1
|
Yang R, Liu Q, Zhang M. The Past and Present Lives of the Intraocular Transmembrane Protein CD36. Cells 2022; 12:cells12010171. [PMID: 36611964 PMCID: PMC9818597 DOI: 10.3390/cells12010171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.
Collapse
Affiliation(s)
- Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology, Shantou University Medical College, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| |
Collapse
|
2
|
Biomarkers as Predictive Factors of Anti-VEGF Response. Biomedicines 2022; 10:biomedicines10051003. [PMID: 35625740 PMCID: PMC9139112 DOI: 10.3390/biomedicines10051003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration is the main cause of irreversible vision in developed countries, and intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections are the current gold standard treatment today. Although anti-VEGF treatment results in important improvements in the course of this disease, there is a considerable number of patients not responding to the standardized protocols. The knowledge of how a patient will respond or how frequently retreatment might be required would be vital in planning treatment schedules, saving both resource utilization and financial costs, but today, there is not an ideal biomarker to use as a predictive response to ranibizumab therapy. Whole blood and blood mononuclear cells are the samples most studied; however, few reports are available on other important biofluid samples for studying this disease, such as aqueous humor. Moreover, the great majority of studies carried out to date were focused on the search for SNPs in genes related to AMD risk factors, but miRNAs, proteomic and metabolomics studies have rarely been conducted in anti-VEGF-treated samples. Here, we propose that genomic, proteomic and/or metabolomic markers could be used not alone but in combination with other methods, such as specific clinic characteristics, to identify patients with a poor response to anti-VEGF treatment to establish patient-specific treatment plans.
Collapse
|
3
|
Handelman GJ, Handelman SK. Single-Nucleotide Polymorphisms in CD36 are Associated With Macular Pigment Among Children. J Nutr 2021; 151:2507-2508. [PMID: 34320200 DOI: 10.1093/jn/nxab242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Garry J Handelman
- Biological Sciences and Nutrition, University of Massachusetts Lowell, Lowell, MA, USA
| | - Samuel K Handelman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Liu R, Hannon BA, Robinson KN, Raine LB, Hammond BR, Renzi-Hammond LM, Cohen NJ, Kramer AF, Hillman CH, Teran-Garcia M, Khan NA. Single Nucleotide Polymorphisms in CD36 Are Associated with Macular Pigment among Children. J Nutr 2021; 151:2533-2540. [PMID: 34049394 PMCID: PMC8417927 DOI: 10.1093/jn/nxab153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND High macular pigment optical density (MPOD) has been associated with improved eye health and better cognitive functions. Genetic variations have been associated with MPOD in adults. However, these associations between genetic variations and MPOD have not been studied in children. OBJECTIVES This was a secondary analysis of the FK2 (Fitness Improves Thinking in Kids 2) trial (n = 134, 41% male). The aim was to determine differences in MPOD among children (aged 7-9 y) based on genetic variants that either are biologically relevant to lutein (L) and zeaxanthin (Z) accumulation or have been associated with MPOD in adults. METHODS MPOD was measured using customized heterochromatic flicker photometry via a macular densitometer. DXA was used to assess whole-body and visceral adiposity. DNA was extracted from saliva samples and was genotyped for 26 hypothesis-driven single nucleotide polymorphisms and 75 ancestry-informative markers (AIMs). Habitual diet history was obtained via 3-d food logs completed by parents (n = 88). General linear models were used to compare MPOD between different genotypes. Principal component analysis was performed for the AIMs to account for ethnic heterogeneity. RESULTS Children carrying ≥1 minor allele on β-carotene-15,15'-monooxygenase (BCO1)-rs7501331 (T allele) (P = 0.045), cluster of differentiation 36(CD36)-rs1527483 (T allele) (P = 0.038), or CD36-rs3173798 (C allele) (P = 0.001) had significantly lower MPOD (range: 14.1%-26.4%) than those who were homozygotes for the major alleles. MPOD differences based on CD36-rs3173798 genotypes persisted after adjustment for dietary L and Z intake. CONCLUSIONS The findings indicate that genetic variations of CD36 and BCO1 contribute to MPOD in children. The influence of genetic variation in CD36-rs3173798 persisted after adjusting for variation in dietary intake.This trial was registered at clinicaltrials.gov as NCT01619826.
