1
|
Ahmed AF, Madi MA, Ali AH, Mokhemer SA. The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity. Cell Tissue Res 2024:10.1007/s00441-024-03925-3. [PMID: 39441358 DOI: 10.1007/s00441-024-03925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Amira Fathy Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Maha Ahmed Madi
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Azza Hussein Ali
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt.
| |
Collapse
|
2
|
Zhang X, Gao X, Zhang X, Yao X, Kang X. Revolutionizing Intervertebral Disc Regeneration: Advances and Future Directions in Three-Dimensional Bioprinting of Hydrogel Scaffolds. Int J Nanomedicine 2024; 19:10661-10684. [PMID: 39464675 PMCID: PMC11505483 DOI: 10.2147/ijn.s469302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/10/2024] [Indexed: 10/29/2024] Open
Abstract
Hydrogels are multifunctional platforms. Through reasonable structure and function design, they use material engineering to adjust their physical and chemical properties, such as pore size, microstructure, degradability, stimulus-response characteristics, etc. and have a variety of biomedical applications. Hydrogel three-dimensional (3D) printing has emerged as a promising technique for the precise deposition of cell-laden biomaterials, enabling the fabrication of intricate 3D structures such as artificial vertebrae and intervertebral discs (IVDs). Despite being in the early stages, 3D printing techniques have shown great potential in the field of regenerative medicine for the fabrication of various transplantable tissues within the human body. Currently, the utilization of engineered hydrogels as carriers or scaffolds for treating intervertebral disc degeneration (IVDD) presents numerous challenges. However, it remains an indispensable multifunctional manufacturing technology that is imperative in addressing the escalating issue of IVDD. Moreover, it holds the potential to serve as a micron-scale platform for a diverse range of applications. This review primarily concentrates on emerging treatment strategies for IVDD, providing an in-depth analysis of their merits and drawbacks, as well as the challenges that need to be addressed. Furthermore, it extensively explores the biological properties of hydrogels and various nanoscale biomaterial inks, compares different prevalent manufacturing processes utilized in 3D printing, and thoroughly examines the potential clinical applications and prospects of integrating 3D printing technology with hydrogels.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Yao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi’an Jiao Tong University, Xi’An, Shaanxi, P.R. China
| |
Collapse
|
3
|
Jiao YR, Chen KX, Tang X, Tang YL, Yang HL, Yin YL, Li CJ. Exosomes derived from mesenchymal stem cells in diabetes and diabetic complications. Cell Death Dis 2024; 15:271. [PMID: 38632264 PMCID: PMC11024187 DOI: 10.1038/s41419-024-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.
Collapse
Affiliation(s)
- Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiang Tang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu-Long Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Hai-Lin Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Fuyang Normal University, Fuyang, Anhui, 236000, China
| | - Yu-Long Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Heo JI, Ryu J. Exosomal noncoding RNA: A potential therapy for retinal vascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102128. [PMID: 38356865 PMCID: PMC10865410 DOI: 10.1016/j.omtn.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Exosomes are extracellular vesicles that can contain DNA, RNA, proteins, and metabolites. They are secreted by cells and play a regulatory role in various biological responses by mediating cell-to-cell communication. Moreover, exosomes are of interest in developing therapies for retinal vascular disorders because they can deliver various substances to cellular targets. According to recent research, exosomes can be used as a strategy for managing retinal vascular diseases, and they are being investigated for therapeutic purposes in eye conditions, including glaucoma, dry eye syndrome, retinal ischemia, diabetic retinopathy, and age-related macular degeneration. However, the role of exosomal noncoding RNA in retinal vascular diseases is not fully understood. Here, we reviewed the latest research on the biological role of exosomal noncoding RNA in treating retinal vascular diseases. Research has shown that noncoding RNAs, including microRNAs, circular RNAs, and long noncoding RNAs play a significant role in the regulation of retinal vascular diseases. Furthermore, through exosome engineering, the expression of relevant noncoding RNAs in exosomes can be controlled to regulate retinal vascular diseases. Therefore, this review suggests that exosomal noncoding RNA could be considered as a biomarker for diagnosis and as a therapeutic target for treating retinal vascular disease.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
5
|
Choi SW, Seo S, Hong HK, Yoon SJ, Kim M, Moon S, Lee JY, Lim J, Lee JB, Woo SJ. Therapeutic Extracellular Vesicles from Tonsil-Derived Mesenchymal Stem Cells for the Treatment of Retinal Degenerative Disease. Tissue Eng Regen Med 2023; 20:951-964. [PMID: 37440108 PMCID: PMC10519919 DOI: 10.1007/s13770-023-00555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Retinal degenerative disease (RDD), one of the most common causes of blindness, is predominantly caused by the gradual death of retinal pigment epithelial cells (RPEs) and photoreceptors due to various causes. Cell-based therapies, such as stem cell implantation, have been developed for the treatment of RDD, but potential risks, including teratogenicity and immune reactions, have hampered their clinical application. Stem cell-derived extracellular vesicles (EVs) have recently emerged as a cell-free alternative therapeutic strategy; however, additional invasiveness and low yield of the stem cell extraction process is problematic. METHODS To overcome these limitations, we developed therapeutic EVs for the treatment of RDD which were extracted from tonsil-derived mesenchymal stem cells obtained from human tonsil tissue discarded as medical waste following tonsillectomy (T-MSC EVs). To verify the biocompatibility and cytoprotective effect of T-MSC EVs, we measured cell viability by co-culture with human RPE without or with toxic all-trans-retinal. To elucidate the cytoprotective mechanism of T-MSC EVs, we performed transcriptome sequencing using RNA extracted from RPEs. The in vivo protective effect of T-MSC EVs was evaluated using Pde6b gene knockout rats as an animal model of retinitis pigmentosa. RESULTS T-MSC EVs showed high biocompatibility and the human pigment epithelial cells were significantly protected in the presence of T-MSC EVs from the toxic effect of all-trans-retinal. In addition, T-MSC EVs showed a dose-dependent cell death-delaying effect in real-time quantification of cell death. Transcriptome sequencing analysis revealed that the efficient ability of T-MSC EVs to regulate intracellular oxidative stress may be one of the reasons explaining their excellent cytoprotective effect. Additionally, intravitreally injected T-MSC EVs had an inhibitory effect on the destruction of the outer nuclear layer in the Pde6b gene knockout rat. CONCLUSIONS Together, the results of this study indicate the preventive and therapeutic effects of T-MSC EVs during the initiation and development of retinal degeneration, which may be a beneficial alternative for the treatment of RDD.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sooin Seo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - So Jung Yoon
- Bundang CHA Biobank, CHA University College of Medicine, CHA University Bundang Medical Center, Seongnam, 13496, Korea
| | - Minah Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc, Seongnam, 13487, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.
