1
|
Derouiche F, Djemil R, Sebihi FZ, Douaouya L, Maamar H, Benjemana K. High methionine diet mediated oxidative stress and proteasome impairment causes toxicity in liver. Sci Rep 2024; 14:5555. [PMID: 38448604 PMCID: PMC10917754 DOI: 10.1038/s41598-024-55857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Methionine (Met) rich diet inducing oxidative stress is reported to alter many organs. Proteasome as a regulator of oxidative stress can be targeted. This study was performed to investigate if excessive methionine supplementation causes hepatotoxicity related to proteasome dysfunction under endogenous oxidative stress in rats. Male Wistar albino rats (n = 16) were divided into controls and treated groups. The treated rats (n = 08) received orally L-methionine (1 g/kg/day) for 21 days. Total homocysteine (tHcy), total oxidant status (TOS), total antioxidant status (TAS), hepatic enzymes levels: aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), with total bilirubin (TBil), albumin (Alb), and C-reactive protein (CRP) were determined in plasma by biochemical assays. Liver supernatants were used for malondialdehyde (MDA), protein carbonyls (PC), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), 20S proteasome activities and their subunits expression, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) evaluation by appropriate methods and light microscopy for liver histological examination. Methionine treatment increased homocysteine, TOS, oxidative stress index (OSI), MDA and PC but decreased TAS, GSH, CAT, SOD, GPx with the 20S proteasome activities and their β subunits expression. Liver proteins: AST, ALT, LDH, ALP, TBil and CRP were increased but Alb was decreased. Liver histology was also altered. An increase in liver TNF-α and IL-6 levels were observed. These findings indicated that methionine supplementation associated oxidative stress and proteasome dysfunction, caused hepatotoxicity and inflammation in rat. Further investigations should be to better understand the relation between methionine, oxidative stress, proteasome, and liver injuries.
Collapse
Affiliation(s)
- Faouzia Derouiche
- Biotechnology, Water, Environment and Health Laboratory, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria.
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria.
| | - Randa Djemil
- Biotechnology, Water, Environment and Health Laboratory, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria
| | - Fatima Zohra Sebihi
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria
| | - Lilia Douaouya
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria
| | - Hichem Maamar
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria
| | - Katia Benjemana
- Biotechnology, Water, Environment and Health Laboratory, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, University Abbes Lagherour, Khenchela, Algeria
| |
Collapse
|
2
|
Liu Q, Maqbool A, Mirkin FG, Singh Y, Stevenson CEM, Lawson DM, Kamoun S, Huang W, Hogenhout SA. Bimodular architecture of bacterial effector SAP05 that drives ubiquitin-independent targeted protein degradation. Proc Natl Acad Sci U S A 2023; 120:e2310664120. [PMID: 38039272 DOI: 10.1073/pnas.2310664120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/19/2023] [Indexed: 12/03/2023] Open
Abstract
In eukaryotes, targeted protein degradation (TPD) typically depends on a series of interactions among ubiquitin ligases that transfer ubiquitin molecules to substrates leading to degradation by the 26S proteasome. We previously identified that the bacterial effector protein SAP05 mediates ubiquitin-independent TPD. SAP05 forms a ternary complex via interactions with the von Willebrand Factor Type A (vWA) domain of the proteasomal ubiquitin receptor Rpn10 and the zinc-finger (ZnF) domains of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) and GATA BINDING FACTOR (GATA) transcription factors (TFs). This leads to direct TPD of the TFs by the 26S proteasome. Here, we report the crystal structures of the SAP05-Rpn10vWA complex at 2.17 Å resolution and of the SAP05-SPL5ZnF complex at 2.20 Å resolution. Structural analyses revealed that SAP05 displays a remarkable bimodular architecture with two distinct nonoverlapping surfaces, a "loop surface" with three protruding loops that form electrostatic interactions with ZnF, and a "sheet surface" featuring two β-sheets, loops, and α-helices that establish polar interactions with vWA. SAP05 binding to ZnF TFs involves single amino acids responsible for multiple contacts, while SAP05 binding to vWA is more stable due to the necessity of multiple mutations to break the interaction. In addition, positioning of the SAP05 complex on the 26S proteasome points to a mechanism of protein degradation. Collectively, our findings demonstrate how a small bacterial bimodular protein can bypass the canonical ubiquitin-proteasome proteolysis pathway, enabling ubiquitin-independent TPD in eukaryotic cells. This knowledge holds significant potential for the creation of TPD technologies.