Collapse
Affiliation(s)
- Ruyu Liu
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bridget A Hannon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katie N Robinson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lauren B Raine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Billy R Hammond
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Lisa M Renzi-Hammond
- Department of Psychology, University of Georgia, Athens, GA, USA
- College of Public Health, Institute of Gerontology, University of Georgia, Athens, GA, USA
| | - Neal J Cohen
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Nutrition, Learning, and Memory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, MA, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Margarita Teran-Garcia
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells 2020; 9:cells9081877. [PMID: 32796572 PMCID: PMC7465275 DOI: 10.3390/cells9081877] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
CD36 is a multiligand receptor contributing to glucose and lipid metabolism, immune response, inflammation, thrombosis, and fibrosis. A wide range of tissue expression includes cells sensitive to metabolic abnormalities associated with metabolic syndrome and diabetes mellitus (DM), such as monocytes and macrophages, epithelial cells, adipocytes, hepatocytes, skeletal and cardiac myocytes, pancreatic β-cells, kidney glomeruli and tubules cells, pericytes and pigment epithelium cells of the retina, and Schwann cells. These features make CD36 an important component of the pathogenesis of DM and its complications, but also a promising target in the treatment of these disorders. The detrimental effects of CD36 signaling are mediated by the uptake of fatty acids and modified lipoproteins, deposition of lipids and their lipotoxicity, alterations in insulin response and the utilization of energy substrates, oxidative stress, inflammation, apoptosis, and fibrosis leading to the progressive, often irreversible organ dysfunction. This review summarizes the extensive knowledge of the contribution of CD36 to DM and its complications, including nephropathy, retinopathy, peripheral neuropathy, and cardiomyopathy.
Collapse
|
6
|
Mast N, Bederman IR, Pikuleva IA. Retinal Cholesterol Content Is Reduced in Simvastatin-Treated Mice Due to Inhibited Local Biosynthesis Albeit Increased Uptake of Serum Cholesterol. Drug Metab Dispos 2018; 46:1528-1537. [PMID: 30115644 DOI: 10.1124/dmd.118.083345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Statins, a class of cholesterol-lowering drugs, are currently being investigated for treatment of age-related macular degeneration, a retinal disease. Herein, retinal and serum concentrations of four statins (atorvastatin, simvastatin, pravastatin, and rosuvastatin) were evaluated after mice were given a single drug dose of 60 mg/kg body weight. All statins, except rosuvastatin, were detected in the retina: atorvastatin and pravastatin at 1.6 pmol and simvastatin at 4.1 pmol. Serum statin concentrations (pmol/ml) were 223 (simvastatin), 1401 (atorvastatin), 2792 (pravastatin), and 9050 (rosuvastatin). Simvastatin was then administered to mice daily for 6 weeks at 60 mg/kg body weight. Simvastatin treatment reduced serum cholesterol levels by 18% and retinal content of cholesterol and lathosterol (but not desmosterol) by 24% and 21%, respectively. The relative contributions of retinal cholesterol biosynthesis and retinal uptake of serum cholesterol to total retinal cholesterol input were changed as well. These contributions were 79% and 21%, respectively, in vehicle-treated mice and 69% and 31%, respectively, in simvastatin-treated mice. Thus, simvastatin treatment lowered retinal cholesterol because a compensatory upregulation of retinal uptake of serum cholesterol was not sufficient to overcome the effect of inhibited retinal biosynthesis. Simultaneously, simvastatin-treated mice had a 2.9-fold increase in retinal expression of Cd36, the major receptor clearing oxidized low-density lipoproteins from Bruch's membrane. Notably, simvastatin treatment essentially did not affect brain cholesterol homeostasis. Our results reveal the statin effect on the retinal and brain cholesterol input and are of value for future clinical investigations of statins as potential therapeutics for age-related macular degeneration.