| |
Collapse
|
6
|
Gu F, Jiang J, Sun P. Recent advances of exosomes in age-related macular degeneration. Front Pharmacol 2023; 14:1204351. [PMID: 37332352 PMCID: PMC10272348 DOI: 10.3389/fphar.2023.1204351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Exosomes are 30-150 nm extracellular vesicles that are secreted by almost all types of cells. Exosomes contain a variety of biologically active substances, such as proteins, nucleic acids, and lipids, and are important in the intercellular communication of biological mediators involved in nerve injury and repair, vascular regeneration, immune response, fibrosis formation, and many other pathophysiological processes. Although it has been extensively studied in the field of cancer, the exploration of ocular diseases has only just begun. Here, we discuss the latest developments in exosomes for age-related macular degeneration (AMD), including the pathogenesis of exosomes in age-related macular degeneration, their potential as diagnostic markers, and therapeutic vectors of the disease. Finally, the study of exosomes in age-related macular degeneration is still relatively few, and more detailed basic research and clinical trials are needed to verify its application in treatment and diagnosis, so as to adopt more personalized diagnosis and treatment strategies to stop the progression of age-related macular degeneration.
Collapse
|
7
|
Liu L, Liang C, Fan W, Zhong J. Effect of human umbilical cord mesenchymal stem cell exosomes on aerobic metabolism of human retinal pigment epithelial cells. Int Ophthalmol 2023; 43:1325-1335. [PMID: 36195815 DOI: 10.1007/s10792-022-02530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/11/2022] [Indexed: 10/10/2022]
Abstract
PURPOSE To investigate the effect of exosomes secreted by human umbilical cord mesenchymal stem cells (HUCMSC-Exo) on aerobic metabolism of cobalt chloride (CoCl2)-induced oxidative damage in the human retinal pigment epithelial cell line (ARPE-19), and to explore the protective mechanism of HUCMSC-Exo on oxidative damage in ARPE-19 cells. METHODS HUCMSC-Exo were extracted and identified; CCK-8 assay was used to established the oxidative damage mode of ARPE-19 cells induced by CoCl2; JC-1 flow cytometry was used to detect the effects of exosomes with different concentrations (0, 25, 50, or 100 μg/mL) on the mitochondrial membrane potential (MMP) of oxidatively damaged ARPE-19 cells. The effects of exosomes with different concentrations on the activity of oxidative metabolic enzymes (oxidative respiratory chain complexes I, III, IV, and V) and ATP synthesis in oxidatively damaged ARPE-19 cells were detected by spectrophotometry. RESULTS Under transmission electron microscope, HUCMSC-Exo were round or oval membrane vesicles with diameters of about 40-100 nm. Western blot results showed that HUCMSC-Exo expressed specific marker proteins CD63 and CD81. CCK-8 dates showed that the cell viability of ARPE-19 cells was significantly decreased with increasing CoCl2 concentration, and the concentration of 400 μmol/L CoCl2 was chosen to be the optimal concentration for oxidative damage. MMP was increased in exosomes intervention group (25, 50 or 100 μg/mL), and the dates were statistically different from 0 μg/mL exosome intervention group (P < 0.05). The activities of mitochondrial complexes I, IV, and V in exosomes intervention groups (100 μg/mL) were higher than those in 0 μg/mL exosome intervention group. In 50 μg/mL and 100 μg/mL exosome intervention group, ATP synthesis was significantly different from the 0 μg/mL exosome intervention group (P < 0.05). CONCLUSION HUCMSC-Exo had a certain protective effect on ARPE-19 cells induced by CoCl2 in vitro. The protective mechanism of HUCMSC-Exo on oxidative damage ARPE-19 cells might be through saving its aerobic metabolic function, restoring cell ATP synthesis, and improving the ability of cells to repair damage and deal with the hypoxic environment.
Collapse
Affiliation(s)
- Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 Huangpu Road, Guangzhou, 510630, Guangdong Province, China
| | - Chunlan Liang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 Huangpu Road, Guangzhou, 510630, Guangdong Province, China
| | - Wei Fan
- Department of Ophthalmology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410006, Hunan Province, China
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 Huangpu Road, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
8
|
Habibi A, Zarei-Behjani Z, Falamarzi K, Malekpour M, Ebrahimi F, Soleimani M, Nejabat M, Khosravi A, Moayedfard Z, Pakbaz S, Dehdari Ebrahimi N, Azarpira N. Extracellular vesicles as a new horizon in the diagnosis and treatment of inflammatory eye diseases: A narrative review of the literature. Front Immunol 2023; 14:1097456. [PMID: 36969177 PMCID: PMC10033955 DOI: 10.3389/fimmu.2023.1097456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Extracellular vesicles include exosomes, microvesicles, and apoptotic bodies. Their cargos contain a diverse variety of lipids, proteins, and nucleic acids that are involved in both normal physiology and pathology of the ocular system. Thus, studying extracellular vesicles may lead to a more comprehensive understanding of the pathogenesis, diagnosis, and even potential treatments for various diseases. The roles of extracellular vesicles in inflammatory eye disorders have been widely investigated in recent years. The term "inflammatory eye diseases" refers to a variety of eye conditions such as inflammation-related diseases, degenerative conditions with remarkable inflammatory components, neuropathy, and tumors. This study presents an overview of extracellular vesicles' and exosomes' pathogenic, diagnostic, and therapeutic values in inflammatory eye diseases, as well as existing and potential challenges.