Collapse
Affiliation(s)
- Qun Liu
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Abbas Maqbool
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Federico G Mirkin
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Yeshveer Singh
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Clare E M Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - David M Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Weijie Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 20032, China
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
3
|
Kim Y, Kim EK, Chey Y, Song MJ, Jang HH. Targeted Protein Degradation: Principles and Applications of the Proteasome. Cells 2023; 12:1846. [PMID: 37508510 PMCID: PMC10378610 DOI: 10.3390/cells12141846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The proteasome is a multi-catalytic protease complex that is involved in protein quality control via three proteolytic activities (i.e., caspase-, trypsin-, and chymotrypsin-like activities). Most cellular proteins are selectively degraded by the proteasome via ubiquitination. Moreover, the ubiquitin-proteasome system is a critical process for maintaining protein homeostasis. Here, we briefly summarize the structure of the proteasome, its regulatory mechanisms, proteins that regulate proteasome activity, and alterations to proteasome activity found in diverse diseases, chemoresistant cells, and cancer stem cells. Finally, we describe potential therapeutic modalities that use the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yosup Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Eun-Kyung Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yoona Chey
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Min-Jeong Song
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Buneeva OA, Kopylov AT, Medvedev AE. Proteasome Interactome and Its Role in the Mechanisms of Brain Plasticity. BIOCHEMISTRY (MOSCOW) 2023; 88:319-336. [PMID: 37076280 DOI: 10.1134/s0006297923030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Abstract
Proteasomes are highly conserved multienzyme complexes responsible for proteolytic degradation of the short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins. Since the identified proteins belong to certain metabolic pathways, multiple enrichment of the proteasome fraction with these proteins indicates their important role in proteasome functioning. Extrapolation of the experimental data, obtained on various biological objects, to the human brain suggests that the proteasome-associated proteins account for at least 28% of the human brain proteome. The proteasome interactome of the brain contains a large number of proteins involved in the assembly of these supramolecular complexes, regulation of their functioning, and intracellular localization, which could be changed under different conditions (for example, during oxidative stress) or in different phases of the cell cycle. In the context of molecular functions of the Gene Ontology (GO) Pathways, the proteins of the proteasome interactome mediate cross-talk between components of more than 30 metabolic pathways annotated in terms of GO. The main result of these interactions is binding of adenine and guanine nucleotides, crucial for realization of the nucleotide-dependent functions of the 26S and 20S proteasomes. Since the development of neurodegenerative pathology is often associated with regioselective decrease in the functional activity of proteasomes, a positive therapeutic effect would be obviously provided by the factors increasing proteasomal activity. In any case, pharmacological regulation of the brain proteasomes seems to be realized through the changes in composition and/or activity of the proteins associated with proteasomes (deubiquitinase, PKA, CaMKIIα, etc.).
