviators because they showed a PBC index always above 0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, gibberellins, etc.), which alleviated the salt stress response-related growth inhibition.
Collapse
Affiliation(s)
- Mirella Sorrentino
- PSI (Photon Systems Instruments), spol. s r.o., Drásov, Czechia
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Olomouc, Czechia
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Lukáš Spíchal
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Olomouc, Czechia
| | - Luigi Lucini
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Klára Panzarová
- PSI (Photon Systems Instruments), spol. s r.o., Drásov, Czechia
| |
Collapse
|
11
|
Emanuil N, Akram MS, Ali S, El-Esawi MA, Iqbal M, Alyemeni MN. Peptone-Induced Physio-Biochemical Modulations Reduce Cadmium Toxicity and Accumulation in Spinach ( Spinacia oleracea L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121806. [PMID: 33352672 PMCID: PMC7765890 DOI: 10.3390/plants9121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 05/08/2023]
Abstract
The accumulation of cadmium (Cd) in edible plant parts and fertile lands is a worldwide problem. It negatively influences the growth and productivity of leafy vegetables (e.g., spinach, Spinacia oleracea L.), which have a high tendency to radially accumulate Cd. The present study investigated the influences of peptone application on the growth, biomass, chlorophyll content, gas exchange parameters, antioxidant enzymes activity, and Cd content of spinach plants grown under Cd stress. Cd toxicity negatively affected spinach growth, biomass, chlorophyll content, and gas exchange attributes. However, it increased malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), proline accumulation, ascorbic acid content, Cd content, and activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in spinach plants. The exogenous foliar application of peptone increased the growth, biomass, chlorophyll content, proline accumulation, and gas exchange attributes of spinach plants. Furthermore, the application of peptone decreased Cd uptake and levels of MDA, H2O2, and EL in spinach by increasing the activity of antioxidant enzymes. This enhancement in plant growth and photosynthesis might be due to the lower level of Cd accumulation, which in turn decreased the negative impacts of oxidative stress in plant tissues. Taken together, the findings of the study revealed that peptone is a promising plant growth regulator that represents an efficient approach for the phytoremediation of Cd-polluted soils and enhancement of spinach growth, yield, and tolerance under a Cd-dominant environment.
Collapse
Affiliation(s)
- Naila Emanuil
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (N.E.); (M.I.)
| | - Muhammad Sohail Akram
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (N.E.); (M.I.)
- Correspondence: (M.S.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (M.S.A.); (S.A.)
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Muhammad Iqbal
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (N.E.); (M.I.)
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh l1451, Saudi Arabia;
| |
Collapse
|
12
|
Olbrycht M, Kołodziej M, Bochenek R, Przywara M, Balawejder M, Matłok N, Antos P, Piątkowski W, Antos D. Mechanism of nutrition activity of a microgranule fertilizer fortified with proteins. BMC PLANT BIOLOGY 2020; 20:126. [PMID: 32209052 PMCID: PMC7092569 DOI: 10.1186/s12870-020-02340-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND A microgranule fertilizer was designed for localized fertilization of soil with controlled release of nutrients. The microgranule matrix was fortified with proteins, which were obtained from food industry byproducts or waste, i.e., whey protein from milk serum, soy protein from soy isolate and egg white protein from chicken egg white powder. The mechanism of the protein decomposition and migration of micro and macromolecule compounds through two different model soil systems was investigated. The potential of the protein fortified fertilizer for localized fertilization of the potted maize seeds was evaluated. RESULTS The study revealed that proteins slowly diffused through soil with simultaneous degradation, which was accompanied with release of ammonia ions. The highest concentration of proteins and degradation products was found in a close vicinity of the microgranule. The microgranules were used as a local fertilizer for maize seeds in the pot experiments. The experiments confirmed statistically significant improvement in root density of maize plant compared to control group. CONCLUSIONS Byproducts or waste of food industry, such as the milk serum and soy can be used as a source of proteins that degrade in soil without a pretreatment. The degradation is accompanied with formation of ammonium ions, which can be utilized by plants as a nitrogen source. The fertilizer microgranule should be placed in a close vicinity to the plant seed, since the maximum of the protein concentration and ammonia ions is reached at a very close distance from the microgranule.