Collapse
Affiliation(s)
- Azam Habibi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Falamarzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Nejabat
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Khosravi
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Feng X, Peng Z, Yuan L, Jin M, Hu H, Peng X, Wang Y, Zhang C, Luo Z, Liao H. Research progress of exosomes in pathogenesis, diagnosis, and treatment of ocular diseases. Front Bioeng Biotechnol 2023; 11:1100310. [PMID: 36761297 PMCID: PMC9902372 DOI: 10.3389/fbioe.2023.1100310] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Exosomes are natural extracellular vesicles with a diameter of 30-150 nm, which exist in biological fluids and contain biomolecules related to the parent cell, such as proteins, nucleic acids, lipids, etc. It has a wide range of biological functions, and participates in the regulation of important physiological and pathological activities of the body. It can be used as a biomarker for early diagnosis of ocular diseases, a potential therapeutic target, a targeted drug carrier, and has a high potential for clinical application. In this paper, we summarized the genesis mechanism, biological functions, research and application progress of exosomes, focused on the engineering strategy of exosomes, and summarized the advantages and disadvantages of common engineering exosome preparation methods. Systematically combed the role of exosomes in corneal diseases, glaucoma, and retinal diseases, to provide a reference for further understanding of the role of exosomes in the pathogenesis, diagnosis, and treatment of ocular diseases. Finally, we further summarized the opportunities and challenges of exosomes for precision medicine. The extension of exosome research to the field of ophthalmology will help advance current diagnostic and therapeutic methods. Tiny exosomes have huge potential.
Collapse
Affiliation(s)
- Xinting Feng
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China,Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Peng
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China,Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyi Yuan
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Ming Jin
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Haijian Hu
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Xin Peng
- College of Fine Arts, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yaohua Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Chun Zhang
- Department of ophthalmology, West China hospital, Sichuan University, Chengdu, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China,*Correspondence: Hongfei Liao, ; Zhiwen Luo,
| | - Hongfei Liao
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China,*Correspondence: Hongfei Liao, ; Zhiwen Luo,
| |
Collapse
|
10
|
Zhang L, Yan JJ, Wang HY, Li MQ, Wang XX, Fan L, Wang YS. A Trojan horse biomimetic delivery system using mesenchymal stem cells for HIF-1α siRNA-loaded nanoparticles on retinal pigment epithelial cells under hypoxia environment. Int J Ophthalmol 2022; 15:1743-1751. [PMID: 36404976 PMCID: PMC9631181 DOI: 10.18240/ijo.2022.11.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022] Open
Abstract
AIM To demonstrate the feasibility of mesenchymal stem cell (MSC)-mediated nano drug delivery, which was characterized by the "Trojan horse"-like transport of hypoxia-inducible factor-1α small interfering RNA (HIF-1α siRNA) between MSCs and retinal pigment epithelial cells (RPE) under hypoxia environment. METHODS Plasmid and lentivirus targeting the human HIF-1α gene were designed and constructed. HIF-1α siRNA was encapsulated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) through the water-in-oil-in-water (w/o/w) multiple emulsion technique. The effect of PLGA-NPs uptake on the expression of HIF-1α mRNA was tested in RPE cells by real-time quantitative polymerase chain reaction (qPCR) and additional transfected conditions were used as control, including lentivirus group, nude plasmid group and blank PLGA group. MSCs were transfected with the NPs and the transfection efficacy was evaluated by flow cytometry. Transwell co-culture system of transfected MSCs and RPE cells was constructed under hypoxia environment. The effects of MSC-loaded HIF-1α siRNA PLGA-NPs on proliferation, apoptosis, and migration of RPE cells were then evaluated. The effect of transfected MSCs on HIF-1α expression of RPE cells was analyzed by using qPCR at the time points 24h, 3d, and 7d. RESULTS The average diameter of PLGA-NPs loaded with HIF siRNA was 314.1 nm and the zeta potential was -0.36 mV. The transfection efficiency of PLGA-NPs was 67.3%±5.2% into MSCs by using flow cytometry. Compared with the lentivirus group, the PLGA-NPs loaded with HIF-1α siRNA can effectively reduce the expression of HIF-1α mRNA up to 7d in RPE (0.63±0.05 at 7d, P<0.001). In the Transwell co-culture system of transfected MSCs and RPE, the abilities of proliferation (2.34±0.17, 2.40±0.28, 2.47±0.24 at 48h, F=0.23, P=0.80), apoptosis (14.83%±2.43%, 12.94%±2.19%, 12.39%±3.21%; F=0.70, P=0.53) and migration (124.5±7.78, 119.5±5.32, 130±9.89, F=1.33, P=0.33) of the RPE cells had no differences between MSC-loaded HIF-1α siRNA PLGA-NPs and other groups. The inhibition of PLGA on the HIF-1α mRNA expression in RPE cells could continue until the 7th day, the level of HIF-1α mRNA was lower than that of other groups (F=171.98, P<0.001). CONCLUSION The delivery of PLGA-NPs loaded with HIF-1α siRNA carried by MSCs is found to be beneficial temporally for HIF-1α mRNA inhibition in RPE cells under hypoxia environment. The MSC-based bio-mimetic delivery of HIF-1α siRNA nanoparticles is a potential method for therapy against choroidal neovascularization.