Collapse
Affiliation(s)
- Natalia Mast
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| | - Ilya R Bederman
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| | - Irina A Pikuleva
- Departments of Ophthalmology and Visual Sciences (N.M., I.A.P.) and Pediatrics (I.R.B.), Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
8
|
Rać ME, Safranow K, Garanty-Bogacka B, Dziedziejko V, Kurzawski G, Goschorska M, Kuligowska A, Pauli N, Chlubek D. CD36 gene polymorphism and plasma sCD36 as the risk factor in higher cholesterolemia. Arch Pediatr 2018; 25:177-181. [PMID: 29576254 DOI: 10.1016/j.arcped.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/26/2017] [Accepted: 01/28/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The receptor CD36 has been reported to play an important role in atherogenicity. The aim of this study was to gain insight into the relationship between CD36 gene polymorphisms or the plasma concentration of sCD36 and clinical or biochemical parameters in children. PATIENTS AND METHODS The study groups comprised Caucasian children with and without hypercholesterolemia. The alterations in the CD36 gene were detected by DHPLC and the plasma concentrations of sCD36 were measured by ELISA. RESULTS The data presented suggest that the IVS4-10A allele of CD36 (rs3211892) is associated with a lower risk of hypercholesterolemia. We observed a negative correlation of the sCD36 concentration with uric acid and insulin concentrations, the HOMA-IR ratio, weight, waist and hip circumference, systolic blood pressure, body mass index, waist-hip ratio and mean arterial pressure ratio, but a positive correlation with HDL cholesterol and ApoA1 concentrations. Female gender was a significant independent predictor of a higher plasma sCD36 concentration. CONCLUSIONS The data presented suggest a possible protective effect of a higher sCD36 concentration in relation to metabolic syndrome components.
Collapse
Affiliation(s)
- M E Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - K Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - B Garanty-Bogacka
- Independent Laboratory of Propedeutics in Pediatrics, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - V Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - G Kurzawski
- Department of Genetics and Pathomorphology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - M Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - A Kuligowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - N Pauli
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
9
|
Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 2016; 54:64-102. [PMID: 27156982 DOI: 10.1016/j.preteyeres.2016.04.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
A biomarker can be a substance or structure measured in body parts, fluids or products that can affect or predict disease incidence. As age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, much research and effort has been invested in the identification of different biomarkers to predict disease incidence, identify at risk individuals, elucidate causative pathophysiological etiologies, guide screening, monitoring and treatment parameters, and predict disease outcomes. To date, a host of genetic, environmental, proteomic, and cellular targets have been identified as both risk factors and potential biomarkers for AMD. Despite this, their use has been confined to research settings and has not yet crossed into the clinical arena. A greater understanding of these factors and their use as potential biomarkers for AMD can guide future research and clinical practice. This article will discuss known risk factors and novel, potential biomarkers of AMD in addition to their application in both academic and clinical settings.
Collapse
Affiliation(s)
- Nathan G Lambert
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Malkit K Singh
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - Fiona C Mansergh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Maximilian Padilla
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| | - David Keegan
- Mater Misericordia Hospital, Eccles St, Dublin 7, Ireland.
| | - Ruth E Hogg
- Centre for Experimental Medicine, Institute of Clinical Science Block A, Grosvenor Road, Belfast, Co.Antrim, Northern Ireland, UK.
| | - Balamurali K Ambati
- Ambati Lab, John A. Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, USA; Department of Ophthalmology & Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Koo E, Neuringer M, SanGiovanni JP. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration. Am J Clin Nutr 2014; 100 Suppl 1:336S-46S. [PMID: 24829491 PMCID: PMC4144106 DOI: 10.3945/ajcn.113.071563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)-related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis.
