1
|
Marogi JG, Murphy CT, Myhrvold C, Gitai Z. Pseudomonas aeruginosa modulates both Caenorhabditis elegans attraction and pathogenesis by regulating nitrogen assimilation. Nat Commun 2024; 15:7927. [PMID: 39256376 PMCID: PMC11387622 DOI: 10.1038/s41467-024-52227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like many animals, C. elegans use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing C. elegans attraction to bacteria and the physiological importance of these compounds to bacteria. Here, we address these questions by investigating the function of a small RNA, P11, in the pathogen, Pseudomonas aeruginosa, that was previously shown to mediate learned pathogen avoidance. We discovered that this RNA also affects the attraction of untrained C. elegans to P. aeruginosa and does so by controlling production of ammonia, a volatile odorant produced during nitrogen assimilation. We describe the complex regulation of P. aeruginosa nitrogen assimilation, which is mediated by a partner-switching mechanism involving environmental nitrates, sensor proteins, and P11. In addition to mediating C. elegans attraction, we demonstrate that nitrogen assimilation mutants perturb bacterial fitness and pathogenesis during C. elegans infection by P. aeruginosa. These studies define ammonia as a major mediator of trans-kingdom signaling, implicate nitrogen assimilation as important for both bacteria and host organisms, and highlight how a bacterial metabolic pathway can either benefit or harm a host in different contexts.
Collapse
Affiliation(s)
- Jacob G Marogi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Haghani NB, Lampe RH, Samuel BS, Chalasani SH, Matty MA. Identification and characterization of a skin microbiome on Caenorhabditis elegans suggests environmental microbes confer cuticle protection. Microbiol Spectr 2024; 12:e0016924. [PMID: 38980017 PMCID: PMC11302229 DOI: 10.1128/spectrum.00169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the wild, C. elegans are emersed in environments teeming with a veritable menagerie of microorganisms. The C. elegans cuticular surface serves as a barrier and first point of contact with their microbial environments. In this study, we identify microbes from C. elegans natural habitats that associate with its cuticle, constituting a simple "skin microbiome." We rear our animals on a modified CeMbio, mCeMbio, a consortium of ecologically relevant microbes. We first combine standard microbiological methods with an adapted micro skin-swabbing tool to describe the skin-resident bacteria on the C. elegans surface. Furthermore, we conduct 16S rRNA gene sequencing studies to identify relative shifts in the proportion of mCeMbio bacteria upon surface-sterilization, implying distinct skin- and gut-microbiomes. We find that some strains of bacteria, including Enterobacter sp. JUb101, are primarily found on the nematode skin, while others like Stenotrophomonas indicatrix JUb19 and Ochrobactrum vermis MYb71 are predominantly found in the animal's gut. Finally, we show that this skin microbiome promotes host cuticle integrity in harsh environments. Together, we identify a skin microbiome for the well-studied nematode model and propose its value in conferring host fitness advantages in naturalized contexts. IMPORTANCE The genetic model organism C. elegans has recently emerged as a tool for understanding host-microbiome interactions. Nearly all of these studies either focus on pathogenic or gut-resident microbes. Little is known about the existence of native, nonpathogenic skin microbes or their function. We demonstrate that members of a modified C. elegans model microbiome, mCeMbio, can adhere to the animal's cuticle and confer protection from noxious environments. We combine a novel micro-swab tool, the first 16S microbial sequencing data from relatively unperturbed C. elegans, and physiological assays to demonstrate microbially mediated protection of the skin. This work serves as a foundation to explore wild C. elegans skin microbiomes and use C. elegans as a model for skin research.