Collapse
Affiliation(s)
- Lei Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, China
| | - Jie-Jing Yan
- Department of Ophthalmology, Xijing Hospital, Xi'an 710032, Shaanxi Province, China,Ophthalmology Department, Xi'an No.1 Hospital, the First Affiliated Hospital of Northwest University, Xi'an 710002, Shaanxi Province, China
| | - Hai-Yan Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, China
| | - Mu-Qiong Li
- Department of Pharmaceutical Chemistry and Analysis School of Pharmacy Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xi-Xi Wang
- Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis School of Pharmacy Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Xijing Hospital, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
11
|
Zhang J, Li P, Zhao G, He S, Xu D, Jiang W, Peng Q, Li Z, Xie Z, Zhang H, Xu Y, Qi L. Mesenchymal stem cell-derived extracellular vesicles protect retina in a mouse model of retinitis pigmentosa by anti-inflammation through miR-146a-Nr4a3 axis. Stem Cell Res Ther 2022; 13:394. [PMID: 35922863 PMCID: PMC9351183 DOI: 10.1186/s13287-022-03100-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Retinitis pigmentosa is a rod-cone degenerative disease that induces irreversible vision loss. This study probed the protective capacity of mesenchymal stem cell-derived small EVs (MSC-EVs) on the retinas of rd10 mice and the underlying mechanism.
Methods MSC-EVs were injected into the vitreous of rd10 mice at postnatal day 14 and P21; morphology and function were examined at P28. The mechanism of action was explored by using co-culture of photoreceptor cell line 661 W and microglia cell line BV2.
Results Treatment with MSC-EVs increased the survival of photoreceptors and preserved their structure. Visual function, as reflected by optomotor and electroretinogram responses, was significantly enhanced in MSC-EVs-treated rd10 mice. Mechanistically, staining for Iba1, GFAP, F4/80, CD68 and CD206 showed that MSC-EVs suppressed the activation of microglial, Müller glial and macrophages. Furthermore, western blotting showed that the treatment inhibited the NF-κB pathway. RNA-seq and qPCR showed that MSC-EVs upregulated anti-inflammatory cytokines while downregulating pro-inflammatory cytokines. MSC-EVs application in vitro decreased the number of TUNEL-positive 661 W cells co-cultured with LPS-stimulated BV2, with similar impact on the cytokine expression as in vivo study. Genetic screening predicted miR-146a to be the downstream target of MSC-EVs, which was detected in MSC-EVs and upregulated in co-cultured 661 W cells and BV2 cells after MSC-EVs treatment. Upregulation of miR-146a by using its mimic decreased the expression of the transcription factor Nr4a3, and its downregulation inhibition promoted Nr4a3 expression in both 661 W and BV2 cells. Nr4a3 was further identified as the target gene of miR-146a by dual-luciferase assay. Furthermore, overexpressing miR-146a significantly decreased the expression of LPS-induced pro-inflammatory cytokines in BV2 cells. Conclusions MSC-EVs delays retinal degeneration in rd10 mice mainly by its anti-inflammatory effect via the miR-146a-Nr4a3axis. Hence, MSC-EVs may be used in the treatment of neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03100-x.
Collapse
Affiliation(s)
- Jia Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China
| | - Pengdong Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China.,The Key Laboratory of Pathobiology, Department of Pathology, College of Basic Medical Sciences, Jilin University, Ministry of Education, Changchun, 130021, China
| | - Guifang Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China
| | - Siqi He
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China.,College of Basic Medicine, Beihua University, Jilin City, 132013, Jilin, China
| | - Di Xu
- Guangdong-Hong Kong-Macau Institute of Central Nervous System Regeneration, Key Laboratory of Central Nervous System Regeneration, Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Weijie Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China.,School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Qian Peng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China
| | - Zhaohui Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Han Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China.,Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen, 518060, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of Central Nervous System Regeneration, Key Laboratory of Central Nervous System Regeneration, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Ling Qi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
12
|
Liu X, Hu L, Liu F. Mesenchymal stem cell-derived extracellular vesicles for cell-free therapy of ocular diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:102-117. [PMID: 39698446 PMCID: PMC11648472 DOI: 10.20517/evcna.2022.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2024]
Abstract
Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have noticeably attracted clinicians' attention in treating ocular diseases. As the paracrine factor of MSCs and an alternative for cell-free therapies, MSC-EVs can be conveniently dropped over the ocular surface or diffused through the retina upon intravitreal injection, without increasing the risks of cellular rejection and tumor formation. For clinical translation, a standardized and scalable production, as well as reprogramming the MSC-EVs, are highly encouraged. This review aims to assess the potential approaches for EV production and functional modification, in addition to summarizing the worldwide clinical trials initiated for various physiological systems and the specific biochemical effects of MSC-EVs on the therapy of eye diseases. Recent advances in the therapy of ocular diseases based on MSC-EVs are reviewed, and the associated challenges and prospects are discussed as well.
Collapse
Affiliation(s)
- Xiaoling Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Fei Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
13
|
Rao D, Huang D, Sang C, Zhong T, Zhang Z, Tang Z. Advances in Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles. Front Bioeng Biotechnol 2022; 9:797359. [PMID: 35186913 PMCID: PMC8854766 DOI: 10.3389/fbioe.2021.797359] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are tiny vesicles with a double membrane structure that cells produce. They range in diameter from 40 to 150 nm and may contain a variety of biomolecules including proteins and nucleic acids. Exosomes have low toxicity, low immunogenicity, and the ability to encapsulate a wide variety of substances, making them attractive drug delivery vehicles. MSCs secrete large amounts of exosomes and hence serve as an excellent source of exosomes. MSCs-derived exosomes have regenerative and tissue repair functions comparable to MSCs and can circumvent the risks of immune rejection and infection associated with MSC transplantation, indicating that they may be a viable alternative to MSCs' biological functions. In this review, we summarized the drug delivery methods and advantages of exosomes, as well as the advancement of MSC exosomes as drug carriers. The challenges and prospects of using exosomes as drug delivery vectors are presented.