Collapse
Affiliation(s)
- Euna Koo
- From the Department of Ophthalmology, University of California at San Francisco, San Francisco, CA (EK); the Oregon National Primate Research Center and Casey Eye Institute, Oregon Health Sciences University, Portland, OR (MN); and the National Eye Institute, National Institutes of Health, Bethesda, MD (JPS)
| | - Martha Neuringer
- From the Department of Ophthalmology, University of California at San Francisco, San Francisco, CA (EK); the Oregon National Primate Research Center and Casey Eye Institute, Oregon Health Sciences University, Portland, OR (MN); and the National Eye Institute, National Institutes of Health, Bethesda, MD (JPS)
| | - John Paul SanGiovanni
- From the Department of Ophthalmology, University of California at San Francisco, San Francisco, CA (EK); the Oregon National Primate Research Center and Casey Eye Institute, Oregon Health Sciences University, Portland, OR (MN); and the National Eye Institute, National Institutes of Health, Bethesda, MD (JPS)
| |
Collapse
|
11
|
Ramos-Arellano LE, Salgado-Bernabé AB, Guzmán-Guzmán IP, Salgado-Goytia L, Muñoz-Valle JF, Parra-Rojas I. CD36 haplotypes are associated with lipid profile in normal-weight subjects. Lipids Health Dis 2013; 12:167. [PMID: 24188362 PMCID: PMC3842800 DOI: 10.1186/1476-511x-12-167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022] Open
Abstract
Background Dyslipidemia is a common metabolic disorder that may result from abnormalities in the synthesis, processing and catabolism of lipoprotein particles. Disorders of lipoprotein concentrations and elevated concentration of oxidized lipoproteins (oxLDL) are risk factors in the pathogenesis of cardiovascular diseases (CVD). CD36 plays an important role in lipid metabolism and polymorphisms in the CD36 gene are related to cardiovascular risk factors. The purpose of this study was to evaluate whether there is an association between genotypes and haplotypes of five polymorphisms in the CD36 gene with lipid levels in young normal-weight subjects. Methods A total of 232 unrelated subjects with normal-weight of 18 to 25 years old (157 women and 75 men) were randomly selected. The lipid profile and glucose levels were measured by enzymatic colorimetric assays. Genotyping of the polymorphisms -33137A/G (rs1984112), -31118G/A (rs1761667), -22674 T/C (rs2151916), 27645 Ins/Del (rs3840546) and 30294G/C (rs1049673) in the CD36 receptor gene was performed by polymerase chain reaction and restriction fragment length polymorphism, linkage disequilibrium analysis among the five polymorphisms and an analysis of haplotype were estimated. Results HDL-C levels was lower in men than in women (P = 0.03). However, the median oxLDL levels in men was higher than in women (P = 0.05). There was no significant difference in the levels of TC, TG, LDL-C and glucose (P > 0.05). HDL-C levels were lower in the subjects with TC genotype of polymorphism -22674 T/C (P = 0.04), but the carriers of TT genotype had lower oxLDL levels (P = 0.01). LDL-C levels were higher in young carriers of CC genotype for 30294G/C polymorphism than non-carriers (P = 0.03). The subjects carrying the AATDC haplotype had 3.2 times presumably higher risk of LDL-C > 100 mg/dL than the carrying the AGTIG haplotype (P = 0.02), whereas the subjects carrying the AATIC haplotype had 2.0 times presumably higher risk of TC > 200 mg/dL than the carrying the AGTIC haplotype (P = 0.02). Conclusion The study provides evidence of a genetic association of CD36 haplotypes with the variability in LDL-C and TC levels in a sample of normal-weight subjects.
Collapse
Affiliation(s)
| | | | | | | | | | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
| |
Collapse
|
12
|
Honda S, Bessho H, Kondo N, Kusuhara S, Tsukahara Y, Negi A. Positive association of CD36 gene variants with the visual outcome of photodynamic therapy in polypoidal choroidal vasculopathy. Mol Vis 2012; 18:2796-804. [PMID: 23213279 PMCID: PMC3513185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 11/20/2012] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To clarify the association between cluster of differentiation 36 (CD36) gene polymorphisms and the response to photodynamic therapy (PDT) in polypoidal choroidal vasculopathy (PCV). METHODS One hundred and thirty-seven patients with PCV were enrolled. The patients were treated with PDT and followed up for more than 6 months. Retreatments were performed every 3 months as needed based on findings from angiography. Patients who showed an improvement in their best-corrected visual acuity at 6 months post-PDT were classified as PDT responders, and the others were defined as non-responders. For the 73 responders and 64 non-responders, 19 single nucleotide polymorphisms (SNPs) across the CD36 region were genotyped using the TaqMan assay. We analyzed the association between these variants and the visual outcomes of PDT. RESULTS The allelic frequencies of the SNPs rs3211851, rs3173798, and rs3211908 showed nominally significant differences between the PDT responders and non-responders. Genotype association analysis revealed a significant association of SNP rs3173798 with the visual outcome of PDT in a dominant model. The presence of the C allele in rs3173798 was significantly associated with a poor response to PDT after multivariate logistic regression analysis with clinical pre-PDT parameters. The mean best-corrected visual acuity in the group with the TT genotype of rs3173798 was significantly improved over 12 months of follow-up after the initial PDT. CONCLUSIONS The coding variants in CD36 are possibly associated with the visual outcome of PDT in patients with PCV.