Collapse
Affiliation(s)
- Nadia B. Haghani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, La Jolla, California, USA
| | - Robert H. Lampe
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, La Jolla, California, USA
| | - Molly A. Matty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- Biology, University of Portland, Portland, Oregon, USA
| |
Collapse
|
3
|
Sengupta T, St. Ange J, Kaletsky R, Moore RS, Seto RJ, Marogi J, Myhrvold C, Gitai Z, Murphy CT. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. PLoS Genet 2024; 20:e1011178. [PMID: 38547071 PMCID: PMC10977744 DOI: 10.1371/journal.pgen.1011178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024] Open
Abstract
C. elegans can learn to avoid pathogenic bacteria through several mechanisms, including bacterial small RNA-induced learned avoidance behavior, which can be inherited transgenerationally. Previously, we discovered that a small RNA from a clinical isolate of Pseudomonas aeruginosa, PA14, induces learned avoidance and transgenerational inheritance of that avoidance in C. elegans. Pseudomonas aeruginosa is an important human pathogen, and there are other Pseudomonads in C. elegans' natural habitat, but it is unclear whether C. elegans ever encounters PA14-like bacteria in the wild. Thus, it is not known if small RNAs from bacteria found in C. elegans' natural habitat can also regulate host behavior and produce heritable behavioral effects. Here we screened a set of wild habitat bacteria, and found that a pathogenic Pseudomonas vranovensis strain isolated from the C. elegans microbiota, GRb0427, regulates worm behavior: worms learn to avoid this pathogenic bacterium following exposure, and this learned avoidance is inherited for four generations. The learned response is entirely mediated by bacterially-produced small RNAs, which induce avoidance and transgenerational inheritance, providing further support that such mechanisms of learning and inheritance exist in the wild. We identified Pv1, a small RNA expressed in P. vranovensis, that has a 16-nucleotide match to an exon of the C. elegans gene maco-1. Pv1 is both necessary and sufficient to induce learned avoidance of Grb0427. However, Pv1 also results in avoidance of a beneficial microbiome strain, P. mendocina. Our findings suggest that bacterial small RNA-mediated regulation of host behavior and its transgenerational inheritance may be functional in C. elegans' natural environment, and that this potentially maladaptive response may favor reversal of the transgenerational memory after a few generations. Our data also suggest that different bacterial small RNA-mediated regulation systems evolved independently, but define shared molecular features of bacterial small RNAs that produce transgenerationally-inherited effects.
Collapse
Affiliation(s)
- Titas Sengupta
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan St. Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rebecca S. Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Renee J. Seto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jacob Marogi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
4
|
Chai VZ, Farajzadeh T, Meng Y, Lo SB, Asaed TA, Taylor CJ, Glater EE. Chemical basis of microbiome preference in the nematode C. elegans. Sci Rep 2024; 14:1350. [PMID: 38228683 PMCID: PMC10791660 DOI: 10.1038/s41598-024-51533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
Animals are exposed to many microbes in their environment, some of which have been shown to colonize various tissues including the intestine. The composition of the intestinal microbiota affects many aspects of the host's physiology and health. Despite this, very little is known about whether host behavior contributes to the colonization. We approach this question in the nematode C. elegans, which feeds on bacteria and also harbors an intestinal microbiome. We examined the behavior of C. elegans towards CeMbio, a simplified microbiome consisting of twelve strains that represent the bacteria found in the animal's natural environment. We observed that C. elegans raised on E. coli shows a strong preference for three members of CeMbio (Lelliottia amnigena JUb66, Enterobacter hormaechei CEent1, and Pantoea nemavictus BIGb0393) compared to E. coli. Previously, these three bacterial strains have been shown to support faster C. elegans development time than E. coli OP50 and are low colonizers compared to eight other members of CeMbio. We then used gas chromatography coupled to mass spectrometry to identify that these three bacteria release isoamyl alcohol, a previously described C. elegans chemoattractant. We suggest that C. elegans seeks bacteria that release isoamyl alcohol and support faster growth.
Collapse
Affiliation(s)
- Victor Z Chai
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | | | - Yufei Meng
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | - Sokhna B Lo
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | - Tymmaa A Asaed
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | | | | |
Collapse
|