Collapse
Affiliation(s)
- Maksymilian Olbrycht
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Michał Kołodziej
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Roman Bochenek
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Mateusz Przywara
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, University of Rzeszow, St. Ćwiklińskiej 1a, 35-601 Rzeszów, Poland
| | - Natalia Matłok
- Department of Food and Agriculture Production Engineering, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Piotr Antos
- Department of Computer Engineering in Management, Rzeszow University of Technology, Powstańców Warszawy Ave. 10, 35-959 Rzeszów, Poland
| | - Wojciech Piątkowski
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszow University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| |
Collapse
|
13
|
Madende M, Hayes M. Fish By-Product Use as Biostimulants: An Overview of the Current State of the Art, Including Relevant Legislation and Regulations within the EU and USA. Molecules 2020; 25:molecules25051122. [PMID: 32138206 PMCID: PMC7179184 DOI: 10.3390/molecules25051122] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/26/2022] Open
Abstract
Crop production systems have adopted cost-effective, sustainable and environmentally friendly agricultural practices to improve crop yields and the quality of food derived from plants. Approaches such as genetic selection and the creation of varieties displaying favorable traits such as disease and drought resistance have been used in the past and continue to be used. However, the use of biostimulants to promote plant growth has increasingly gained attention, and the market size for biostimulants is estimated to reach USD 4.14 billion by 2025. Plant biostimulants are products obtained from different inorganic or organic substances and microorganisms that can improve plant growth and productivity and abate the negative effects of abiotic stresses. They include materials such as protein hydrolysates, amino acids, humic substances, seaweed extracts and food or industrial waste-derived compounds. Fish processing waste products have potential applications as plant biostimulants. This review gives an overview of plant biostimulants with a focus on fish protein hydrolysates and legislation governing the use of plant biostimulants in agriculture.
Collapse
|
14
|
Aly A, Eliwa N, El Megid MHA. Improvement of growth, productivity and some chemical properties of hot pepper by foliar application of amino acids and yeast extract. POTRAVINARSTVO 2019. [DOI: 10.5219/1160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A greenhouse experiment was conducted during the seasons of 2016 - 2017 to compare the impact of foliar amino acids binding (0.5, 1 and 2 g.L-1) and yeast extract ( 2.5, 5 and 10 g.L-1) on certain development and physiological parameters of hot pepper (Capsicum annuum L.). The results cleared that foliar application of amino acid (2 g.L-1) or yeast (10 g.L-1) increased development parameters of hot pepper compared to control in both first and second seasons. Amino acids foliar implementation with (2 g.L-1) gave higher content of anthocyanins, ascorbic acid, lycopene and íŸ- carotene contents as compared with the control. Also, 10 g.L-1 foliar application of yeast extract showed the best results as compared to control in both first and second seasons. Foliar application of amino acids contents increased phenol and flavonoid contents of hot pepper fruits. Maximum increase was observed at 2 g.L-1 amino acids in both seasons. While 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and lipid peroxidation contents increased with 2 g.L-1 amino acids and 10 g.L-1 yeast foliar application. The HPLC analysis of ethanolic extract of hot pepper fruits has shown fifteen phenolic compounds. Phenolic compounds were increased by increasing the concentration of amino acid and yeast extract foliar application in the both two seasons. In conclusion it is recommended to use amino acid (2 g.L-1) and yeast extract (10 g.L-1) foliar application as they play a key role in productivity , also in protecting the environment as eco-friendly and cost-effective inputs for the farmers.
Collapse
|
15
|
Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9060306] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abiotic stresses strongly affect plant growth, development, and quality of production; final crop yield can be really compromised if stress occurs in plants’ most sensitive phenological phases. Additionally, the increase of crop stress tolerance through genetic improvements requires long breeding programmes and different cultivation environments for crop performance validation. Biostimulants have been proposed as agronomic tools to counteract abiotic stress. Indeed, these products containing bioactive molecules have a beneficial effect on plants and improve their capability to face adverse environmental conditions, acting on primary or secondary metabolism. Many companies are investing in new biostimulant products development and in the identification of the most effective bioactive molecules contained in different kinds of extracts, able to elicit specific plant responses against abiotic stresses. Most of these compounds are unknown and their characterization in term of composition is almost impossible; therefore, they could be classified on the basis of their role in plants. Biostimulants have been generally applied to high-value crops like fruits and vegetables; thus, in this review, we examine and summarise literature on their use on vegetable crops, focusing on their application to counteract the most common environmental stresses.