Collapse
Affiliation(s)
- Dingyu Rao
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
| | - Defa Huang
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chengpeng Sang
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zuxiong Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
| | - Zhixian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
| |
Collapse
|
14
|
Yu Y, Li L, Lin S, Hu J. Update of application of olfactory ensheathing cells and stem cells/exosomes in the treatment of retinal disorders. Stem Cell Res Ther 2022; 13:11. [PMID: 35012635 PMCID: PMC8751324 DOI: 10.1186/s13287-021-02685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration, diabetic retinopathy, retinitis pigmentosa and other retinal disorders are the main causes of visual impairment worldwide. In the past, these retinal diseases, especially dry age-related macular degeneration, proliferative diabetic retinopathy and retinitis pigmentosa, were treated with traditional surgery and drugs. However, the effect was moderate. In recent years, researchers have used embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, olfactory ensheathing cells and other stem cells to conduct experiments and found that stem cells can inhibit inflammation, regulate immune response, secrete neurotrophic factors, and differentiate into retinal cells to replace and promote restoration of the damaged parts. These stem cells have the potential to treat retinal diseases. Whether it is in animal experiments or clinical trials, the increase in the number of retinal cells, maintenance of function and improvement of visual function all reflect the advanced of stem cells to treat retinal diseases, but its risk preserves the donor's hidden pathogenic genes, immune rejection and tumorigenicity. With the development of exosomes study, researchers have discovered that exosomes come from a wide range of sources and can be secreted by almost all types of cells. Using exosomes with stem cell to treat retinal diseases is more effective than using stem cells alone. This review article summarizes the recent advances in the application of olfactory ensheathing cells and stem cells/exosomes in the treatment of retinal disorders.
Collapse
Affiliation(s)
- Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China
| | - Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China. .,The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, Fujian Province, China.
| |
Collapse
|
15
|
He GH, Ma YX, Dong M, Chen S, Wang YC, Gao X, Wu B, Wang J, Wang JH. Mesenchymal stem cell-derived exosomes inhibit the VEGF-A expression in human retinal vascular endothelial cells induced by high glucose. Int J Ophthalmol 2021; 14:1820-1827. [PMID: 34926194 PMCID: PMC8640780 DOI: 10.18240/ijo.2021.12.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSCs) on the expression of vascular endothelial growth factor A (VEGF-A) in human retinal vascular endothelial cells (HRECs). METHODS Exosomes were isolated from hUCMSCs using cryogenic ultracentrifugation and characterized by transmission electron microscopy, Western blotting and nanoparticle tracking analysis. HRECs were randomly divided into a normal control group (group A), a high glucose model group (group B), a high glucose group with 25 µg/mL (group C), 50 µg/mL (group D), and 100 µg/mL exosomes (group E). Twenty-four hours after coculture, the cell proliferation rate was detected using flow cytometry, and the VEGF-A level was detected using immunofluorescence. After coculture 8, 16, and 24h, the expression levels of VEGF-A in each group were detected using PCR and Western blots. RESULTS The characteristic morphology (membrane structured vesicles) and size (diameter between 50 and 200 nm) were observed under transmission electron microscopy. The average diameter of 122.7 nm was discovered by nanoparticle tracking analysis (NTA). The exosomal markers CD9, CD63, and HSP70 were strongly detected. The proliferation rate of the cells in group B increased after 24h of coculture. Immunofluorescence analyses revealed that the upregulation of VEGF-A expression in HRECs stimulated by high glucose could be downregulated by cocultured hUCMSC-derived exosomes (F=39.03, P<0.01). The upregulation of VEGF-A protein (group C: F=7.96; group D: F=17.29; group E: F=11.89; 8h: F=9.45; 16h: F=12.86; 24h: F=42.28, P<0.05) and mRNA (group C: F=4.137; group D: F=13.64; group E: F=22.19; 8h: F=7.253; 16h: F=16.98; 24h: F=22.62, P<0.05) in HRECs stimulated by high glucose was downregulated by cocultured hUCMSC-derived exosomes (P<0.05). CONCLUSION hUCMSC-derived exosomes downregulate VEGF-A expression in HRECs stimulated by high glucose in time and concentration dependent manner.
Collapse
Affiliation(s)
- Guang-Hui He
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
- Ophthalmic Center of Xinjiang Production and Construction Corps Hospital, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
| | - Ying-Xue Ma
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Meng Dong
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Song Chen
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Yu-Chuan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Xiang Gao
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
- Medical College of NanKai University, Tianjin 300000, China
| | - Bin Wu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Jian Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| | - Jun-Hua Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China
| |
Collapse
|
16
|
Understanding Drivers of Ocular Fibrosis: Current and Future Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222111748. [PMID: 34769176 PMCID: PMC8584003 DOI: 10.3390/ijms222111748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
Ocular fibrosis leads to severe visual impairment and blindness worldwide, being a major area of unmet need in ophthalmology and medicine. To date, the only available treatments are antimetabolite drugs that have significant potentially blinding side effects, such as tissue damage and infection. There is thus an urgent need to identify novel targets to prevent/treat scarring and postsurgical fibrosis in the eye. In this review, the latest progress in biological mechanisms underlying ocular fibrosis are discussed. We also summarize the current knowledge on preclinical studies based on viral and non-viral gene therapy, as well as chemical inhibitors, for targeting TGFβ or downstream effectors in fibrotic disorders of the eye. Moreover, the role of angiogenetic and biomechanical factors in ocular fibrosis is discussed, focusing on related preclinical treatment approaches. Moreover, we describe available evidence on clinical studies investigating the use of therapies targeting TGFβ-dependent pathways, angiogenetic factors, and biomechanical factors, alone or in combination with other strategies, in ocular tissue fibrosis. Finally, the recent progress in cell-based therapies for treating fibrotic eye disorders is discussed. The increasing knowledge of these disorders in the eye and the promising results from testing of novel targeted therapies could offer viable perspectives for translation into clinical use.