Collapse
|
13
|
SanGiovanni JP, Neuringer M. The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: promise of molecular genetics for guiding mechanistic and translational research in the field. Am J Clin Nutr 2012; 96:1223S-33S. [PMID: 23053548 PMCID: PMC3471204 DOI: 10.3945/ajcn.112.038240] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of vision loss in elderly people of western European ancestry. Genetic, dietary, and environmental factors affect tissue concentrations of macular xanthophylls (MXs) within retinal cell types manifesting AMD pathology. In this article we review the history and state of science on the putative role of the MXs (lutein, zeaxanthin, and meso-zeaxanthin) in AMD and report findings on AMD-associated genes encoding enzymes, transporters, ligands, and receptors affecting or affected by MXs. We then use this context to discuss emerging research opportunities that offer promise for meaningful investigation and inference in the field.
Collapse
|
14
|
Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med 2012; 33:487-509. [PMID: 22705444 DOI: 10.1016/j.mam.2012.06.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.
Collapse
Affiliation(s)
- Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
15
|
The association of CD36 variants with polypoidal choroidal vasculopathy compared to typical neovascular age-related macular degeneration. Mol Vis 2012; 18:121-7. [PMID: 22275803 PMCID: PMC3265175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/12/2012] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To clarify the association of cluster of differentiation 36 (CD36) variants with polypoidal choroidal vasculopathy (PCV) and compare them with those in typical neovascular age-related macular degeneration (tAMD). METHODS We included 349 Japanese AMD patients (210 PCV, 139 tAMD) and 198 age-matched controls. Four tag single-nucleotide polymorphisms (SNPs)-rs10499862, rs3173798, rs3211883, and rs3173800-in the CD36 region were genotyped using the TaqMan assay. Allelic and genotypic frequencies of the SNPs were tested. RESULTS Although none of the SNPs tested were associated with PCV, the allelic frequencies of rs3173798 and rs3173800 were significantly different between PCV and tAMD patients. Genotype association analysis demonstrated different associations of these two SNPs between PCV and tAMD in the genotype model. Haplotype analysis revealed that the association of the major haplotype (T-T-T-T) at four selected SNPs in CD36 differed significantly between PCV and tAMD patients. CONCLUSIONS The CD36 region may be associated with the difference in genetic susceptibility for PCV and tAMD.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The review summarizes our current understanding of the function of the fatty acid translocase, CD36, in lipid metabolism with an emphasis on the influence of CD36 genetic variants and their potential contribution to obesity-related complications. RECENT FINDINGS Studies in rodents implicate CD36 in a number of metabolic pathways with relevance to obesity and its associated complications. These include pathways related to fat utilization such as taste perception, intake, intestinal processing, and storage in adipose tissue. Dysfunction in these pathways, coupled with the ability of CD36 to transduce intracellular signals that initiate inflammation in response to excess fat supply, promotes metabolic pathology. In the last few years, the relevance of discoveries in rodents to humans has been highlighted by genetic studies, which identified common CD36 variants that influence circulating lipid levels and cardiometabolic phenotypes. SUMMARY Recent genetic studies suggest that CD36 plays an important role in lipid metabolism in humans and may be involved in obesity-related complications. These findings may accelerate the translation of CD36 metabolic functions determined in rodents to humans. Importantly, these studies highlight the potential utility of assessing CD36 expression and common single-nucleotide polymorphism genotypes.