Collapse
|
16
|
Cristiano G, Pallozzi E, Conversa G, Tufarelli V, De Lucia B. Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon ( Antirrhinum majus L.). FRONTIERS IN PLANT SCIENCE 2018; 9:861. [PMID: 29973949 PMCID: PMC6019948 DOI: 10.3389/fpls.2018.00861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/04/2018] [Indexed: 05/02/2023]
Abstract
To assess the effect a new animal-derived biostimulant on the growth, root morphology, nitrogen content, leaf gas exchange of greenhouse potted snapdragon, three treatments were compared: (a) three doses of biostimulant (D): 0 (D0 or control), 0.1 (D0.1), and 0.2 g L-1 (D0.2); (b) two biostimulant application methods (M): foliar spray and root drenching; (c) two F1Antirrhinum majus L. hybrids (CV): "Yellow floral showers" and "Red sonnet." The treatments were arranged in a randomized complete-block design with four replicates, with a total of 48 experimental units. Plant height (+11%), number of shoots (+20%), total shoot length (+10%), number of leaves (+33%), total leaf area (+29%), and number of flowers (+59%) and total aboveground dry weight (+13%) were significantly increased by the biostimulant application compared to the control, regardless of the dose. The lowest dose resulted in the best effect on the ground plant dry weight (+38%) and, in order to the root system, on total length (+55%), average diameter (+36%), volume (+66%), tips (+49%), crossings (+88%), forks (+68%), projected (+62%), and total surface area (+28%). Compared to the control, plants treated with the biostimulant significantly enhanced leaf (+16%) and root (+8%) nitrogen content, photosynthetic rate (+52%), transpiration rate (+55%), and stomatal conductance (+81%), although there were no changes in dark-adapted chlorophyll fluorescence. Differences in the application method were not evident in the aboveground morphological traits, except in the plant shoot number (root drenching: +10%). The foliar spray compared to root drenching had a significant effect only on flower dry weight (3.8 vs. 3.0 g plant-1). On the other hand, root drenching had a positive effect on ground dry weight (2.7 vs. 2.3 g plant-1), root morphology, leaf-N and root-N content (+3%), transpiration rate (+21%), stomatal conductance (+40%), concentration of CO2 in intracellular spaces (+11%), as well as on the efficiency of Photosystem II (+11%). A higher pot quality was obtained in "Red sonnet" compared to "Yellow floral shower." Based on our findings, applying the biostimulant to potted snapdragon at the lowest dose, as part of a fertilizing regime, improves the crop quality in an agro-environmental sustainable way.
Collapse
Affiliation(s)
- Giuseppe Cristiano
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Emanuele Pallozzi
- Institute of Agro-Environmental & Forest Biology, National Research Council (CNR), Rome, Italy
| | - Giulia Conversa
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Vincenzo Tufarelli
- Section of Veterinary Science and Animal Production, Department of DETO, University of Bari Aldo Moro, Bari, Italy
| | - Barbara De Lucia
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Barbara De Lucia
| |
Collapse
|
17
|
Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. FRONTIERS IN PLANT SCIENCE 2017; 8:2202. [PMID: 29312427 PMCID: PMC5744479 DOI: 10.3389/fpls.2017.02202] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand biotic and abiotic stress. The substrates provided by PHs, such as amino acids, could provide an ideal food source for these plant-associated microbes. Indeed, recent studies have provided evidence that plant microbiomes are modified by the application of PHs, supporting the hypothesis that PHs might be acting, at least in part, via changes in the composition and activity of these microbial communities. Application of PHs has great potential to meet the twin challenges of a feeding a growing population while minimizing agriculture's impact on human health and the environment. However, to fully realize the potential of PHs, further studies are required to shed light on the mechanisms conferring the beneficial effects of these products, as well as identify product formulations and application methods that optimize benefits under a range of agro-ecological conditions.
Collapse
Affiliation(s)
- Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, Pontecagnano, Italy
| | | | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
18
|
Rouphael Y, Cardarelli M, Bonini P, Colla G. Synergistic Action of a Microbial-based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity. FRONTIERS IN PLANT SCIENCE 2017; 8:131. [PMID: 28223995 PMCID: PMC5295141 DOI: 10.3389/fpls.2017.00131] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/23/2017] [Indexed: 05/02/2023]
Abstract
In the coming years, farmers will have to deal with growing crops under suboptimal conditions dictated by global climate changes. The application of plant biostimulants such as beneficial microorganisms and plant-derived protein hydrolysates (PHs) may represent an interesting approach for increasing crop tolerance to alkalinity and salinity. The current research aimed at elucidating the agronomical, physiological, and biochemical effects as well as the changes in mineral composition of greenhouse lettuce (Lactuca sativa L.) either untreated or treated with a microbial-based biostimulant (Tablet) containing Rhizophagus intraradices and Trichoderma atroviride alone or in combination with a PH. Plants were sprayed with PH at weekly intervals with a solution containing 2.5 ml L-1 of PH. Lettuce plants were grown in sand culture and supplied with three nutrient solutions: standard, saline (25 mM NaCl) or alkaline (10 mM NaHCO3 + 0.5 g l-1 CaCO3; pH 8.1). Salt stress triggered a decrease in fresh