Collapse
|
17
|
Wang Y, Zhang Q, Yang G, Wei Y, Li M, Du E, Li H, Song Z, Tao Y. RPE-derived exosomes rescue the photoreceptors during retina degeneration: an intraocular approach to deliver exosomes into the subretinal space. Drug Deliv 2021; 28:218-228. [PMID: 33501868 PMCID: PMC7850421 DOI: 10.1080/10717544.2020.1870584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Retinal degeneration (RD) refers to a group of blinding retinopathies leading to the progressive photoreceptor demise and vision loss. Treatments against this debilitating disease are urgently needed. Intraocular delivery of exosomes represents an innovative therapeutic strategy against RD. In this study, we aimed to determine whether the subretinal delivery of RPE-derived exosomes (RPE-Exos) can prevent the photoreceptor death in RD. RD was induced in C57BL6 mice by MNU administration. These MNU administered mice received a single subretinal injection of RPE-Exos. Two weeks later, the RPE-Exos induced effects were evaluated via functional, morphological, and behavior examinations. Subretinal delivery of RPE-Exos efficiently ameliorates the visual function impairments, and alleviated the structural damages in the retina of MNU administered mice. Moreover, RPE-Exos exert beneficial effects on the electrical response of the inner retinal circuits. Treatment with RPE-Exos suppressed the expression levels of inflammatory factors, and mitigated the oxidative damage, indicating that subretinal delivery of RPE-Exos constructed a cytoprotective microenvironment in the retina of MNU administered mice. Our data suggest that RPE-Exos have therapeutic effects against the visual impairments and photoreceptor death. These findings will enrich our knowledge of RPE-Exos, and highlight the discovery of a promising medication for RD.
Collapse
Affiliation(s)
- Yange Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Qian Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Guoqing Yang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuanmeng Wei
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Miao Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Enming Du
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Haijun Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev Rep 2021; 17:1154-1173. [PMID: 33410097 PMCID: PMC7787584 DOI: 10.1007/s12015-020-10090-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal Stem Cells (MSCs) have been studied extensively for the treatment of several retinal diseases. The therapeutic potential of MSCs lies in its ability to differentiate into multiple lineages and secretome enriched with immunomodulatory, anti-angiogenic and neurotrophic factors. Several studies have reported the role of MSCs in repair and regeneration of the damaged retina where the secreted factors from MSCs prevent retinal degeneration, improve retinal morphology and function. MSCs also donate mitochondria to rescue the function of retinal cells and exosomes secreted by MSCs were found to have anti-apoptotic and anti-inflammatory effects. Based on several promising results obtained from the preclinical studies, several clinical trials were initiated to explore the potential advantages of MSCs for the treatment of retinal diseases. This review summarizes the various properties of MSCs that help to repair and restore the damaged retinal cells and its potential for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Sanjucta Adak
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Damaris Magdalene
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Saurabh Deshmukh
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Dipankar Das
- Department of Pathology, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
19
|
The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021; 10:cells10020240. [PMID: 33513719 PMCID: PMC7912181 DOI: 10.3390/cells10020240] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid progress in the field of stem cell research has laid strong foundations for their use in regenerative medicine applications of injured or diseased tissues. Growing evidences indicate that some observed therapeutic outcomes of stem cell-based therapy are due to paracrine effects rather than long-term engraftment and survival of transplanted cells. Given their ability to cross biological barriers and mediate intercellular information transfer of bioactive molecules, extracellular vesicles are being explored as potential cell-free therapeutic agents. In this review, we first discuss the state of the art of regenerative medicine and its current limitations and challenges, with particular attention on pluripotent stem cell-derived products to repair organs like the eye, heart, skeletal muscle and skin. We then focus on emerging beneficial roles of extracellular vesicles to alleviate these pathological conditions and address hurdles and operational issues of this acellular strategy. Finally, we discuss future directions and examine how careful integration of different approaches presented in this review could help to potentiate therapeutic results in preclinical models and their good manufacturing practice (GMP) implementation for future clinical trials.
Collapse
|
20
|
Noueihed B, Rivera JC, Dabouz R, Abram P, Omri S, Lahaie I, Chemtob S. Mesenchymal Stromal Cells Promote Retinal Vascular Repair by Modulating Sema3E and IL-17A in a Model of Ischemic Retinopathy. Front Cell Dev Biol 2021; 9:630645. [PMID: 33553187 PMCID: PMC7859341 DOI: 10.3389/fcell.2021.630645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity and diabetic retinopathy, are characterized by an initial phase of microvascular degeneration that results in retinal ischemia, followed by exaggerated pathologic neovascularization (NV). Mesenchymal stromal cells (MSCs) have potent pro-angiogenic and anti-inflammatory properties associated with tissue repair and regeneration, and in this regard exert protection to neurons in ischemic and degenerative conditions; however, the exact mechanisms underlying these functions remain largely unknown. Class III Semaphorins (A–G) are particularly implicated in regulating neural blood supply (as well as neurogenesis) by suppressing angiogenesis and affecting myeloid cell function; this is the case for distinct neuropillin-activating Sema3A as well as PlexinD1-activating Sema3E; but during IR the former Sema3A increases while Sema3E decreases. We investigated whether retinal vascular repair actions of MSCs are exerted by normalizing Semaphorin and downstream cytokines in IR. Intravitreal administration of MSCs or their secretome (MSCs-conditioned media [MSCs-CM]) significantly curtailed vasoobliteration as well as aberrant preretinal NV in a model of oxygen-induced retinopathy (OIR). The vascular repair effects of MSCs-CM in the ischemic retina were associated with restored levels of Sema3E. Vascular benefits of MSCs-CM were reversed by anti-Sema3E; while intravitreal injection of anti-angiogenic recombinant Sema3E (rSema3E) in OIR-subjected mice reproduced effects of MSCs-CM by inhibiting as expected preretinal NV but also by decreasing vasoobliteration. To explain these opposing vascular effects of Sema3E we found in OIR high retinal levels, respectively, of the pro- and anti-angiogenic IL-17A and Sema3A-regulating IL-1β; IL-17A positively affected expression of IL-1β. rSema3E decreased concentrations of these myeloid cell-derived pro-inflammatory cytokines in vitro and in vivo. Importantly, IL-17A suppression by MSCs-CM was abrogated by anti-Sema3E neutralizing antibody. Collectively, our findings provide novel evidence by which MSCs inhibit aberrant NV and diminish vasoobliteration (promoting revascularization) in retinopathy by restoring (at least in part) neuronal Sema3E levels that reduce pathological levels of IL-17A (and in turn other proinflammatory factors) in myeloid cells. The ability of MSCs to generate a microenvironment permissive for vascular regeneration by controlling the production of neuronal factors involved in immunomodulatory activities is a promising opportunity for stem cell therapy in ocular degenerative diseases.