Collapse
Affiliation(s)
- Olga A Buneeva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | | | |
Collapse
|
5
|
Buneeva OA, Kopylov AT, Medvedev AE. [The key role of the regulatory 19S subunit in changes in the brain proteasome subproteome induced by the neuroprotector isatin]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:250-262. [PMID: 36005843 DOI: 10.18097/pbmc20226804250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Isatin (indole-2,3-dione) is an endogenous regulator exhibiting various effects mediated by numerous isatin-binding proteins localized in different compartments of cells of the brain and peripheral tissues. It attenuates manifestations of experimental parkinsonism induced by administration of the MPTP neurotoxin and reduces the movement disorders characteristic of this disease. The molecular mechanisms of the neuroprotective action of isatin include its direct interaction with proteasomes, intracellular supramolecular complexes responsible for the targeted elimination of proteins. Incubation of fractions of 26S and 20S rabbit brain proteasomes, containing the whole spectrum of proteasomal subunits, as well as a number of proteasome-associated proteins, with isatin (100 μM) had a significant impact on the profile of released proteins. In the case of 26S proteasomes containing, in addition to the core part (20S proteasome), 19S regulatory subparticles, incubation with isatin resulted in a more than threefold increase in the number of dissociated proteins. In the case of 20S proteasomes (containing only the 20S core particle), incubation with isatin resulted in a significant decrease in the number of dissociated proteins compared to the control. Our results indicate an important role of the regulatory 19S subunit components in the formation of the proteasome subproteome and the sensitivity of these supramolecular complexes to isatin.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A T Kopylov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
6
|
Liu ZK, Li C, Zhang RY, Wei D, Shang YK, Yong YL, Kong LM, Zheng NS, Liu K, Lu M, Liu M, Hu CX, Yang XZ, Chen ZN, Bian H. EYA2 suppresses the progression of hepatocellular carcinoma via SOCS3-mediated blockade of JAK/STAT signaling. Mol Cancer 2021; 20:79. [PMID: 34044846 PMCID: PMC8157759 DOI: 10.1186/s12943-021-01377-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Somatic mutations are involved in hepatocellular carcinoma (HCC) progression, but the genetic mechanism associated to hepatocarcinogenesis remains poorly understood. We report that Eyes absent homolog 2 (EYA2) suppresses the HCC progression, while EYA2(A510E) mutation identified by exome sequencing attenuates the tumor-inhibiting effect of EYA2. METHODS Whole-exome sequencing was performed on six pairs of human HCC primary tumors and matched adjacent tissues. Focusing on EYA2, expression level of EYA2 in human HCC samples was evaluated by quantitative real-time PCR, western blot and immunohistochemistry. Loss- and gain-of-function studies, hepatocyte-specific deletion of EYA2 (Eya2-/-) in mice and RNA sequencing analysis were used to explore the functional effect and mechanism of EYA2 on HCC cell growth and metastasis. EYA2 methylation status was evaluated using Sequenom MassARRAY and publicly available data analysis. RESULTS A new somatic mutation p.Ala510Glu of EYA2 was identified in HCC tissues. The expression of EYA2 was down-regulated in HCC and associated with tumor size (P = 0.001), Barcelona Clinic Liver Cancer stage (P = 0.016) and tumor differentiation (P = 0.048). High level of EYA2 was correlated with a favorable prognosis in HCC patients (P = 0.003). Results from loss-of-function and gain-of-function experiments suggested that knockdown of EYA2 enhanced, while overexpression of EYA2 attenuated, the proliferation, clone formation, invasion, and migration of HCC cells in vitro. Delivery of EYA2 gene had a therapeutic effect on inhibition of orthotopic liver tumor in nude mice. However, EYA2(A510E) mutation led to protein degradation by unfolded protein response, thus weakening the inhibitory function of EYA2. Hepatocyte-specific deletion of EYA2 in mice dramatically promoted diethylnitrosamine-induced HCC development. EYA2 was also down-regulated in HCC by aberrant CpG methylation. Mechanically, EYA2 combined with DACH1 to transcriptionally regulate SOCS3 expression, thus suppressing the progression of HCC via SOCS3-mediated blockade of the JAK/STAT signaling pathway. CONCLUSIONS In our study, we identified and validated EYA2 as a tumor suppressor gene in HCC, providing a new insight into HCC pathogenesis.
Collapse
Affiliation(s)
- Ze-Kun Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Can Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ren-Yu Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Kui Shang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling-Min Kong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Nai-Shan Zheng
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ke Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Meng Lu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Man Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Cai-Xia Hu
- Oncology and Hepatobiliary Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiao-Zhen Yang
- Oncology and Hepatobiliary Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
FEATURES OF THE RIGHT ATRIUM STRUCTURE IN EXPERIMENTAL DIABETES MELLITUS AND USE OF ANTIOXIDANTS. WORLD OF MEDICINE AND BIOLOGY 2020. [DOI: 10.26724/2079-8334-2020-2-72-208-212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|