Collapse
|
17
|
Markovets AM, Saprunova VB, Zhdankina AA, Fursova AZ, Bakeeva LE, Kolosova NG. Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany NY) 2011; 3:44-54. [PMID: 21191149 PMCID: PMC3047138 DOI: 10.18632/aging.100243] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the world, remains poorly understood. This makes it necessary to create animal models for studying AMD pathogenesis and to design new therapeutic approaches. Here we showed that retinopathy in OXYS rats is similar to human AMD according to clinical signs, morphology, and vascular endothelium growth factor (VEGF) and pigment epithelium-derived factor (PEDF) genes expression. Clinical signs of retinopathy OXYS rats manifest by the age 3 months against the background of significantly reduced expression level of VEGF and PEDF genes due to the decline of the amount of retinal pigment epithelium (RPE) cells and alteration of choroidal microcirculation. The disruption in OXYS rats' retina starts at the age of 20 days and appears as reduce the area of RPE cells but does not affect their ultrastructure. Ultrastructural pathological alterations of RPE as well as develop forms of retinopathy are observed in OXYS rats from age 12 months and manifested as excessive accumulation of lipofuscin in RPE regions adjacent to the rod cells, whirling extentions of the basement membrane into the cytoplasm. These data suggest that primary cellular degenerative alterations in the RPE cells secondarily lead to choriocapillaris atrophy and results in complete loss of photoreceptor cells in the OXYS rats' retina by the age of 24 months.
Collapse
|
18
|
|
19
|
Picard E, Houssier M, Bujold K, Sapieha P, Lubell W, Dorfman A, Racine J, Hardy P, Febbraio M, Lachapelle P, Ong H, Sennlaub F, Chemtob S. CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits. Aging (Albany NY) 2011; 2:981-9. [PMID: 21098885 PMCID: PMC3034186 DOI: 10.18632/aging.100218] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Age-related macular degeneration (AMD) represents the major cause of vision loss in industrialized nations. Laminar deposits in Bruch's membrane (BM) are among the first prominent histopathologic features, along with drusen formation, and have been found to contain oxidized lipids. Increases in concentrations of oxidized LDL (oxLDL) in plasma are observed with age and high fat high (HFHC) cholesterol diet. CD36 is the principal receptor implicated in uptake of oxLDL, and is expressed in the retinal pigment epithelium (RPE). We determined if CD36 participates in oxLDL uptake in RPE and correspondingly in clearance of sub-retinal deposits. Uptake of oxLDL by RPE in vitro and in vivo was CD36-dependent. CD36 deficiency in mice resulted in age-associated accumulation of oxLDL and sub-retinal BM thickening, despite fed a regular diet. Conversely, treatment of HFHC-fed ApoE null mice with a CD36 agonist, EP80317 (300 μg/kg/day), markedly diminished thickening of BM, and partially preserved (in part) photoreceptor function. In conclusion, our data uncover a new role for CD36 in the clearance of oxidized lipids from BM and in the prevention of age-dependent sub-retinal laminar deposits.
Collapse
Affiliation(s)
- Emilie Picard
- Department of Pediatrics, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rać ME, Suchy J, Kurzawski G, Safranow K, Jakubowska K, Olszewska M, Garanty-Bogacka B, Rać M, Poncyljusz W, Chlubek D. Analysis of HumanCD36Gene Sequence Alterations in the Oxidized Low-Density Lipoprotein-Binding Region Using Denaturing High-Performance Liquid Chromatography. Genet Test Mol Biomarkers 2010; 14:551-7. [DOI: 10.1089/gtmb.2010.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Monika Ewa Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Janina Suchy
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Grzegorz Kurzawski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Jakubowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Maria Olszewska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Garanty-Bogacka
- Independent Laboratory of Propedeutics in Pediatrics, Pomeranian Medical University, Szczecin, Poland
| | - Michał Rać
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Poncyljusz
- Department of Interventional Radiology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|