Collapse
Affiliation(s)
- Baraa Noueihed
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pénélope Abram
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
21
|
Li D, Zhang J, Liu Z, Gong Y, Zheng Z. Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelial-mesenchymal transition by targeting HOXC6. Stem Cell Res Ther 2021; 12:24. [PMID: 33413548 PMCID: PMC7792361 DOI: 10.1186/s13287-020-02064-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIM Subretinal fibrosis resulting from neovascular age-related macular degeneration (nAMD) is one of the major causes of serious and irreversible vision loss worldwide, and no definite and effective treatment exists currently. Retinal pigmented epithelium (RPE) cells are crucial in maintaining the visual function of normal eyes and its epithelial-mesenchymal transition (EMT) is associated with the pathogenesis of subretinal fibrosis. Stem cell-derived exosomes have been reported to play a crucial role in tissue fibrosis by transferring their molecular contents. This study aimed to explore the effects of human umbilical cord-derived mesenchymal stem cell exosomes (hucMSC-Exo) on subretinal fibrosis in vivo and in vitro and to investigate the anti-fibrotic mechanism of action of hucMSC-Exo. METHODS In this study, human umbilical cord-derived mesenchymal stem cells (hucMSCs) were successfully cultured and identified, and exosomes were isolated from the supernatant by ultracentrifugation. A laser-induced choroidal neovascularization (CNV) and subretinal fibrosis model indicated that the intravitreal administration of hucMSC-Exo effectively alleviated subretinal fibrosis in vivo. Furthermore, hucMSC-Exo could efficaciously suppress the migration of retinal pigmented epithelial (RPE) cells and promote the mesenchymal-epithelial transition by delivering miR-27b-3p. The latent binding of miR-27b-3p to homeobox protein Hox-C6 (HOXC6) was analyzed by bioinformatics prediction and luciferase reporter assays. RESULTS This study showed that the intravitreal injection of hucMSC-Exo effectively ameliorated laser-induced CNV and subretinal fibrosis via the suppression of epithelial-mesenchymal transition (EMT) process. In addition, hucMSC-Exo containing miR-27b repressed the EMT process in RPE cells induced by transforming growth factor-beta2 (TGF-β2) via inhibiting HOXC6 expression. CONCLUSIONS The present study showed that HucMSC-derived exosomal miR-27b could reverse the process of EMT induced by TGF-β2 via inhibiting HOXC6, indicating that the exosomal miR-27b/HOXC6 axis might play a vital role in ameliorating subretinal fibrosis. The present study proposed a promising therapeutic agent for treating ocular fibrotic diseases and provided insights into the mechanism of action of hucMSC-Exo on subretinal fibrosis.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Junxiu Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zijia Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yuanyuan Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China. .,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China. .,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China. .,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China. .,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
22
|
Jiang P, Zhang S, Cheng C, Gao S, Tang M, Lu L, Yang G, Chai R. The Roles of Exosomes in Visual and Auditory Systems. Front Bioeng Biotechnol 2020; 8:525. [PMID: 32582658 PMCID: PMC7283584 DOI: 10.3389/fbioe.2020.00525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are nanoscale membrane-enclosed vesicles 30-150 nm in diameter that are originated from a number of type cells by the endocytic pathway and consist of proteins, lipids, RNA, and DNA. Although, exosomes were initially considered to be cellular waste, they have gradually been recognized to join in cell-cell communication and cell signal transmission. In addition, exosomal contents can be applied as biomarkers for clinical judgment and exosomes can as potential carriers in a novel drug delivery system. Unfortunately, purification methods of exosomes remain an obstacle. We described some common purification methods and highlight Morpho Menelaus (M. Menelaus) butterfly wings can be developed as efficient methods for exosome isolation. Furthermore, the current research on exosomes mainly focused on their roles in cancer, while related studies on exosomes in the visual and auditory systems are limited. Here we reviewed the biogenesis and contents of exosomes. And more importantly, we summarized the roles of exosomes and provided prospective for exosome research in the visual and auditory systems.