yield, biomass production, SPAD index, chlorophyll fluorescence, leaf mineral composition and increased leaf proline concentration, without altering antioxidant enzyme activities. The decrease in marketable yield and biomass production under alkali stress was not significant. Irrespective of nutrient solution, the application of Tablet and especially Tablet + PH increased fresh marketable yield, shoot and root dry weight. This was associated with an improvement in SPAD index, Fv/Fm ratio, CAT and GPX activities and a better nutritional status (higher P, K, and Fe and lower Na with NaCl and higher P and Fe with NaHCO3) via an increase of total root length and surface. The combination of microbial biostimulant with foliar application of PH synergistically increased the marketable fresh yield by 15.5 and 46.7% compared to the Tablet-treated and untreated plants, respectively. The improved crop performance of Tablet + PH application was attributed to a better root system architecture (higher total root length and surface), an improved chlorophyll synthesis and an increase in proline accumulation. Combined application of Tablet and PH could represent an effective strategy to minimize alkalinity and salinity stress in a sustainable way.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II Portici, Italy
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo Rome, Italy
| | | | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, Tuscia University Viterbo, Italy
| |
Collapse
|
19
|
Polo J, Mata P. Evaluation of a Biostimulant (Pepton) Based in Enzymatic Hydrolyzed Animal Protein in Comparison to Seaweed Extracts on Root Development, Vegetative Growth, Flowering, and Yield of Gold Cherry Tomatoes Grown under Low Stress Ambient Field Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:2261. [PMID: 29403513 PMCID: PMC5780448 DOI: 10.3389/fpls.2017.02261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 12/27/2017] [Indexed: 05/18/2023]
Abstract
The objectives of this experiment were to determine the effects of different application rates of an enzyme hydrolyzed animal protein biostimulant (Pepton) compared to a standard application rate of a biostimulant derived from seaweed extract (Acadian) on plant growth parameters and yield of gold cherry tomatoes (Solanum lycopersicum L.). Biostimulant treatments were applied starting at 15 days after transplant and every 2 weeks thereafter for a total of 5 applications. One treatment group received no biostimulant (Control). Three treatment groups (Pepton-2, Pepton-3, Pepton-4) received Pepton at different application rates equivalent to 2, 3, or 4 kg/ha applied by foliar (first 2 applications) and by irrigation (last 3 applications). Another treatment group (Acadian) received Acadian at 1.5 L/ha by irrigation for all five applications. All groups received the regular fertilizer application for this crop at transplantation, flowering, and fruiting periods. There were four plots per treatment group. Each plot had a surface area of 21 m2 that consisted of two rows that were 7 m long and 1.5 m wide. Plant height, stem diameter, distance from head to bouquet flowering, fruit set distance between the entire cluster and cluster flowering fruit set, leaf length, and number of leaves per plant was recorded for 20 plants (5 plants per plot) at 56 and 61 days after the first application. Root length and diameter of cherry tomatoes were determined at harvest from 20 randomly selected plants. Harvesting yield per plot was registered and production per hectare was calculated. Both biostimulants improved (P < 0.05) all vegetative parameters compared with the control group. There was a positive linear (P < 0.001) effect of Pepton application rate for all parameters. The calculated yield was 7.8 and 1 Ton/ha greater that represent 27 and 2.9% higher production for Pepton applied at 4 kg/ha compared to the control and to Acadian, respectively. In conclusion, Pepton was effective improving yield of gold cherry tomatoes under the low stress ambient growing conditions of this experiment. Probably short-chain peptides present in Pepton are involved in endogenous hormones and metabolic mediators that could explain the results obtained in this study.
Collapse
Affiliation(s)
- Javier Polo
- R&D Department, APC Europe S.L., Granollers, Spain
- *Correspondence: Javier Polo
| | - Pedro Mata
- Universidad Autónoma del Estado de Morelos, Cuautla, Mexico
| |
Collapse
|
20
|
Protein hydrolysate-based biostimulants: origin, biological activity and application methods. ACTA ACUST UNITED AC 2016. [DOI: 10.17660/actahortic.2016.1148.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y. Protein hydrolysates as biostimulants in horticulture. SCIENTIA HORTICULTURAE 2015. [PMID: 0 DOI: 10.1016/j.scienta.2015.08.037] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
22
|
Colla G, Rouphael Y, Canaguier R, Svecova E, Cardarelli M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. FRONTIERS IN PLANT SCIENCE 2014; 5:448. [PMID: 25250039 PMCID: PMC4158787 DOI: 10.3389/fpls.2014.00448] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/19/2014] [Indexed: 05/02/2023]
Abstract
The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances.
Collapse
Affiliation(s)
- Giuseppe Colla
- Department of Agriculture, Forestry, Nature and Energy, University of TusciaViterbo, Italy
- *Correspondence: Giuseppe Colla, Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, via San Camillo De Lellis snc, 01100 Viterbo, Italy e-mail:
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico IIPortici, Italy
| | | | - Eva Svecova
- Department of Agriculture, Forestry, Nature and Energy, University of TusciaViterbo, Italy
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e SuoloRoma, Italy
| |
Collapse
|