Collapse
Affiliation(s)
- Pei Jiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Song Gao
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Cardiovascular Science, Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Guang Yang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Seyedrazizadeh SZ, Poosti S, Nazari A, Alikhani M, Shekari F, Pakdel F, Shahpasand K, Satarian L, Baharvand H. Extracellular vesicles derived from human ES-MSCs protect retinal ganglion cells and preserve retinal function in a rodent model of optic nerve injury. Stem Cell Res Ther 2020; 11:203. [PMID: 32460894 PMCID: PMC7251703 DOI: 10.1186/s13287-020-01702-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/10/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Retinal and/or optic nerve injury is one of the leading causes of blindness due to retinal ganglion cell (RGC) degeneration. There have been extensive efforts to suppress this neurodegeneration. Various somatic tissue-derived mesenchymal stem cells (MSCs) demonstrated significant neuroprotective and axogenic effects on RGCs. An alternative source of MSCs could be human embryonic stem cells (ES-MSCs), which proliferate faster, express lower levels of inflammatory cytokines, and are capable of immune modulation. It has been demonstrated that MSCs secrete factors or extracellular vesicles that may heal the injury. However, possible therapeutic effects and underlying mechanism of human ES-MSC extracellular vesicles (EVs) on optic nerve injury have not been assessed. Methods EVs were isolated from human ES-MSCs. Then, ES-MSC EV was applied to an optic nerve crush (ONC) mouse model. Immunohistofluorescence, retro- and anterograde tracing of RGCs, Western blot, tauopathy in RGCs, and function assessments were performed during 2-month post-treatment to evaluate ONC improvement and underlying mechanism of human ES-MSC EV in in vivo. Results We found that the ES-MSC EV significantly improved Brn3a+ RGCs survival and retro- and anterograde tracing of RGCs, while preventing retinal nerve fiber layer (RNFL) degenerative thinning compared to the vehicle group. The EVs also significantly promoted GAP43+ axon counts in the optic nerve and improved cognitive visual behavior. Furthermore, cis p-tau, a central mediator of neurodegeneration in the injured RGCs, is detectable after the ONC at the early stages demonstrated tauopathy in RGCs. Notably, after EV treatment cis p-tau was downregulated. Conclusions Our findings propose that human ES-MSC EVs, as an off-the-shelf and cell-free product, may have profound clinical implications in treating injured RGCs and degenerative ocular disease. Moreover, the possible mechanisms of human ES-MSC EV are related to the rescue of tauopathy process of RGC degeneration.
Collapse
Affiliation(s)
- Seyedeh-Zahra Seyedrazizadeh
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Poosti
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzad Pakdel
- Ophthalmology Department, Eye Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Satarian
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
24
|
Therapeutic Advances of Stem Cell-Derived Extracellular Vesicles in Regenerative Medicine. Cells 2020; 9:cells9030707. [PMID: 32183102 PMCID: PMC7140663 DOI: 10.3390/cells9030707] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), which are the main paracrine components of stem cells, mimic the regenerative capacity of these cells. Stem cell-derived EVs (SC-EVs) have been used for the treatment of various forms of tissue injury in preclinical trials through maintenance of their stemness, induction of regenerative phenotypes, apoptosis inhibition, and immune regulation. The efficiency of SC-EVs may be enhanced by selecting the appropriate EV-producing cells and cell phenotypes, optimizing cell culture conditions for the production of optimal EVs, and further engineering the EVs produced to transport therapeutic and targeting molecules.
Collapse
|
25
|
Giannaccare G, Carnevali A, Senni C, Logozzo L, Scorcia V. Umbilical Cord Blood and Serum for the Treatment of Ocular Diseases: A Comprehensive Review. Ophthalmol Ther 2020; 9:235-248. [PMID: 32107737 PMCID: PMC7196109 DOI: 10.1007/s40123-020-00239-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
Several blood derivatives have been proposed for the treatment of various ocular diseases that affect either the anterior or the posterior segment of the eye. Blood sources may range from the patient’s own peripheral blood (autologous) to donor tissues, mainly allogeneic peripheral blood and umbilical cord blood (UCB). The utilization of the latter permits the collection of a large amount of serum all at once, and is characterized by therapeutic feasibility in patients with a poor general condition or anemia and blood dyscrasia. Products derived from UCB have two potential uses. First, serum in the form of eye drops can be applied topically onto the ocular surface to efficiently treat anterior segment disorders such as dry eye syndrome or corneal epithelial defects with different etiologies. The rationale for and efficacy of this application derive from the high concentrations of biologically active components and growth factors in UCB, which can nourish the ocular surface. Second, UCB is a source of stem cells, which are used in the field of regenerative medicine because they differentiate into various mature cells, including corneal and retinal cells. Therefore, UCB-derived stem cells have been proposed as a replacement therapy for the treatment of retinal and optic nerve diseases, given that current standard treatments often fail. The present review explores the clinical results that have been obtained using UCB-derived products in the field of ophthalmology, as well as the current limitations of those products in this field. Furthermore, given the promising development of UCB-based therapies, possible future directions in this area are discussed.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Adriano Carnevali
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Carlotta Senni
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Laura Logozzo
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
26
|
Current Trends and Future Perspective of Mesenchymal Stem Cells and Exosomes in Corneal Diseases. Int J Mol Sci 2019; 20:ijms20122853. [PMID: 31212734 PMCID: PMC6627168 DOI: 10.3390/ijms20122853] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
The corneal functions (transparency, refractivity and mechanical strength) deteriorate in many corneal diseases but can be restored after corneal transplantation (penetrating and lamellar keratoplasties). However, the global shortage of transplantable donor corneas remains significant and patients are subject to life-long risk of immune response and graft rejection. Various studies have shown the differentiation of multipotent mesenchymal stem cells (MSCs) into various corneal cell types. With the unique properties of immunomodulation, anti-angiogenesis and anti-inflammation, they offer the advantages in corneal reconstruction. These effects are widely mediated by MSC differentiation and paracrine signaling via exosomes. Besides the cell-free nature of exosomes in circumventing the problems of cell-fate control and tumorigenesis, the vesicle content can be genetically modified for optimal therapeutic affinity. The pharmacology and toxicology, xeno-free processing with sustained delivery, scale-up production in compliant to Good Manufacturing Practice regulations, and cost-effectiveness are the current foci of research. Routes of administration via injection, topical and/or engineered bioscaffolds are also explored for its applicability in treating corneal diseases.
Collapse
|